Emerging Parameters Justifying a Revised Quality Concept for Cow Milk
Abstract
:1. Introduction
2. Milk Safety: An Entry-Level Requirement of the Milk Quality Concept
Pollutant | Origin | Adverse Effect On Human Health | Reference |
---|---|---|---|
Mycotoxins | |||
Aflatoxin M1 | Nutrition Feeds contaminated by Aspergillus flavus | Carcinogenic, genotoxic, mutagenic, and teratogenic | [19,41] |
Bacterial toxins | |||
Cereulide | Nutrition Feeds contaminated by Bacillus cereus (toxin is stable during cow digestion and milk thermal treatments) | Causes emesis and nausea (poisonous effects at 0.01–1.28 µg/g) | [20,42,43] |
Toxic shock syndrome toxin | Intramammary infections by Staphilococcus aureus | Induces fever, hypotension, congestion in multiple organs, and lethal shock | [21,44] |
Shiga toxin | Intramammary infections by Escherichia coli (risk in raw milk) | Induces hemolytic uremic syndrome | [22,45] |
Heavy metals | |||
Lead (Pb) | Nutrition Feeds grown on contaminated soils | Can cross the placental barrier. In utero exposure can affect fetal brain differentiation, causing neurotoxic effects (decreased intelligence quotient, memory reduction, and language disturbance) | [11,12,13,14,15] |
Cadmium (Cd) | Nutrition Feeds grown on contaminated soils | Negatively affects nutritional quality of milk through altering its nutritional profile; can cross the placental barrier. In utero exposure can affect fetal brain differentiation, causing neurotoxic effect (decreased intelligence quotient, memory reduction, and language disturbance). Affects reproductive systems (disturbance of androgen–estrogen balance and steroidal hormone levels). Increases breast cancer risk | [14,46,47,48] |
Mercury (Hg) | Nutrition Feeds grown on contaminated soils | Negatively affects nutritional quality of milk through altering its nutritional profile | [14,48] |
Pesticides | |||
Dioxins | Nutrition Bioaccumulates through the food chain | Human carcinogen. Causes atherosclerosis, hypertension, and diabetes | [16] |
Others | |||
Drug residuals | Management Wrong drug suspension time | Increased risk of selecting resistant bacterial strains | [34] |
3. Milk Quality as Reflected in Compositional Traits: Classical Principles and Novel Aspects
3.1. Milk Fat Composition and Fatty Acid Profile
Nutrient | UM 1 | Content | Origin 2 | Implications 3 | Reference |
---|---|---|---|---|---|
Total fat | g | 3.0–3.9 | (H+) Facilitates the dissolving and absorption of lipophilic vitamin; (H−) Several pollutants (i.e., cereulide, dioxins) accumulate in the milk fat fraction; (F+) Carrier for taste and aroma. | [42,54,55,75] | |
SFA | %TF | 68.72 | (H−) Excessively high share of SFAs in one’s diet (particularly C12, 14, and 16) may cause atherosclerosis and promote cardiovascular risk; (H+) SFAs other than C12, 14, and 16 neutralize the hyperlipidemic effect of these acids through increasing the HDL level; | [55,60] | |
(SL+) Greatest stability against oxidation; | [55] | ||||
(CT−) Cheeses are harder, less creamy, and elastic. | [66] | ||||
Butyric (C4:0) | %TF | 2.87 | DN | (H+) Protects against food allergy, inflammation, oxidative stress, and diabetes; interacts with GIT microbiota. | [55,76] |
Caproic (C6:0) | %TF | 2.01 | DN | ||
Caprylic (C8:0) | %TF | 1.39 | DN | ||
Capric (C10:0) | %TF | 3.03 | DN | ||
Lauric (C12:0) | %TF | 3.64 | DN | (H−) Increase blood LDL. Contribute to determining AI and TI of milk. | [55,59,60,76] |
Myristic (C14:0) | %TF | 10.92 | DN | ||
Palmitic (C16:0) | %TF | 28.7 | PF | ||
Stearic (C18:0) | %TF | 11.23 | PF | ||
MUFAs | %TF | 27.4 | (H+) Do not cause accumulation of cholesterol as SFAs do; have a positive effect on the concentration of HDL and reduce the abundance of LDL; (SL+/−) Do not turn rancid as readily as PUFAs; (CT+) Cheeses are softer, creamier, and more elastic. | [55,66] | |
Myristoleic (C14:1, cis 9) | %TF | 1 | DN | [55,76] | |
Palmitoleic (C16:1, cis-9) | %TF | 1.5 | PF | [55,76,77] | |
Oleic (C18:1, cis-9) | %TF | 22.36 | PF | ||
Vaccenic (C18:1, trans-11) | %TF | 1.5–5 | PF | (H+) Precursor of CLA in human organism. | [55,76] |
PUFAs | %TF | 4.05 | (H+/−) Involved in eicosanoid production; (SL−) Greatest susceptibility to oxidation processes; | [55] | |
n-6 PUFAs | %TF | 2.83 | (H−) Excessive amounts are commonly included in human diets. Proinflammatory (stimulates series II prostaglandin release); | [55,72] | |
LA (C18:2, cis-9, cis-12) | %TF | 2.57 | PF | (H−) Compete with ALA for the same enzymatic system (δ-6-desaturase), inhibiting ALA elongation from forming EPA and DHA; | [55,76,78] |
CLAs | %TF | 0.57 | PF | (H+) Immunostimulatory, anti-inflammatory, antihypertensive, anticarcinogenic, and antiatherogenic; | [55,69,76,79,80,81,82,83] |
C18:2, cis-9, trans-11 | %CLA | 90 | (H+) Increase LDL-to-HDL cholesterol ratio and total-cholesterol-to-HDL cholesterol ratio; | ||
C18:2, trans-10, cis-12 | %CLA | 1–10 | (H+) Anti-adipogenic: protect against obesity through promoting a reduction in body weight. Decrease LDL-to-HDL cholesterol ratio and total-cholesterol-to-HDL cholesterol ratio; | ||
n-3 PUFAs | %TF | 0.56 | (H+) Low amounts are commonly included in human diets. Anti-inflammatory, antioxidant, protect the cardiovascular and nervous systems. Reduce lipid deposition. Protect against cancer, heart diseases, thrombosis, arterial hypertension, hyperlipidemia, senile dementia, Alzheimer’s disease, depression, rheumatoid arthritis, and skin diseases (i.e., psoriasis, acne, lupus erythematosus); | [55,78,84,85,86] | |
ALA (C18:3, cis-9, cis-12, cis-15) | %TF | 0.5 | PF | (H+) Could be used for EPA and DHA synthesis (especially in infants). | [55,76,87] |
3.2. Composition of the Protein Fractions
Nutrient | UM 1 | Content | Origin | Implications 2 | Reference |
---|---|---|---|---|---|
Total protein | g | 3.3–5.4 | (H+) Generates bioactive peptides regulating several metabolic functions; (H−) Some proteins or their metabolites are involved in milk allergies. | [6,54,90,98,102,103] | |
Caseins | %TP | 80 | (H+) Precursors of several bioactive peptides; (H−) Main allergen contained in milk; | [6,54,90,98] | |
α-s1 | %TP | 32 | (H+) Generates bioactive peptides with antihypertensive, opioid-agonistic, immunomodulating, and antimicrobial actions that regulate mineral bioavailability; | [90,98,104] | |
α-s2 | %TP | 10 | (H+) Generates bioactive peptides with antihypertensive, immunomodulating, and antimicrobial actions and regulate mineral bioavailability; | [90,98,104] | |
Β | %TP | 28 | |||
Κ | %TP | 10 | (H+) Generates bioactive peptides with antihypertensive, antithrombotic, opioid-agonistic, and antagonistic action. | [90,98,104,105] | |
Whey proteins | %TP | 20 | (H−) Stimulates proinflammatory cytokine secretion by cultured PBMCs; | [6,54] | |
α-lactalbumin | %TP | 5 | Synthesized in the mammary gland | (H+) Coenzyme in the biosynthesis of lactose; binds metal ions. Generates bioactive peptides with immunomodulatory, antihypertensive, and humoral effects (modulates cortisol and serotonin secretion). Anticarcinogenic; (H−) Third-most important milk allergen; | [90,98] |
