Detection of Salt Content in Canned Tuna by Impedance Spectroscopy: A Feasibility Study for Distinguishing Salt Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Impedance Spectroscopy
2.3. Inductively Coupled Plasma Detection
2.4. UV-VIS Spectrophotometry
2.5. Conductivity Measurement
2.6. Statistical Analysis
3. Results and Discussion
3.1. Sample Analysis by Standard Techniques
3.2. Reference Samples: Analysis of NaCl-Based Solutions by Impedance Spectroscopy
3.3. Analysis of Real Samples Doped with NaCl Using Impedance Spectroscopy
3.4. Real Extract Tuna Analysis by Impedance Spectroscopy
3.5. From Macroscopic Data to a Microscopic Model of Ions in Water-Based Solutions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lenzi, E.K.; Fernandes, P.R.G.; Petrucci, T.; Mukai, H.; Ribeiro, H.V. Anomalous diffusion approach applied to the electrical response of water. Phys. Rev. E 2011, 84, 041128. [Google Scholar] [CrossRef] [PubMed]
- Mrukiewicz, M.; Perkowski, P.; Mazur, R.; Chojnowska, O.; Piecek, W.; Dabrowski, R. Strong modulation of electric permittivity at an isotropic-nematic phase transition in a liquid crystal mixture for optical devices based on the Kerr effect. J. Mol. Liq. 2016, 223, 873–879. [Google Scholar] [CrossRef]
- Lima, L.F.; Vieira, A.L.; Mukai, H.; Andrade, C.M.G.; Fernandes, P.R.G. Electrical Impedance of aqueous KCl and NaCl solutions: Salt concentration dependence on components of the equivalent circuit. J. Mol. Liq. 2017, 241, 530–539. [Google Scholar] [CrossRef]
- Cassol, T.M.; Duarte, A.R.; Ribas, C.S.; Fernandes, P.R.G. Dielectric characterization of new task ionic liquid crystals with carboxyl groups by means of impedance spectroscopy from 10 mHz to 10 MHz. J. Mol. Liq. 2021, 332, 115804. [Google Scholar] [CrossRef]
- Buchner, R.; Hefter, G. Interactions and dynamics in electrolyte solutions by dielectric spectroscopy. Phys. Chem. Chem. Phys. 2009, 11, 8484–8499. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.R.; Batalioto, F.; Barbero, G.; Figueiredo Neto, A.M. Measurement of the impedance of aqueous solutions ok KCl: An analysis using an extension of the Poisson-Nernst-Planck model. Appl. Phys. Lett. 2014, 105, 022901. [Google Scholar] [CrossRef]
- Grossi, M.; Parolin, C.; Vitali, B.; Ricco, B. Electrical impedance spectroscopy (EIS) characterization of saline solutions with a low-cost portable measurement system. Eng. Sci. Technol. Int. J. 2019, 122, 102–108. [Google Scholar] [CrossRef]
- Ishai, P.B.; Talary, M.S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: A review. Meas. Sci. Technol. 2013, 24, 102001. [Google Scholar] [CrossRef]
- Aoki Koichi, J. Frequency-dependence of electric double layer capacitance without Faradaic reactions. J. Electroanal. Chem. 2016, 779, 117–125. [Google Scholar] [CrossRef]
- Guermazi, M.; Fendri, A.; Kanoun, O.; Derbel, N. Potential of impedance spectroscopy for real-time assessing of food quality. IEEE Instrum. Meas. Mag. 2018, 21, 44–48. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J.A.T.; Ramalho, E.; Silva, V. Milk Characterization Using Electrical Impedance Spectroscopy and Fractional Models. Food Anal. Methods 2018, 11, 901–912. [Google Scholar] [CrossRef]
- Freitas, A.C.; Morais, L.C.; Oliveira, M.M.; Pinto, S.M.; Vilela, J. Application of electrical impedance spectroscopy for the characterisation of yoghurts. Int. Dairy J. 2023, 141, 105625. [Google Scholar] [CrossRef]
