The Non-Denatured Processing of Brasenia schreberi Mucilage—Characteristics of Hydrodynamic Properties and the Effect on In Vivo Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagent
2.2. Sample Preparation
2.3. Water-Holding Capacity
2.4. Rheological Tests
2.5. SEM Analysis
2.6. Cryo-SEM Tests
2.7. Animal Experiment
2.8. Disease Activity Index (DAI) Evaluation
2.9. Colonic Histomorphology Analysis
2.10. Colonic Gene Expression
2.11. Fecal SCFAs Determination
2.12. Microbial Analysis
2.13. Statistical Analysis and Visualization
3. Results
3.1. Physiochemical Characteristics of FM, FS, and FP
3.1.1. Water-Holding Capacity
3.1.2. Rheological Properties
3.1.3. Microstructure
3.2. In Vivo Effect of FM, FS, and FP on Colitis Symptoms
3.2.1. DAI Score
3.2.2. Colonic Histopathological Evaluation
3.2.3. Colonic Expression of Inflammatory Marker Genes
3.2.4. Gut Microbiota
3.2.5. SCFAs Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jermann, C.; Koutchma, T.; Margas, E.; Leadley, C.; Ros-Polski, V. Mapping trends in novel and emerging food processing technologies around the world. Innov. Food Sci. Emerg. Technol. 2015, 31, 14–27. [Google Scholar] [CrossRef]
- van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P.R.; Eisenbrand, G. A review on the beneficial aspects of food processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. [Google Scholar] [CrossRef]
- Oyinloye, T.M.; Yoon, W.B. Effect of freeze-drying on quality and grinding process of food produce: A review. Processes 2020, 8, 354. [Google Scholar] [CrossRef]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Li, J.; Pan, F.; Fu, J.; Zhou, W.; Lu, S.; Li, P.; Zhou, C. Environmental factors influencing mucilage accumulation of the endangered Brasenia schreberi in China. Sci. Rep. 2018, 8, 17955. [Google Scholar] [CrossRef] [PubMed]
- Kakuta, M.; Misaki, A. Polysaccharide of “Junsai (Brasenia schreberi JF Gmel)” mucilage: Constitution and linkage analysis. Agric. Biol. Chem. 1979, 43, 993–1005. [Google Scholar]
- Kim, H.; Wang, Q.; Shoemaker, C.F.; Zhong, F.; Bartley, G.E.; Yokoyama, W.H. Polysaccharide gel coating of the leaves of Brasenia schreberi lowers plasma cholesterol in hamsters. J. Tradit. Complement. Med. 2015, 5, 56–61. [Google Scholar] [CrossRef]
- Xiao, H.; Cai, X.; Fan, Y.; Luo, A. Antioxidant activity of water-soluble polysaccharides from Brasenia schreberi. Pharmacogn. Mag. 2016, 12, 193. [Google Scholar]
- Wan, J.; Yu, X.; Liu, J.; Li, J.; Ai, T.; Yin, C.; Liu, H.; Qin, R. A special polysaccharide hydrogel coated on Brasenia schreberi: Preventive effects against ulcerative colitis via modulation of gut microbiota. Food Funct. 2023, 14, 3564–3575. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Cao, Q.; Ye, L.; Wang, J.; Guo, M. The Function of Natural Polysaccharides in the Treatment of Ulcerative Colitis. Front. Pharmacol. 2022, 13, 927855. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Chen, X.; Xu, R.; Dong, H.; Yang, F.; Wang, Y.; Zhang, Z.; Ju, J. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: A review. Carbohydr. Polym. 2021, 254, 117189. [Google Scholar] [CrossRef] [PubMed]
- Cremer, J.; Arnoldini, M.; Hwa, T. Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc. Natl. Acad. Sci. USA 2017, 114, 6438–6443. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Cummings, J.H. Water-holding by dietary fibre in vitro and its relationship to faecal output in man. Gut 1979, 20, 722–729. [Google Scholar] [CrossRef]