β-lactoglobulin | %TP | 10 | (H+) Binds calcium, FAs, and vitamins (A, D), facilitating their absorption; generates bioactive peptides with antihypertensive, antithrombotic, opioid, antimicrobial, immunomodulant, hypocholesterolemic, and radical scavenging properties; anticarcinogenic; (H−) Second-most important milk allergen; | [98,106] | |
Serum albumin | %TP | 1 | Comes from blood | (H+) Anticarcinogenic action; generates peptides with antihypertensive effects; (H−) Fourth-most important milk allergen; (F+) Carrier for taste and aroma; | [90,98,107] |
Lactoferrin | %WP | <1 | (H+) Iron-chelating glycoprotein, which plays an important role in iron absorption in the intestine; antimicrobial, anti-inflammatory, anticarcinogenic, immunomodulatory, and bone growth factor properties; (H−) Sixth-most important milk allergen; | [98,108] | |
Igs | %WP | 9–15 | (H+) Potential preventive action against infant diseases; (H−) Fifth-most important milk allergen. | [90,98,107,109] | |
Lysozyme | %WP | <1 | (H+) Bactericidal action (breaks bacterial cell walls); | [54,94,98] | |
Lactoperoxidase | %WP | <1 | (H+) Along with lactoferrin and lysozyme comprises the non-immunoglobulin protective system in milk; | [90,107] | |
Sulfhydryl oxidase | %WP | <1 | (H+) Antioxidant enzyme; | [90] | |
Superoxide dismutase | %WP | <1 | |||
Γ-casein | %TP | Traces | Hydrolysis of β-casein by endogenous enzymes | (H+) Generates bioactive peptides with antihypertensive, antithrombotic, opioid agonistic, and antagonistic action; | [90,98,104,105] |
Proteose peptones | %WP | Traces | Hydrolysis of α-s1 and β-casein by endogenous enzymes | (H+) Lipolysis inhibition, antimicrobial; | [95,98,110] |
Casein-macropeptides | %WP | <10 | Hydrolysis of κ-casein by chymosin | (H+) Useful for diets aimed at controlling liver diseases and when branched chain amino acids are used as a carbon source. Generates peptides with opioid and satiety effects; responsible for absorption of calcium, iron, and zinc; (H−) Responsible for ketosis induction in infants. | [90,98,111] |
3.3. Lactose
3.4. Minerals
Component | UM | Content 1 | Requirement 2 | Implications 3 | Reference |
---|---|---|---|---|---|
Ca | mg | 112–123 | 210–1300 | (H+) Structural roles: skeletal development, maintaining the excitability of tissues, conduction of nerves and muscular cells, and normal blood pressure. Promotes blood coagulation processes. (CT+) Contributes to cheese mineralization and promotes cheese firmness. | [54,56,117,118,120,121] |
P | mg | 59–119 | - | (H+) Essential for bone deposition. (CT+) Contributes to cheese mineralization and promotion of cheese firmness; involved in the physiochemical stability of the whey proteins. | [54,56,119] |
Mg | mg | 7–12 | 26–260 | (H+) Functions as a cofactor of many enzymes involved in energy metabolism, protein synthesis, RNA and DNA synthesis, and maintenance of the electrical potential of nervous tissues and cell membranes. | [54] |
Na | mg | 42–58 | - | (CT+) Involved in the physical–chemical stability of the whey proteins. | [54] |
K | mg | 106–163 | - | (CT+) Contributes to the cheese’s physical–chemical properties, the microorganism’s selection, and enzymatic activities throughout maturation processes. | [54] |
Cl | mg | 80–90 | - | ||
Zn | mg | 0.5 | 1.1–20 | (H+) Cofactor in many enzymes with a variety of biochemical functions in the living organism. | [54,126] |
I | mg | 0.031 | 0.09–0.2 | (H+) Synthesis of thyroid hormones. | [54,125] |
Se | mg | 0.001–0.0017 | 0.006–0.042 | (H+) Enzymatic cofactor that enhances immunity and protection against oxidative damage. (H−) Excessive consumption can lead to gastrointestinal disturbances, skin lesions, liver cirrhosis, and pulmonary edema. | [54,127,128,129] |
Fe | mg | 0.03–0.1 | 3.9–65.4 | (H+) Cofactors in many enzymes and have a variety of biochemical functions in the living organism. (H−) Excess levels may become toxic to human health. | [11,54,123] |
Cu | mg | Traces | - |
3.5. Vitamins
Component | UM | Content 1 | Requirement 2 | Origin | Health Benefits | Reference |
---|---|---|---|---|---|---|
Lipophilic | ||||||
Pro-vitamins Carotene | µg | 14 | Synthesized by plants | Involved in retinol synthesis | [150] | |
A Vitamin Retinol | µg | 36–41 | 375–850 | Carotenoids | Involved in visual function, fetal development, cellular differentiation, immune system function, tissue repairing, and age delay | [54,132,133,134,135,136,151] |
D Vitamins | µg | 0.08 | 5–15 | Promotes Ca and P absorption in the gut, regulates Ca and P homeostasis and bone mineralization and remodeling during growth, and affects innate and adaptive immune system functioning. Protects against cancer development and progression. An absolute minimum 25(OH)D level of 20 ng/mL is recommended. A lack of vitamin D causes osteomalacia (in adults) and rickets (in infants). Chronic lack is the cause of secondary hyperparathyroidism | [54,152,153,154,155,156,157,158,159] | |
Ergocalciferol | Synthesized by fungi and certain plants | |||||
Cholecalciferol | Synthesized in the animals’ skin under the effect of the sun | |||||
E Vitamins | µg | 20–184 | Controversial | Synthesized by plants | Antioxidant: protects lipids contained in cell membranes against oxidative damage driven by free radicals. A modulator of signal transduction and regulator of genetic expression in different signaling pathways (i.e., inhibition of the proliferation of smooth muscle cells, platelet adhesion, and aggregation of adhesion molecules). Essential in preventing coronary artery disease and atherosclerosis. Signs of vitamin E deficiency include ataxia, retinopathy, peripheral neuropathy, musculoskeletal myopathy, and immune response disorders | [54,160,161,162,163] |
Tocopherol | ||||||
Tocotrienol | ||||||
K Vitamins | µg | 1.1–3.2 | 5–65 | Synthesized by plants and microorganisms | Maintenance of normal coagulation | [54,150] |
Phylloquinone | ||||||
Menaquinone | ||||||
Hydrophilic | ||||||
B vitamins | Synthesized by plants and microorganisms | Essential for normal growth and reproduction. Implicated as cofactors in anabolic and catabolic reactions | [54,131,164] | |||
Thiamine (B1) | µg | 28–90 | 200–1500 | Synthesized by plants and microorganisms | Cofactor of enzymes linked to the metabolism of carbohydrates and branched-chain amino acids. Important for the synthesis of nucleic acid precursor, myelin, and neurotransmitters | [54,131,139,140,141] |
Riboflavin (B2) | µg | 116–230 | 300–1600 | Synthesized by plants and microorganisms | Precursor of flavin mononucleotide and flavin adenine dinucleotide. Riboflavin acts as an antioxidant for a healthy immune system | [54,131,142] |
Niacin (B3) | µg | 130–200 | 200–1700 | Synthesized by rumen and microorganisms | Cofactor of oxidoreductase enzymes involved in glycolysis, lipid metabolism, protein metabolism, and detoxifying processes | [54,143,165] |
Pantothenic acid (B5) | µg | 580 | 1700–7000 | Constituent of coenzyme A and phosphopantetheine involved in FA metabolism | [150] | |