- Alana Minetto, T.; Denardi, B.; Da Silva, G.; Amarante, A.; Cazonatto, A.; Da Silva, W. Identifying adulteration of raw bovine milk with urea through electrochemical impedance spectroscopy coupled with chemometric techniques. Food Chem. 2022, 385, 132678. [Google Scholar] [CrossRef] [PubMed]
- Luna, J.M.M.; Luna, A.M.; Fernández, R.E.H. Characterization and Differentiation between Olive Varieties through Electrical Impedance Spectroscopy, Neural Networks and IoT. Sensors 2020, 20, 5932. [Google Scholar] [CrossRef] [PubMed]
- Grossi, M.; Ricco, B. Electrical Impedance Spectroscopy (EIS) for biological analysis and food contamination: A review. J. Sens. Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef]
- Fuentes López, A.; Masot Peris, R.; Fernández Segovia, I.; Ruiz Rico, M.; Alcañiz Fillol, M.; Barat Baviera, J.M. Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innov. Food Sci. Emerg. Technol. 2013, 19, 210–217. [Google Scholar] [CrossRef]
- Leng, Y.; Sun, Y.; Wang, X.; Hou, J.; Zhao, X.; Zhang, Y. Electrical impedance estimation for pork tissues during chilled storage. Meat Sci. 2020, 161, 108014. [Google Scholar] [CrossRef]
- Cheng, J.; Pengpeng, Y.; Huang, Y.; Zhang, G.; Lu, C.; Jiang, X. Application status and prospect of impedance spectroscopy in agricultural product quality detection. Agriculture 2022, 12, 1525. [Google Scholar] [CrossRef]
- Kang, T.; Shafel, T.; Lee, D.; Lee, C.J.; Lee, S.H.; Jun, S. Quality retention of fresh tuna stored using supercooling technology. Foods 2020, 9, 1356. [Google Scholar] [CrossRef]
- Teixeira, L.G.; Bertemes, F.P.; Cox, M.K. Fish quality investigations using electrical impedance spectroscopy: Preliminary results. J. Phys. Conf. Ser. 2021, 2008, 012008. [Google Scholar] [CrossRef]
- Ormaza-González, F.I.; Ponce-villao, G.E.; Pin-Hidalgo, G.M. Low mercury, cadmium and lead concentrations in tuna products from the easter Pacific. Heliyon 2020, 6, e04576. [Google Scholar] [CrossRef]
- De Almeida Lemos, L.L.; Goncalves, A.A. Can pH and water-to-protein ratio be good instruments to evaluate the abusive water added in seafood by phosphate addition? J. Aquat. Food Prod. Technol. 2019, 28, 298–313. [Google Scholar] [CrossRef]
- Lampila, L.E. Functions and Uses of Phosphates in the Seafood Industry. J. Aquat. Food Prod. Technol. 1993, 1, 29–41. [Google Scholar] [CrossRef]
- Goncalves, A.A. Phosphates for Seafood Processing. Phosphates: Sources, Properties and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 83–112. ISBN 978-1-61942-123-3. [Google Scholar]
- Wang, J.; Xu, Z.; Zhang, M.; Liu, J.; Zou, H.; Wang, L. Improved of electrochemical performance of screen-printed carbon electrodes by UV/ozone modification. Talanta 2019, 192, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Filgueras, R.; Peyrin, F.; Venien, A.; Henot, J.M.; Astruc, T. Sodium chloride difussion during muscle salting evidenced by energy-dispersive x-ray spectroscopy imaging. J. Agric. Food Chem. 2016, 64, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Geonzon, L.C.; Yuson, H.A.; Takahashi, K.; Matsukawa, S. Study on salinity pemetration process into fish meat by simulation and MRI. Food Sci. Technol. 2021, 87, 609–617. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; Mc Dougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- HORIBA Scientific Application Note—Analysis of Chlorine, Bromine and Iodine in Water Using ICP-AES. Available online: https://static.horiba.com/fileadmin/Horiba/Application/Water/Drinking_Water_Utilities/Analysis_of_Chlorine__Bromine_and_Iodine_in_water_using_ICP-OES.pdf (accessed on 29 May 2024).