- Kim, J.J.; Shajib, M.S.; Manocha, M.M.; Khan, W.I. Investigating intestinal inflammation in DSS-induced model of IBD. J. Vis. Exp. 2012, 1, 3678. [Google Scholar]
- He, X.W.; He, X.S.; Lian, L.; Wu, X.J.; Lan, P. Systemic Infusion of Bone Marrow-Derived Mesenchymal Stem Cells for Treatment of Experimental Colitis in Mice. Dig. Dis. Sci. 2012, 57, 3136–3144. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wu, Y.; Pham, Q.; Yu, L.; Chen, M.H.; Boue, S.; Yokoyama, W.; Li, B.; Wang, T. Effects of Rice with Different Amounts of Resistant Starch on Mice Fed a High-Fat Diet: Attenuation of Adipose Weight Gain. J. Agric. Food Chem. 2020, 68, 13046–13055. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Rao, P.; Xie, Z.; Jiang, J.; Qiu, Y.; Zhang, Z.; Li, G.; Xiang, L. Exploring the interaction between Lycium barbarum polysaccharide and gelatin: Insights into gelation behaviors, water mobility, and structural changes. Food Hydrocoll. 2024, 148, 109415. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Y.; Yang, Y.; Chen, Z.; Li, J.; Luo, J. Mechanism of biological liquid superlubricity of Brasenia schreberi mucilage. Langmuir 2014, 30, 3811–3816. [Google Scholar] [CrossRef]
- Feng, S.; Luan, D.; Ning, K.; Shao, P.; Sun, P. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi. Int. J. Biol. Macromol. 2019, 135, 141–151. [Google Scholar] [CrossRef]
- Bhatnagar, B.S.; Bogner, R.H.; Pikal, M.J. Protein stability during freezing: Separation of stresses and mechanisms of protein stabilization. Pharm. Dev. Technol. 2007, 12, 505–523. [Google Scholar] [CrossRef]
- León Martínez, F.; Ramírez, J.; Medina-Torres, L.; Mendez, L.; Bernad-Bernad, M.J. Effects of drying conditions on the rheological properties of reconstituted mucilage solutions (Opuntia ficus-indica). Carbohydr. Polym. 2011, 84, 439–445. [Google Scholar] [CrossRef]
- Evageliou, V. Shear and extensional rheology of selected polysaccharides. Int. J. Food Sci. Technol. 2020, 55, 1853–1861. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Luo, J.; Liu, P.; Zhang, C. Excellent lubricating behavior of Brasenia schreberi mucilage. Langmuir 2012, 28, 7797–7802. [Google Scholar] [CrossRef] [PubMed]
- Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The gut microbiota and inflammation: An overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef]
- Guo, C.; Wang, Y.; Zhang, S.; Zhang, X.; Du, Z.; Li, M.; Ding, K. Crataegus pinnatifida polysaccharide alleviates colitis via modulation of gut microbiota and SCFAs metabolism. Int. J. Biol. Macromol. 2021, 181, 357–368. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X.; Wang, Y.; Tan, X.; Zou, H.; Feng, S.; Zhang, H.; Zhang, Z.; He, J.; Cui, B. Human fecal microbiota transplantation reduces the susceptibility to dextran sulfate sodium-induced germ-free mouse colitis. Front. Immunol. 2022, 13, 836542. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.F.; Gogokhia, L.; Viladomiu, M.; Chou, L.; Putzel, G.; Jin, W.-B.; Pires, S.; Guo, C.-J.; Gerardin, Y.; Crawford, C.V. Transferable immunoglobulin A–Coated Odoribacter splanchnicus in responders to fecal microbiota transplantation for ulcerative colitis limits colonic inflammation. Gastroenterology 2022, 162, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 424615. [Google Scholar]