Pyridoxine (B6) | µg | 30–70 | 100–2000 | Synthesized by plants and microorganisms | Antioxidant. Coenzyme of many reactions in metabolism of amino acids (i.e., decarboxylation and transamination), lipids, and glucogenesis. It is also involved in metabolizing carbohydrates, lipids, amino acids, and nucleic acids and contributes to cell signaling | [54,145] |
Biotin (B8) | µg | 2.5 | 5–35 | Coenzyme functioning in bicarbonate-dependent carboxylations | [150] | |
Folic acid (B9) | µg | 1–18 | 80–600 | Involved in nucleic acid synthesis and a cofactor in biochemical reactions critical for the synthesis, replication, and repair of nucleotides for DNA and RNA | [54,146,147,148] | |
Cobalamin (B12) | µg | 0.27–0.9 | 0.4–2.8 | Synthesized by rumen and gut microorganisms | Coenzyme in transmethylation reactions. It is essential to the health of nerve tissue, the functioning of the brain, and the production of red blood cells | [54,149,166,167,168] |
Vitamin C Ascorbic acid | µg | 2000 | 25,000–70,000 | Antioxidant molecule | [169] |
3.6. Aromatic Compounds
Compound | Origin 1 | Affecting Factors 1 | Milk Type 1 | Odor Description | Reference |
---|---|---|---|---|---|
Aldehydes | |||||
Nonanal | Autoxidation of UFAs | NUT | PM | Sweet, floral, green, grass-like | [58,112,171,173,174] |
Hexanal | Autoxidation of UFAs | NUT | PM | Freshly cut grass, green | [173] |
Benzothiazole | Enzymatic AA catabolism | NUT | UHTM | Burning smell, rubbery | [58,173,175] |
Esters | |||||
Ethyl butanoate | Biosynthesis within the mammary gland or after milking by bacterial activity | HT | RM | Fruity, sweet, banana, fragrant | [58,112,171,173,175,176] |
Ethyl hexanoate | HT | RM | Fruity, pineapple, apple, unripe fruit | [58,112,171,173,175,176] | |
Alcohol | |||||
1-Octen-3-ol | UFA degradation | FAP | PM | Mushroom-like | [58,112,171] |
Sulfur compounds | |||||
Dimethyl sulfone | Catabolism of sulfurate AAs | NUT | RM; PM | Sulfurous, hot milk, burnt | [58,171,173,175] |
Ketones | |||||
2-Heptanone | β-oxidation and decarboxylation of SFAs | UHTM | Blue cheese, spicy | [58,173,174] | |
2-Nonanone | UHTM | Mustard-like, spicy | [58,173] | ||
2-Undecanone | UHTM | Vegetable, floral, rose-like | [58,173] | ||
2-Tridecanone + δ-decalactone | UHTM | Peach-like, floral | [58,173] |
4. Novel Milk Quality Parameters
4.1. Environmental Impact
4.2. Animal Welfare
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, P.C. Milk Nutritional Composition and Its Role in Human Health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Swallow, D.M. Genetics of Lactase Persistence and Lactose Intolerance. Annu. Rev. Genet. 2003, 37, 197–219. [Google Scholar] [CrossRef] [PubMed]
- Tishkoff, S.A.; Reed, F.A.; Ranciaro, A.; Voight, B.F.; Babbitt, C.C.; Silverman, J.S.; Powell, K.; Mortensen, H.M.; Hirbo, J.B.; Osman, M.; et al. Convergent Adaptation of Human Lactase Persistence in Africa and Europe. Nat. Genet. 2007, 39, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Ségurel, L.; Bon, C. On the Evolution of Lactase Persistence in Humans. Annu. Rev. Genom. Hum. Genet. 2017, 18, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Irving-Pease, E.K.; Refoyo-Martínez, A.; Barrie, W.; Ingason, A.; Pearson, A.; Fischer, A.; Sjögren, K.-G.; Halgren, A.S.; Macleod, R.; Demeter, F.; et al. The Selection Landscape and Genetic Legacy of Ancient Eurasians. Nature 2024, 625, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Albenzio, M.; Santillo, A.; Ciliberti, M.G.; Figliola, L.; Caroprese, M.; Marino, R.; Polito, A.N. Milk from Different Species: Relationship between Protein Fractions and Inflammatory Response in Infants Affected by Generalized Epilepsy. J. Dairy Sci. 2016, 99, 5032–5038. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef] [PubMed]
- FAO. Dairy Market Review—Emerging Trends and Outlook 2022; Global Commodity Markets; FAO: Roma, Italy, 2022. [Google Scholar]
- Yan, M.; Niu, C.; Li, X.; Wang, F.; Jiang, S.; Li, K.; Yao, Z. Heavy Metal Levels in Milk and Dairy Products and Health Risk Assessment: A Systematic Review of Studies in China. Sci. Total Environ. 2022, 851, 158161. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, N.; Su, C.; Wang, J.; Soyeurt, H. Relationships between Pb, As, Cr, and Cd in Individual Cows’ Milk and Milk Composition and Heavy Metal Contents in Water, Silage, and Soil. Environ. Pollut. 2019, 255, 113322. [Google Scholar] [CrossRef]
- Boudebbouz, A.; Boudalia, S.; Bousbia, A.; Habila, S.; Boussadia, M.I.; Gueroui, Y. Heavy Metals Levels in Raw Cow Milk and Health Risk Assessment across the Globe: A Systematic Review. Sci. Total Environ. 2021, 751, 141830. [Google Scholar] [CrossRef]
- Schwartz, B.S.; Stewart, W.F.; Bolla, K.I.; Simon, D.; Bandeen-Roche, K.; Gordon, B.; Links, J.M.; Todd, A.C. Past Adult Lead Exposure Is Associated with Longitudinal Decline in Cognitive Function. Neurology 2000, 55, 1144–1150. [Google Scholar] [CrossRef]
- Payton, M.; Riggs, K.M.; Spiro, A.; Weiss, S.T.; Hu, H. Relations of Bone and Blood Lead to Cognitive Function: The VA Normative Aging Study. Neurotoxicol. Teratol. 1998, 20, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Sünbül, M.R. Macroelements and Toxic Trace Elements in Muscle and Liver of Fish Species from the Largest Three Reservoirs in Turkey and Human Risk Assessment Based on the Worst-Case Scenarios. Environ. Res. 2020, 184, 109298. [Google Scholar] [CrossRef]
- Khalil, N.; Morrow, L.A.; Needleman, H.; Talbott, E.O.; Wilson, J.W.; Cauley, J.A. Association of Cumulative Lead and Neurocognitive Function in an Occupational Cohort. Neuropsychology 2009, 23, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Marinković, N.; Pašalić, D.; Ferenčak, G.; Gršković, B.; Rukavina, A. Dioxins and Human Toxicity. Arch. Ind. Hyg. Toxicol. 2010, 61, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Diletti, G.; Ceci, R.; Conte, A.; Benedictis, A.; Migliorati, G.; Scortichini, G. Milk Contamination from Dioxins in Italy: Source Identification and Intervention Strategies. In The Fate of Persistent Organic Pollutants in the Environment; NATO Science for Peace and Security Series; Mehmetli, E., Koumanova, B., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 301–314. [Google Scholar]
- Adekunte, A.O.; Tiwari, B.K.; O’Donnell, C.P. Exposure Assessment of Dioxins and Dioxin-like PCBs in Pasteurised Bovine Milk Using Probabilistic Modelling. Chemosphere 2010, 81, 509–516. [Google Scholar] [CrossRef]
- Womack, E.D.; Sparks, D.L.; Brown, A.E. Aflatoxin M1 in Milk and Milk Products: A Short Review. World Mycotoxin J. 2016, 9, 305–315. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus Cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Bergdoll, M. Toxic Shock Syndrome Toxin. Lancet 1984, 324, 691. [Google Scholar] [CrossRef]
- Allerberger, F.; Friedrich, A.W.; Grif, K.; Dierich, M.P.; Dornbusch, H.-R.; Mache, C.J.; Nachbaur, E.; Freilinger, M.; Rieck, P.; Wagner, M.; et al. Hemolytic-Uremic Syndrome Associated with Enterohemorrhagic Escherichia coli O26:H Infection and Consumption of Unpasteurized Cow’s Milk. Int. J. Infect. Dis. 2003, 7, 42–45. [Google Scholar] [CrossRef]