- Sanabria, H.; Miller, J.H. Relaxation processes due to the electrode-electrolyte interface in ionic solutions. Phys. Rev. E 2006, 74, 051505. [Google Scholar] [CrossRef]
- Bonatti, R.S.; Meyer, Y.A.; Padilha, G.S.; Bortolozo, A.D.; Osório, W.R. Silicon content affecting corrosion behavior of AlP/SiP composites in a biodiesel blend. Corrosion 2020, 76, 1109–1121. [Google Scholar] [CrossRef]
- Holm, S.; Holm, T.; Martinsen, O.G. Simple circuits equivalents for the constant phase element. PLoS ONE 2021, 16, e0248786. [Google Scholar] [CrossRef]
- Bordi, F.; Cametti, C.; Gili, T. Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions. Bioelectrochemistry 2001, 54, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Silva Arthur, E.T.; Andrade Thiago, M.; Freire Fernando, C.M. Overdamped oscillator model with a complex viscosity to interpret impedance spectroscopy data. J. Phys. Chem. C 2017, 121, 24557–24561. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Macdonald, J.R. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 1987, 223, 25–50. [Google Scholar] [CrossRef]
- Khademi, M.; Barz, D.P.J. Structure of the electrical double layer revisited: Electrode capacitance in aqueous solutions. Langmuir 2020, 36, 4250–4260. [Google Scholar] [CrossRef] [PubMed]
- Harned, H.S.; Owen, B.B. The Physical Chemistry of Electrolytic Solutions, 3rd ed.; Reinhold: New York, NY, USA, 1964; p. 213. [Google Scholar]
- De la Rica, R.; Sánchez, C.F.; Baldi, A. Polysilicon interdigitated electrodes as impedimetric sensors. Electrochem. Commun. 2006, 8, 1239–1244. [Google Scholar] [CrossRef]
- Hach. Certified Conductivity Standard Solution, 1015 µS/cm, 0.05% NaCl, 500 mL|Hach United Kingdom—Overview|Hach. Available online: https://uk.hach.com/1015-s-cm-certified-reference-material-crm-conductivity-standard-solution-0-05-nacl-500-ml/product?id=24929257897 (accessed on 29 May 2024).
- Debye, P.; Huckel, E. The theory of electrolytes: I. Lowering of freezing point and related phenomena. Phys. Z. 1923, 24, 85–206. Available online: http://digital.library.wisc.edu/1793/79225 (accessed on 29 May 2024).