- Labavić, D.; Loverdo, C.; Bitbol, A.-F. Hydrodynamic flow and concentration gradients in the gut enhance neutral bacterial diversity. Proc. Natl. Acad. Sci. USA 2022, 119, e2108671119. [Google Scholar] [CrossRef]
- Codutti, A.; Cremer, J.; Alim, K. Changing flows balance nutrient absorption and bacterial growth along the gut. Phys. Rev. Lett. 2022, 129, 138101. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Louis, P.; Thomson, J.M.; Flint, H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 2009, 11, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Kircher, B.; Woltemate, S.; Gutzki, F.; Schlüter, D.; Geffers, R.; Bähre, H.; Vital, M. Predicting butyrate-and propionate-forming bacteria of gut microbiota from sequencing data. Gut Microbes 2022, 14, 2149019. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lin, J.; Zhang, C.; Gao, H.; Lu, H.; Gao, X.; Zhu, R.; Li, Z.; Li, M.; Liu, Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes 2021, 13, 1968257. [Google Scholar] [CrossRef] [PubMed]
- McShane, A.; Bath, J.; Jaramillo, A.M.; Ridley, C.; Walsh, A.A.; Evans, C.M.; Thornton, D.J.; Ribbeck, K. Mucus. Curr. Biol. 2021, 31, R938–R945. [Google Scholar] [CrossRef] [PubMed]
- Paone, P.; Cani, P.D. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 2020, 69, 2232–2243. [Google Scholar] [CrossRef] [PubMed]
- Nordgård, C.T.; Draget, K.I. Oligosaccharides as modulators of rheology in complex mucous systems. Biomacromolecules 2011, 12, 3084–3090. [Google Scholar] [CrossRef] [PubMed]
- Preska Steinberg, A.; Wang, Z.-G.; Ismagilov, R.F. Food polyelectrolytes compress the colonic mucus hydrogel by a Donnan mechanism. Biomacromolecules 2019, 20, 2675–2683. [Google Scholar] [CrossRef]
- Kakuta, M.; Misaki, A. The polysaccharide of “Junsai (Brasenia schreberi JF Gmel)” mucilage; fragmentation analysis by successive smith degradations and partial acid hydrolysis. Agric. Biol. Chem. 1979, 43, 1269–1276. [Google Scholar]
Gene Name | Abbreviation | Primer Sequence |
---|---|---|
TATA box binding protein | TBP | F 5′-CTACCGTGAATCTTGGCTGTAAAC-3′ |
R 5′-AATCAACGCAGTTGTCCGTGGC-3′ | ||
interleukin 1β | IL-1β | F 5′-TGCCACCTTTTGACAGTGATG-3′ |
R 5′-TGATGTGCTGCTGCGAGATT-3′ | ||
tumor necrosis factor-alpha | TNF-α | F 5′- CGATGGGTTGTACCTTGTCT-3′ |
R 5′- GTACTTGGGCAGATTGACCT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, T.; Wan, J.; Yu, X.; Liu, J.; Yin, C.; Yang, L.; Liu, H.; Qin, R. The Non-Denatured Processing of Brasenia schreberi Mucilage—Characteristics of Hydrodynamic Properties and the Effect on In Vivo Functions. Foods 2024, 13, 1824. https://doi.org/10.3390/foods13121824
Ai T, Wan J, Yu X, Liu J, Yin C, Yang L, Liu H, Qin R. The Non-Denatured Processing of Brasenia schreberi Mucilage—Characteristics of Hydrodynamic Properties and the Effect on In Vivo Functions. Foods. 2024; 13(12):1824. https://doi.org/10.3390/foods13121824
Chicago/Turabian StyleAi, Tingyang, Jiawei Wan, Xiujuan Yu, Jiao Liu, Cong Yin, Lindong Yang, Hong Liu, and Rui Qin. 2024. "The Non-Denatured Processing of Brasenia schreberi Mucilage—Characteristics of Hydrodynamic Properties and the Effect on In Vivo Functions" Foods 13, no. 12: 1824. https://doi.org/10.3390/foods13121824
APA StyleAi, T., Wan, J., Yu, X., Liu, J., Yin, C., Yang, L., Liu, H., & Qin, R. (2024). The Non-Denatured Processing of Brasenia schreberi Mucilage—Characteristics of Hydrodynamic Properties and the Effect on In Vivo Functions. Foods, 13(12), 1824. https://doi.org/10.3390/foods13121824