- Kelly, A.L.; Tiernan, D.; O’Sullivan, C.; Joyce, P. Correlation Between Bovine Milk Somatic Cell Count and Polymorphonuclear Leukocyte Level for Samples of Bulk Milk and Milk from Individual Cows. J. Dairy Sci. 2000, 83, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Barbano, D.M.; Ma, Y.; Santos, M.V. Influence of Raw Milk Quality on Fluid Milk Shelf Life. J. Dairy Sci. 2006, 89, E15–E19. [Google Scholar] [CrossRef] [PubMed]
- Saeman, A.I.; Verdi, R.J.; Galton, D.M.; Barbano, D.M. Effect of Mastitis on Proteolytic Activity in Bovine Milk. J. Dairy Sci. 1988, 71, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Antanaitis, R.; Juozaitienė, V.; Jonike, V.; Baumgartner, W.; Paulauskas, A. Milk Lactose as a Biomarker of Subclinical Mastitis in Dairy Cows. Animals 2021, 11, 1736. [Google Scholar] [CrossRef] [PubMed]
- Bobbo, T.; Ruegg, P.L.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between Pathogen-Specific Cases of Subclinical Mastitis and Milk Yield, Quality, Protein Composition, and Cheese-Making Traits in Dairy Cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef] [PubMed]
- Troendle, J.A.; Tauer, L.W.; Gröhn, Y.T. Optimally Achieving Milk Bulk Tank Somatic Cell Count Thresholds. J. Dairy Sci. 2017, 100, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Edite Bezerra da Rocha, M.; Freire, F.d.C.O.; Erlan Feitosa Maia, F.; Izabel Florindo Guedes, M.; Rondina, D. Mycotoxins and Their Effects on Human and Animal Health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Park, M.A.; Ha, J.K. Mycotoxins and Their Biotransformation in the Rumen: A Review. Asian-Australas. J. Anim. Sci. 2010, 23, 1250–1260. [Google Scholar] [CrossRef]
- Payne, G.A.; Widstrom, N.W. Aflatoxin in Maize. CRC. Crit. Rev. Plant Sci. 1992, 10, 423–440. [Google Scholar] [CrossRef]
- Galvano, F.; Galofaro, V.; Galvano, G. Occurrence and Stability of Aflatoxin M1 in Milk and Milk Products: A Worldwide Review. J. Food Prot. 1996, 59, 1079–1090. [Google Scholar] [CrossRef]
- Ismail, A.; Akhtar, S.; Levin, R.E.; Ismail, T.; Riaz, M.; Amir, M. Aflatoxin M1: Prevalence and Decontamination Strategies in Milk and Milk Products. Crit. Rev. Microbiol. 2016, 42, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.P.; Murinda, S.E.; Jayarao, B.M. Impact of Antibiotic Use in Adult Dairy Cows on Antimicrobial Resistance of Veterinary and Human Pathogens: A Comprehensive Review. Foodborne Pathog. Dis. 2011, 8, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; DeCastelli, L.; Nobile, M.; Martucci, F.; Mosconi, G.; Fontana, M.; Castrica, M.; Arioli, F.; Panseri, S. Analysis of Antibiotic Residues in Raw Bovine Milk and Their Impact toward Food Safety and on Milk Starter Cultures in Cheese-Making Process. LWT 2020, 131, 109783. [Google Scholar] [CrossRef]
- Mazzacano D’Amato, P.; Falzon, J. Why Do Some Consumers Prefer Organic Food? A Discourse Analytical Perspective. J. Food Prod. Mark. 2015, 21, 255–273. [Google Scholar] [CrossRef]
- Wemette, M.; Greiner Safi, A.; Wolverton, A.K.; Beauvais, W.; Shapiro, M.; Moroni, P.; Welcome, F.L.; Ivanek, R. Public Perceptions of Antibiotic Use on Dairy Farms in the United States. J. Dairy Sci. 2021, 104, 2807–2821. [Google Scholar] [CrossRef]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.H.; Tavendale, M.H.; Deadman, C.; Shadbolt, N.M.; Otter, D.E. Invited Review: Organic and Conventionally Produced Milk—An Evaluation of Factors Influencing Milk Composition. J. Dairy Sci. 2015, 98, 721–746. [Google Scholar] [CrossRef]
- Oliveira, R.B.A.; Margalho, L.P.; Nascimento, J.S.; Costa, L.E.O.; Portela, J.B.; Cruz, A.G.; Sant’Ana, A.S. Processed Cheese Contamination by Spore-Forming Bacteria: A Review of Sources, Routes, Fate during Processing and Control. Trends Food Sci. Technol. 2016, 57, 11–19. [Google Scholar] [CrossRef]
- Bassi, D.; Puglisi, E.; Cocconcelli, P.S. Understanding the Bacterial Communities of Hard Cheese with Blowing Defect. Food Microbiol. 2015, 52, 106–118. [Google Scholar] [CrossRef]
- Mohammadi, H. A Review of Aflatoxin M1, Milk, and Milk Products. In Aflatoxins-Biochemistry and Molecular Biology; InTech: Houston, TX, USA, 2011; pp. 397–414. [Google Scholar]
- Walser, V.; Kranzler, M.; Dawid, C.; Ehling-Schulz, M.; Stark, T.D.; Hofmann, T.F. Distribution of the Emetic Toxin Cereulide in Cow Milk. Toxins 2021, 13, 528. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Ren, F.; Wang, X.; Zhang, W.; Pei, X.; Dong, Q. The Sources of Bacillus Cereus Contamination and Their Association with Cereulide Production in Dairy and Cooked Rice Processing Lines. Food Qual. Saf. 2023, 7, fyad023. [Google Scholar] [CrossRef]
- Takeuchi, S.; Ishiguro, K.; Ikegami, M.; Kaidoh, T.; Hayakawa, Y. Production of Toxic Shock Syndrome Toxin by Staphylococcus Aureus Isolated from Mastitic Cow’s Milk and Farm Bulk Milk. Vet. Microbiol. 1998, 59, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Costard, S.; Espejo, L.; Groenendaal, H.; Zagmutt, F.J. Outbreak-Related Disease Burden Associated with Consumption of Unpasteurized Cow’s Milk and Cheese, United States, 2009–2014. Emerg. Infect. Dis. 2017, 23, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Nagao, Y.; Shibuya, C.; Kashiki, Y.; Shimizu, H. Urinary Cadmium and Serum Levels of Estrogens and Androgens in Postmenopausal Japanese Women. Cancer Epidemiol. Biomark. Prev. 2005, 14, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; Kenney, N.; Stoica, A.; Hilakivi-Clarke, L.; Singh, B.; Chepko, G.; Clarke, R.; Sholler, P.F.; Lirio, A.A.; Foss, C.; et al. Cadmium Mimics the in Vivo Effects of Estrogen in the Uterus and Mammary Gland. Nat. Med. 2003, 9, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Patra, R.C.; Swarup, D.; Kumar, P.; Nandi, D.; Naresh, R.; Ali, S.L. Milk Trace Elements in Lactating Cows Environmentally Exposed to Higher Level of Lead and Cadmium around Different Industrial Units. Sci. Total Environ. 2008, 404, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Sjaunja, L.O.; Baevre, L.; Junkkarinen, L.; Pedersen, J.; Setälä, J. A Nordic Proposal for an Energy Corrected Milk Formula. In Proceedings of the 2nd Session of Committee for Recording and Productivity of Milk Animal, Paris, France, 2–6 July 1990; p. 156. [Google Scholar]
- Emmons, D.B.; Modler, H.W. Invited Review: A Commentary on Predictive Cheese Yield Formulas. J. Dairy Sci. 2010, 93, 5517–5537. [Google Scholar] [CrossRef] [PubMed]
- Guinee, T.P. Role of Protein in Cheese and Cheese Products. In Advanced Dairy Chemistry—1 Proteins; Springer: Boston, MA, USA, 2003; pp. 1083–1174. [Google Scholar]
- Verdier-Metz, I.; Coulon, J.-B.; Pradel, P. Relationship between Milk Fat and Protein Contents and Cheese Yield. Anim. Res. 2001, 50, 365–371. [Google Scholar] [CrossRef]
- Guinee, T.P.; Mulholland, E.O.; Kelly, J.; Callaghan, D.J.O. Effect of Protein-to-Fat Ratio of Milk on the Composition, Manufacturing Efficiency, and Yield of Cheddar Cheese. J. Dairy Sci. 2007, 90, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, F.; Catapano, A.; Petrella, L.; Villano, I.; Tudisco, R.; Cavaliere, G. Role of Milk Micronutrients in Human Health. Front. Biosci. 2023, 28, 41. [Google Scholar] [CrossRef]