- Lu, M.; Beguin, F.; Frackowiak, E. Supercapacitors: Materials, Systems and Applications; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-3-527-32883-3. [Google Scholar]
- Martiniano, H.F.M.C.; Galamba, N. Insights on hydrogen-bond lifetimes in liquid and supercooled water. J. Phys. Chem. B 2013, 117, 16188–16195. [Google Scholar] [CrossRef] [PubMed]
- Alfarano, S.R.; Pezzotti, S.; Stein, C.J.; Lin, Z.; Sebastiani, F.; Funke, S.; Hoberg, C.; Kolling, I.; Ma, C.Y.; Mauelshagen, K.; et al. Stripping away ion hydration shells in electrical double-layer formation: Water networks matter. Proc. Natl. Acad. Sci. USA 2021, 118, e2108568118. [Google Scholar] [CrossRef]
- Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M.A.; Soper, A.K. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 2007, 111, 13570–13577. [Google Scholar] [CrossRef]
- Marcus, Y. Viscosity B-coefficients structural entropies and heat capacities, and the effect of ions on the structure of water. J. Solut. Chem. 1994, 23, 831–848. [Google Scholar] [CrossRef]
- Roy, S.; Pal, B. Comparison of structure making/breaking properties of alkali metal ions Na+, K+ and Cs+ in water. arXiv 2019, arXiv:1909.10262. [Google Scholar] [CrossRef]
- Marcus, Y. Effect of ions on the structure of water structure making and breaking. Chem. Rev. 2009, 109, 1346–1370. [Google Scholar] [CrossRef] [PubMed]
- Heleyel, M.; Elhami, S. Sensitive, simple and rapid colorimetric detection of malachite green in water, salmon and canned tuna samples based on gold nanoparticles. J. Sci. Food Agric. 2019, 99, 1919–1925. [Google Scholar] [CrossRef]
- Singh, S.; Numan, A.; Zhan, Y.; Hung, T.V.; Nam, N.D. A novel highly efficient and ultrasensitive electrochemical detection of toxic mercury (II) ions in canned tuna fish and tap water based on a copper metal-organic-framework. J. Hazard. Mater. 2020, 15, 123042. [Google Scholar] [CrossRef]
Ionic Concentration (mM) | B1 | B2 | B3 | B4 | B5 |
---|---|---|---|---|---|
Cl− | 48.5 | 50.2 | 37.2 | 30.4 | 20.8 |
Na+ | 52.2 | 43.5 | 29.5 | 18.2 | 14.8 |
K+ | 22.2 | 17.9 | 6.6 | 8.8 | 6.5 |
Phosphates | 21.0 | 13.6 | 6.1 | 8.0 | 6.7 |
Conductivity (mS/cm) | 11.67 ± 1.26 | 8.65 ± 0.93 | 6.14 ± 0.66 | 4.7 ± 0.51 | 4.16 ± 0.45 |
NaCl (mM) | R1 (Ω) | n (CPE) |
---|---|---|
2.6 | 1884 ± 49 | 0.95 ± 0.01 |
5.3 | 1183 ± 27 | 0.95 ± 0.00 |
10.7 | 847 ± 22 | 0.90 ± 0.01 |
22.0 | 616 ± 14 | 0.95 ± 0.02 |
34.2 | 547 ± 32 | 0.94 ± 0.04 |
42.5 | 515 ± 30 | 0.89 ± 0.01 |
85.0 | 485 ± 35 | 0.89 ± 0.01 |
171.1 | 445 ± 17 | 0.94 ± 0.02 |
342.2 | 411 ± 30 | 0.93 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabala, I.; Merino, S.; Eletxigerra, U.; Ramiro, J.; Burguera, M.; Aranzabe, E. Detection of Salt Content in Canned Tuna by Impedance Spectroscopy: A Feasibility Study for Distinguishing Salt Levels. Foods 2024, 13, 1765. https://doi.org/10.3390/foods13111765
Zabala I, Merino S, Eletxigerra U, Ramiro J, Burguera M, Aranzabe E. Detection of Salt Content in Canned Tuna by Impedance Spectroscopy: A Feasibility Study for Distinguishing Salt Levels. Foods. 2024; 13(11):1765. https://doi.org/10.3390/foods13111765
Chicago/Turabian StyleZabala, Inés, Santos Merino, Unai Eletxigerra, Jorge Ramiro, Miren Burguera, and Estibaliz Aranzabe. 2024. "Detection of Salt Content in Canned Tuna by Impedance Spectroscopy: A Feasibility Study for Distinguishing Salt Levels" Foods 13, no. 11: 1765. https://doi.org/10.3390/foods13111765
APA StyleZabala, I., Merino, S., Eletxigerra, U., Ramiro, J., Burguera, M., & Aranzabe, E. (2024). Detection of Salt Content in Canned Tuna by Impedance Spectroscopy: A Feasibility Study for Distinguishing Salt Levels. Foods, 13(11), 1765. https://doi.org/10.3390/foods13111765