- Markiewicz-Kęszycka, M.; Czyżak-Runowska, G.; Lipińska, P.; Wójtowski, J. Fatty Acid Profile of Milk—A Review. Bull. Vet. Inst. Pulawy 2013, 57, 135–139. [Google Scholar] [CrossRef]
- Noël, Y.; Ardö, Y.; Pocher, S.; Hunter, A.; Lavanchy, P.; Luginbuhl, W.; Le Bars, D.; Polychroniadou, A.; Pellegrino, L. Characterisation of Protected Denomination of Origin Cheeses: Relationships between Sensory Texture and Instrumental Data. Lait 1998, 78, 569–588. [Google Scholar] [CrossRef]
- Bugaud, C.; Buchin, S.; Noël, Y.; Tessier, L.; Pochet, S.; Martin, B.; Chamba, J.F. Relationships between Abondance Cheese Texture, Its Composition and That of Milk Produced by Cows Grazing Different Types of Pastures. Lait 2001, 81, 593–607. [Google Scholar] [CrossRef]
- Wolf, I.V.; Bergamini, C.V.; Perotti, M.C.; Hynes, E.R. Sensory and Flavor Characteristics of Milk. In Milk and Dairy Products in Human Nutrition; Wiley: Hoboken, NJ, USA, 2013; pp. 310–337. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Parodi, P.W. Has the Association between Saturated Fatty Acids, Serum Cholesterol and Coronary Heart Disease Been over Emphasized? Int. Dairy J. 2009, 19, 345–361. [Google Scholar] [CrossRef]
- Warensjö, E.; Jansson, J.-H.; Cederholm, T.; Boman, K.; Eliasson, M.; Hallmans, G.; Johansson, I.; Sjögren, P. Biomarkers of Milk Fat and the Risk of Myocardial Infarction in Men and Women: A Prospective, Matched Case-Control Study. Am. J. Clin. Nutr. 2010, 92, 194–202. [Google Scholar] [CrossRef]
- Avagliano, C.; Coretti, L.; Lama, A.; Pirozzi, C.; De Caro, C.; De Biase, D.; Turco, L.; Mollica, M.P.; Paciello, O.; Calignano, A.; et al. Dual-Hit Model of Parkinson’s Disease: Impact of Dysbiosis on 6-Hydroxydopamine-Insulted Mice—Neuroprotective and Anti-Inflammatory Effects of Butyrate. Int. J. Mol. Sci. 2022, 23, 6367. [Google Scholar] [CrossRef]
- Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and Dairy Products: Good or Bad for Human Health? An Assessment of the Totality of Scientific Evidence. Food Nutr. Res. 2016, 60, 32527. [Google Scholar] [CrossRef]
- Visioli, F.; Poli, A. Fatty Acids and Cardiovascular Risk. Evidence, Lack of Evidence, and Diligence. Nutrients 2020, 12, 3782. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Bertram, H.C.; Bonjour, J.-P.; de Groot, L.C.; de Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO Draft Guidelines on Dietary Saturated and Trans Fatty Acids: Time for a New Approach? BMJ 2019, 366, l4137. [Google Scholar] [CrossRef]
- Coppa, M.; Ferlay, A.; Monsallier, F.; Verdier-Metz, I.; Pradel, P.; Didienne, R.; Farruggia, A.; Montel, M.C.; Martin, B. Milk Fatty Acid Composition and Cheese Texture and Appearance from Cows Fed Hay or Different Grazing Systems on Upland Pastures. J. Dairy Sci. 2011, 94, 1132–1145. [Google Scholar] [CrossRef]
- Lordan, R.; Zabetakis, I. Invited Review: The Anti-Inflammatory Properties of Dairy Lipids. J. Dairy Sci. 2017, 100, 4197–4212. [Google Scholar] [CrossRef] [PubMed]
- Barendse, W. Should Animal Fats Be Back on the Table? A Critical Review of the Human Health Effects of Animal Fat. Anim. Prod. Sci. 2014, 54, 831. [Google Scholar] [CrossRef]
- Tricon, S.; Burdge, G.C.; Kew, S.; Banerjee, T.; Russell, J.J.; Jones, E.L.; Grimble, R.F.; Williams, C.M.; Yaqoob, P.; Calder, P.C. Opposing Effects of Cis-9,Trans-11 and Trans-10,Cis-12 Conjugated Linoleic Acid on Blood Lipids in Healthy Humans. Am. J. Clin. Nutr. 2004, 80, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Poławska, E.; Marchewka, J.; Cooper, R.G.; Sartowska, K.; Pomianowski, J.; Jóźwik, A.; Strzałkowska, N.; Horbańczuk, J.O. The Ostrich Meat—An Updated Review.II. Nutritive Value. Anim. Sci. Pap. Rep. 2011, 29, 89–97. [Google Scholar]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Moallem, U. Invited Review: Roles of Dietary n-3 Fatty Acids in Performance, Milk Fat Composition, and Reproductive and Immune Systems in Dairy Cattle. J. Dairy Sci. 2018, 101, 8641–8661. [Google Scholar] [CrossRef] [PubMed]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is Docosahexaenoic Acid Synthesis from α-Linolenic Acid Sufficient to Supply the Adult Brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Plourde, M.; Cunnane, S.C. Extremely Limited Synthesis of Long Chain Polyunsaturates in Adults: Implications for Their Dietary Essentiality and Use as Supplements. Appl. Physiol. Nutr. Metab. 2007, 32, 619–634. [Google Scholar] [CrossRef]
- Andrews, K.; Schaum, J.; Schuda, L. Method Evaluation to Measure Persistent Bioaccumulative Toxic Pollutants in Cow Milk. Organohalogen Compd. 2003, 60, 186–189. [Google Scholar]
- Gerson, T.; Shorland, F.B.; Wilson, G.F.; Reid, C.W.S. Origin of Glyceride Fatty Acids in Cow Milk Fat. J. Dairy Sci. 1968, 51, 356–361. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Mansbridge, R.M.; Doreau, M. Ruminant Milk Fat Plasticity: Nutritional Control of Saturated, Polyunsaturated, Trans and Conjugated Fatty Acids. Ann. Zootech. 2000, 49, 181–205. [Google Scholar] [CrossRef]
- McManus, A.; Merga, M.; Newton, W. Omega-3 Fatty Acids. What Consumers Need to Know. Appetite 2011, 57, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y.Q.; Chen, W. Review of the Roles of Conjugated Linoleic Acid in Health and Disease. J. Funct. Foods 2015, 15, 314–325. [Google Scholar] [CrossRef]
- Mollica, M.P.; Trinchese, G.; Cavaliere, G.; De Filippo, C.; Cocca, E.; Gaita, M.; Della-Gatta, A.; Marano, A.; Mazzarella, G.; Bergamo, P. C9,T11-Conjugated Linoleic Acid Ameliorates Steatosis by Modulating Mitochondrial Uncoupling and Nrf2 Pathway. J. Lipid Res. 2014, 55, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Trinchese, G.; Cavaliere, G.; Cimmino, F.; Catapano, A.; Carta, G.; Pirozzi, C.; Murru, E.; Lama, A.; Meli, R.; Bergamo, P.; et al. Decreased Metabolic Flexibility in Skeletal Muscle of Rat Fed with a High-Fat Diet Is Recovered by Individual CLA Isomer Supplementation via Converging Protective Mechanisms. Cells 2020, 9, 823. [Google Scholar] [CrossRef] [PubMed]
- Mougios, V.; Matsakas, A.; Petridou, A.; Ring, S.; Sagredos, A.; Melissopoulou, A.; Tsigilis, N.; Nikolaidis, M. Effect of Supplementation with Conjugated Linoleic Acid on Human Serum Lipids and Body Fat. J. Nutr. Biochem. 2001, 12, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Tricon, S.; Burge, G.; Jones, E.; Russell, J.; El-Khazen, S.; Moretti, E.; Hall, W.; Gerry, A.; Leake, D.; Grimble, R.; et al. Effects of Dairy Products Naturally Enriched with Cis-9,Trans-11 Conjugated Linoleic Acid on the Blood Profile in Healthy Middle-Aged Men. Am. J. Clin. Nutr. 2006, 83, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, L.; Mollica, M.P.; Donizzetti, I.; Gifuni, G.; Sica, R.; Pignalosa, A.; Cavaliere, G.; Gaita, M.; De Filippo, C.; Zorzano, A.; et al. High-Lard and High-Fish-Oil Diets Differ in Their Effects on Function and Dynamic Behaviour of Rat Hepatic Mitochondria. PLoS ONE 2014, 9, e92753. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, G.; Trinchese, G.; Bergamo, P.; De Filippo, C.; Mattace Raso, G.; Gifuni, G.; Putti, R.; Moni, B.H.; Canani, R.B.; Meli, R.; et al. Polyunsaturated Fatty Acids Attenuate Diet Induced Obesity and Insulin Resistance, Modulating Mitochondrial Respiratory Uncoupling in Rat Skeletal Muscle. PLoS ONE 2016, 11, e0149033. [Google Scholar] [CrossRef]
- Lionetti, L.; Cavaliere, G.; Bergamo, P.; Trinchese, G.; De Filippo, C.; Gifuni, G.; Gaita, M.; Pignalosa, A.; Donizzetti, I.; Putti, R.; et al. Diet Supplementation with Donkey Milk Upregulates Liver Mitochondrial Uncoupling, Reduces Energy Efficiency and Improves Antioxidant and Antiinflammatory Defences in Rats. Mol. Nutr. Food Res. 2012, 56, 1596–1600. [Google Scholar] [CrossRef]
- Goyens, P.L.; Spilker, M.E.; Zock, P.L.; Katan, M.B.; Mensink, R.P. Conversion of α-Linolenic Acid in Humans Is Influenced by the Absolute Amounts of α-Linolenic Acid and Linoleic Acid in the Diet and Not by Their Ratio. Am. J. Clin. Nutr. 2006, 84, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Caroli, A.; Poli, A.; Ricotta, D.; Banfi, G.; Cocchi, D. Invited Review: Dairy Intake and Bone Health: A Viewpoint from the State of the Art. J. Dairy Sci. 2011, 94, 5249–5262. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Calcium, Dairy Products and Osteoporosis. J. Am. Coll. Nutr. 2000, 19, 83S–99S. [Google Scholar] [CrossRef] [PubMed]
- Petrotos, K.; Tsakali, E.; Goulas, P.; D’Alessandro, A.G. Casein and Whey Proteins in Human Health. In Milk and Dairy Products as Functional Foods; Wiley: Hoboken, NJ, USA, 2014; pp. 94–146. [Google Scholar]
- Combs, J.A.; DeNicola, G.M. The Non-Essential Amino Acid Cysteine Becomes Essential for Tumor Proliferation and Survival. Cancers 2019, 11, 678. [Google Scholar] [CrossRef] [PubMed]
- Wedholm, A.; Larsen, L.B.; Lindmark-Månsson, H.; Karlsson, A.H.; Andrén, A. Effect of Protein Composition on the Cheese-Making Properties of Milk from Individual Dairy Cows. J. Dairy Sci. 2006, 89, 3296–3305. [Google Scholar] [CrossRef] [PubMed]
- Cipolat-Gotet, C.; Cecchinato, A.; Malacarne, M.; Bittante, G.; Summer, A. Variations in Milk Protein Fractions Affect the Efficiency of the Cheese-Making Process. J. Dairy Sci. 2018, 101, 8788–8804. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Harris, L.J.; Han, J.H.; Krochta, J.M. Listeria Monocytogenes Inhibition by Whey Protein Films and Coatings Incorporating Lysozyme. J. Food Prot. 2005, 68, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- Karamoko, G.; Anihouvi, P.; Blecker, C. The Development of Knowledge Regarding the Characteristics of the Proteose Peptone Fraction of Milk: Techno-Functional and Biological Properties. A Review. Biotechnol. Agron. Société Environ. 2013, 17, 373–382. [Google Scholar]
- Vazquez-Landaverde, P.A.; Torres, J.A.; Qian, M.C. Quantification of Trace Volatile Sulfur Compounds in Milk by Solid-Phase Microextraction and Gas Chromatography–Pulsed Flame Photometric Detection. J. Dairy Sci. 2006, 89, 2919–2927. [Google Scholar] [CrossRef]
- Punia, H.; Tokas, J.; Malik, A.; Sangwan, S.; Baloda, S.; Singh, N.; Singh, S.; Bhuker, A.; Singh, P.; Yashveer, S.; et al. Identification and Detection of Bioactive Peptides in Milk and Dairy Products: Remarks about Agro-Foods. Molecules 2020, 25, 3328. [Google Scholar] [CrossRef]
- Wal, J.-M. Cow’s Milk Proteins/Allergens. Ann. Allergy Asthma Immunol. 2002, 89, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Brooke-Taylor, S.; Dwyer, K.; Woodford, K.; Kost, N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 β-Casein. Adv. Nutr. 2017, 8, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Bolat, E.; Eker, F.; Yılmaz, S.; Karav, S.; Oz, E.; Brennan, C.; Proestos, C.; Zeng, M.; Oz, F. BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules 2024, 29, 2161. [Google Scholar] [CrossRef] [PubMed]
- Küllenberg de Gaudry, D.; Lohner, S.; Schmucker, C.; Kapp, P.; Motschall, E.; Hörrlein, S.; Röger, C.; Meerpohl, J.J. Milk A1 β-Casein and Health-Related Outcomes in Humans: A Systematic Review. Nutr. Rev. 2019, 77, 278–306. [Google Scholar] [CrossRef] [PubMed]
- Vegarud, G.E.; Langsrud, T.; Svenning, C. Mineral-Binding Milk Proteins and Peptides; Occurrence, Biochemical and Technological Characteristics. Br. J. Nutr. 2000, 84, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.; Weiler, K. Bioactive Proteins and Peptides from Food Sources. Applications of Bioprocesses Used in Isolation and Recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Bittante, G.; Penasa, M.; Cecchinato, A. Invited Review: Genetics and Modeling of Milk Coagulation Properties. J. Dairy Sci. 2012, 95, 6843–6870. [Google Scholar] [CrossRef] [PubMed]
- Giribaldi, M.; Lamberti, C.; Cirrincione, S.; Giuffrida, M.G.; Cavallarin, L. A2 Milk and BCM-7 Peptide as Emerging Parameters of Milk Quality. Front. Nutr. 2022, 9, 842375. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.; Dupont, C.; Lemieux, P. Whey Proteins and Peptides: Beneficial Effects on Immune Health. Therapy 2006, 3, 69–78. [Google Scholar] [CrossRef]
- Madureira, A.R.; Pereira, C.I.; Gomes, A.M.P.; Pintado, M.E.; Xavier Malcata, F. Bovine Whey Proteins—Overview on Their Main Biological Properties. Food Res. Int. 2007, 40, 1197–1211. [Google Scholar] [CrossRef]
- Brisson, G.; Britten, M.; Pouliot, Y. Effect of Iron Saturation on the Recovery of Lactoferrin in Rennet Whey Coming from Heat-Treated Skim Milk. J. Dairy Sci. 2007, 90, 2655–2664. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Marnila, P.; Korhonen, H. Milk Immunoglobulins for Health Promotion. Int. Dairy J. 2006, 16, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.T.; Alichanidis, E. Proteolysis of Caseins and the Proteose-Peptone Fraction of Bovine Milk. J. Dairy Res. 1983, 50, 275–290. [Google Scholar] [CrossRef]
- El-Salam, M.H.A.; El-Shibiny, S.; Buchheim, W. Characteristics and Potential Uses of the Casein Macropeptide. Int. Dairy J. 1996, 6, 327–341. [Google Scholar] [CrossRef]
- Moio, L.; Rillo, L.; Ledda, A.; Addeo, F. Odorous Constituents of Ovine Milk in Relationship to Diet. J. Dairy Sci. 1996, 79, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Vesa, T.H.; Marteau, P.; Korpela, R. Lactose Intolerance. J. Am. Coll. Nutr. 2000, 19, 165S–175S. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Lopez-Villalobos, N.; Sneddon, N.W.; Shalloo, L.; Franzoi, M.; De Marchi, M.; Penasa, M. Invited Review: Milk Lactose—Current Status and Future Challenges in Dairy Cattle. J. Dairy Sci. 2019, 102, 5883–5898. [Google Scholar] [CrossRef] [PubMed]
- Storhaug, C.L.; Fosse, S.K.; Fadnes, L.T. Country, Regional, and Global Estimates for Lactose Malabsorption in Adults: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Goswami, B.; Biswas, K. Milk Adulteration and Detection: A Review. Sens. Lett. 2016, 14, 4–18. [Google Scholar] [CrossRef]
- Anderson, J.J.B.; Tylavsky, F.A.; Halioua, L.; Metz, J.A. Determinants of Peak Bone Mass in Young Adult Women: A Review. Osteoporos. Int. 1993, 3, 32–36. [Google Scholar] [CrossRef]
- Bonjour, J.-P. Calcium and Phosphate: A Duet of Ions Playing for Bone Health. J. Am. Coll. Nutr. 2011, 30, 438S–448S. [Google Scholar] [CrossRef] [PubMed]
- Pilbeam, C.C.; Harrison, J.R.; Raisz, L.G. Principles of Bone Biology; Bilezikian, J., Raisz, L., Rodan, G., Eds.; Academic Press: New York, NY, USA, 1996. [Google Scholar]
- Villa-Etchegoyen, C.; Lombarte, M.; Matamoros, N.; Belizán, J.M.; Cormick, G. Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure. Nutrients 2019, 11, 1112. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Murray, K.D. Neuronal Excitability and Calcium/Calmodulin-dependent Protein Kinase Type II: Location, Location, Location. Epilepsia 2012, 53, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zheng, X.-M.; Zhang, M.-L.; Ning, P.; Wu, M.-J. Lactation Mastitis: Promising Alternative Indicators for Early Diagnosis. World J. Clin. Cases 2022, 10, 11252–11259. [Google Scholar] [CrossRef] [PubMed]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of Heavy Metals through Terrestrial Food Webs: A Review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W.; Weiss, W.P. Role of Antioxidants and Trace Elements in Health and Immunity of Transition Dairy Cows. Vet. J. 2008, 176, 70–76. [Google Scholar] [CrossRef] [PubMed]
- van der Reijden, O.L.; Galetti, V.; Hulmann, M.; Krzystek, A.; Haldimann, M.; Schlegel, P.; Manzocchi, E.; Berard, J.; Kreuzer, M.; Zimmermann, M.B.; et al. The Main Determinants of Iodine in Cows’ Milk in Switzerland Are Farm Type, Season and Teat Dipping. Br. J. Nutr. 2018, 119, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.; Evans, G. Relative Zinc Availability in Human Breast Milk, Infant Formulas, and Cow’s Milk. Am. J. Clin. Nutr. 1978, 31, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Brzóska, F.; Śliwiński, B.; Pietras, M. Selenium Content in Consumer Milk in Poland. Rocz. Nauk. Zootech. 2018, 45, 89–98. [Google Scholar]
- Waegeneers, N.; Thiry, C.; De Temmerman, L.; Ruttens, A. Predicted Dietary Intake of Selenium by the General Adult Population in Belgium. Food Addit. Contam. Part A 2013, 30, 278–285. [Google Scholar] [CrossRef]
- Orjales, I.; Herrero-Latorre, C.; Miranda, M.; Rey-Crespo, F.; Rodríguez-Bermúdez, R.; López-Alonso, M. Evaluation of Trace Element Status of Organic Dairy Cattle. Animal 2018, 12, 1296–1305. [Google Scholar] [CrossRef]
- Szymańska, R.; Nowicka, B.; Trela, A.; Kruk, J. Vitamin E: Structure and Forms. In Molecular Nutrition; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–90. [Google Scholar]
- Graulet, B.; Girard, C.L. B Vitamins in Cow Milk. In Dairy in Human Health and Disease Across the Lifespan; Elsevier: Amsterdam, The Netherlands, 2017; pp. 211–224. [Google Scholar]
- McCullough, F.S.W.; Northrop-Clewes, C.A.; Thurnham, D.I. The Effect of Vitamin A on Epithelial Integrity. Proc. Nutr. Soc. 1999, 58, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Clagett-Dame, M.; Knutson, D. Vitamin A in Reproduction and Development. Nutrients 2011, 3, 385–428. [Google Scholar] [CrossRef]
- Ross, A.C. Vitamin A and Retinoic Acid in T Cell–Related Immunity. Am. J. Clin. Nutr. 2012, 96, 1166S–1172S. [Google Scholar] [CrossRef] [PubMed]
- Schagen, S.K.; Zampeli, V.A.; Makrantonaki, E.; Zouboulis, C.C. Discovering the Link between Nutrition and Skin Aging. Dermato-Endocrinology 2012, 4, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Zile, M.H.; Cullum, M.E. The Function of Vitamin A: Current Concepts. Exp. Biol. Med. 1983, 172, 139–152. [Google Scholar] [CrossRef]
- Ley, K.; Laudanna, C.; Cybulsky, M.I.; Nourshargh, S. Getting to the Site of Inflammation: The Leukocyte Adhesion Cascade Updated. Nat. Rev. Immunol. 2007, 7, 678–689. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Santini, G.; Polzonetti, V.; Pucciarelli, S.; Klimanova, Y.; Polidori, P. Vitamins in Human and Donkey Milk: Functional and Nutritional Role. Nutrients 2021, 13, 1509. [Google Scholar] [CrossRef]
- Rapala-Kozik, M. Vitamin B1 (Thiamine): A Cofactor for Enzymes Involved in the Main Metabolic Pathways and an Environmental Stress Protectant. Adv. Bot. Res. 2011, 58, 37–91. [Google Scholar]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef]
- Wiley, K.; Gupta, M. Vitamin B1 Thiamine Deficiency; StatPearls, Ed.; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Northrop-Clewes, C.A.; Thurnham, D.I. The Discovery and Characterization of Riboflavin. Ann. Nutr. Metab. 2012, 61, 224–230. [Google Scholar] [CrossRef]
- Barrah, S.; Jebali, H.; Kheder, R.; Krid, M.; Smaoui, W.; Beji, S.; Hmida, F.; Fatma, L.; Rais, L.; Zouaghi, M. Pellagra Disease in a Hemodialysis Patient. Saudi J. Kidney Dis. Transplant. 2020, 31, 874. [Google Scholar] [CrossRef]
- Fox, P.F.; Uniacke-Lowe, T.; McSweeney, P.L.H.; O’Mahony, J.A. Vitamins in Milk and Dairy Products. In Dairy Chemistry and Biochemistry; Springer International Publishing: Cham, Switzerland, 2015; pp. 271–297. [Google Scholar]
- di Salvo, M.L.; Contestabile, R.; Safo, M.K. Vitamin B6 Salvage Enzymes: Mechanism, Structure and Regulation. Biochim. Biophys. Acta Proteins Proteom. 2011, 1814, 1597–1608. [Google Scholar] [CrossRef]
- Engevik, M.A.; Morra, C.N.; Röth, D.; Engevik, K.; Spinler, J.K.; Devaraj, S.; Crawford, S.E.; Estes, M.K.; Kalkum, M.; Versalovic, J. Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Front. Microbiol. 2019, 10, 2305. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; He, Q.; Pan, Y.; Sun, C. Detection, Isolation, and Characterization of a Novel Impurity from Several Folic Acid Products. J. Zhejiang Univ. B 2022, 23, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Stover, P.J. Physiology of Folate and Vitamin B 12 in Health and Disease. Nutr. Rev. 2004, 62, S3–S12. [Google Scholar] [CrossRef] [PubMed]
- Arnold, T. Assessing the Impact of Oral Vitamin B12 Supplementation on Vibration Sensitivity, Dexterity, and Balance in Young Adult Vegetarians and Vegans. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2016. [Google Scholar]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Chelstowska, S.; Widjaja-Adhi, M.; Silvaroli, J.; Golczak, M. Molecular Basis for Vitamin A Uptake and Storage in Vertebrates. Nutrients 2016, 8, 676. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Ferrari, H.A.; Staehelin, H.B. Importance of Vitamin D and Calcium at Older Age. Int. J. Vitam. Nutr. Res. 2008, 78, 286–292. [Google Scholar] [CrossRef]
- Morris, H.A.; Turner, A.G.; Anderson, P.H. Vitamin-D Regulation of Bone Mineralization and Remodelling during Growth. Front. Biosci. 2012, 4, 677–689. [Google Scholar] [CrossRef]
- Hou, Y.; Li, J.; Deng, C. Vitamin D/Vitamin D Receptor, Autophagy, and Infection. Zhong Nan Da Xue Xue Bao. Yi Xue Ban = J. Cent. South Univ. Med. Sci. 2022, 47, 780–785. [Google Scholar]
- Ismailova, A.; White, J.H. Vitamin D, Infections and Immunity. Rev. Endocr. Metab. Disord. 2022, 23, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Polzonetti, V.; Pucciarelli, S.; Vincenzetti, S.; Polidori, P. Dietary Intake of Vitamin D from Dairy Products Reduces the Risk of Osteoporosis. Nutrients 2020, 12, 1743. [Google Scholar] [CrossRef] [PubMed]
- Ishijima, M.; Sakamoto, Y.; Yamanaka, M.; Tokita, A.; Kitahara, K.; Kaneko, H.; Kurosawa, H. Minimum Required Vitamin D Level for Optimal Increase in Bone Mineral Density with Alendronate Treatment in Osteoporotic Women. Calcif. Tissue Int. 2009, 85, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Walther, B. Natural Vitamin D Content in Animal Products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Weir, R.R.; Strain, J.J.; Johnston, M.; Lowis, C.; Fearon, A.M.; Stewart, S.; Pourshahidi, L.K. Environmental and Genetic Factors Influence the Vitamin D Content of Cows’ Milk. Proc. Nutr. Soc. 2017, 76, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Niki, E.; Noguchi, N. Dynamics of Antioxidant Action of Vitamin E. Acc. Chem. Res. 2004, 37, 45–51. [Google Scholar] [CrossRef]
- Zingg, J.-M. Vitamin E: A Role in Signal Transduction. Annu. Rev. Nutr. 2015, 35, 135–173. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Han, S.N. Vitamin E: Regulatory Role on Gene and Protein Expression and Metabolomics Profiles. IUBMB Life 2019, 71, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Roy, S.; Parinandi, N.L.; Maurer, M.; Sen, C.K. Characterization of the Potent Neuroprotective Properties of the Natural Vitamin E A-tocotrienol. J. Neurochem. 2006, 98, 1474–1486. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine Milk in Human Nutrition—A Review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef]
- Du, Q.; Wang, H.; Xie, J. Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets? Int. J. Biol. Sci. 2011, 7, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Bito, T. Vitamin B 12 Sources and Microbial Interaction. Exp. Biol. Med. 2018, 243, 148–158. [Google Scholar] [CrossRef] [PubMed]
- González-Montaña, J.-R.; Escalera-Valente, F.; Alonso, A.J.; Lomillos, J.M.; Robles, R.; Alonso, M.E. Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals 2020, 10, 1855. [Google Scholar] [CrossRef] [PubMed]
- Martens, H.; Barg, M.; Warren, D.; Jah, J.-H. Microbial Production of Vitamin B 12. Appl. Microbiol. Biotechnol. 2002, 58, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Haenlein, G.F.W. (Eds.) Handbook of Milk of Non-Bovine Mammals; Wiley: Hoboken, NJ, USA, 2006; ISBN 9780813820514. [Google Scholar]
- Moio, L.; Langlois, D.; Etievant, P.; Addeo, F. Powerful Odorants in Bovine, Ovine, Caprine and Water Buffalo Milk Determined by Means of Gas Chromatography–Olfactometry. J. Dairy Res. 1993, 60, 215–222. [Google Scholar] [CrossRef]
- Tornambé, G.; Cornu, A.; Pradel, P.; Kondjoyan, N.; Carnat, A.P.; Petit, M.; Martin, B. Changes in Terpene Content in Milk from Pasture-Fed Cows. J. Dairy Sci. 2006, 89, 2309–2319. [Google Scholar] [CrossRef] [PubMed]
- Moid, L.; Etievant, P.; Langlois, D.; Dekimpe, J.; Addeo, F. Detection of Powerful Odorants in Heated Milk by Use of Extract Dilution Sniffing Analysis. J. Dairy Res. 1994, 61, 385–394. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M.; Leardi, R.; Toppino, P.M. Influence of Heat Treatment on the Volatile Compounds of Milk. J. Agric. Food Chem. 1997, 45, 3171–3177. [Google Scholar] [CrossRef]
- Moio, L.; Dekimpe, J.; Etievant, P.; Addeo, F. Neutral Volatile Compounds in the Raw Milks from Different Species. J. Dairy Res. 1993, 60, 199–213. [Google Scholar] [CrossRef]
- Toso, B.; Procida, G.; Stefanon, B. Determination of Volatile Compounds in Cows’ Milk Using Headspace GC-MS. J. Dairy Res. 2002, 69, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Castellini, G.; Graffigna, G. Evolution of Milk Consumption and Its Psychological Determinants: A Mini-Review. Front. Nutr. 2022, 9, 845154. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Bhatta, R.; Malik, P.K.; Madiajagan, B.; Al-Hosni, Y.A.S.; Sullivan, M.; Gaughan, J.B. Livestock as Sources of Greenhouse Gases and Its Significance to Climate Change. In Greenhouse Gases; BoD—Books on Demand: Norderstedt, Germany, 2016; pp. 243–259. [Google Scholar]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure Management: Implications for Greenhouse Gas Emissions. Anim. Feed Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Woli, K.P.; Nagumo, T.; Hatano, R. Magnitude of Nitrogen Pollution in Stream Water Due to Intensive Livestock Farming Practices. Soil Sci. Plant Nutr. 2002, 48, 883–887. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Bennett, E.M. The Influence of Agricultural Trade and Livestock Production on the Global Phosphorus Cycle. Ecosystems 2012, 15, 256–268. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia Emissions from Agriculture and Their Contribution to Fine Particulate Matter: A Review of Implications for Human Health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef] [PubMed]
- Meale, S.J.; McAllister, T.A.; Beauchemin, K.A.; Harstad, O.M.; Chaves, A.V. Strategies to Reduce Greenhouse Gases from Ruminant Livestock. Acta Agric. Scand. Sect. A Anim. Sci. 2012, 62, 199–211. [Google Scholar] [CrossRef]
- McAllister, T.A.; Newbold, C.J. Redirecting Rumen Fermentation to Reduce Methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7. [Google Scholar] [CrossRef]
- Petersen, S.O.; Blanchard, M.; Chadwick, D.; Del Prado, A.; Edouard, N.; Mosquera, J.; Sommer, S.G. Manure Management for Greenhouse Gas Mitigation. Animal 2013, 7, 266–282. [Google Scholar] [CrossRef]
- Froldi, F.; Lamastra, L.; Corrado, S.; Moschini, M. Carbon Footprint of Raw Milk for Direct Human Consumption Produced in Po Valley: Data Input Uncertainties and Effect on Output Variance. Environ. Chall. 2022, 8, 100536. [Google Scholar] [CrossRef]
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The Environmental Impact of Dairy Production: 1944 Compared with 20071. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Huang, S.; Huang, J.; Peng, P.; Liu, Y.; Han, B.; Sun, D. Identification of the Potential Role of the Rumen Microbiome in Milk Protein and Fat Synthesis in Dairy Cows Using Metagenomic Sequencing. Animals 2021, 11, 1247. [Google Scholar] [CrossRef]
- Doran-Browne, N.A.; Eckard, R.J.; Behrendt, R.; Kingwell, R.S. Nutrient Density as a Metric for Comparing Greenhouse Gas Emissions from Food Production. Clim. Chang. 2015, 129, 73–87. [Google Scholar] [CrossRef]
- Tessari, P.; Lante, A.; Mosca, G. Essential Amino Acids: Master Regulators of Nutrition and Environmental Footprint? Sci. Rep. 2016, 6, 26074. [Google Scholar] [CrossRef]
- McLaren, S.; Berardy, A.; Henderson, A.; Holden, N.; Huppertz, T.; Jolliet, O.; De Camillis, C.; Renouf, M.; Rugani, B.; Saarinen, M.; et al. Integration of Environment and Nutrition in Life Cycle Assessment of Food Items: Opportunities and Challenges. In Integration of Environment and Nutrition in Life Cycle Assessment of Food Items: Opportunities and Challenges; FAO: Rome, Italy, 2021; ISBN 978-92-5-135532-9. [Google Scholar]
- Carenzi, C.; Verga, M. Animal Welfare: Review of the Scientific Concept and Definition. Ital. J. Anim. Sci. 2009, 8, 21–30. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Rushen, J.; de Passillé, A.M.; Weary, D.M. Invited Review: The Welfare of Dairy Cattle—Key Concepts and the Role of Science. J. Dairy Sci. 2009, 92, 4101–4111. [Google Scholar] [CrossRef]
- Farm Animal Welfare Council. Farm Animal Welfare in Great Britain: Past, Present and Future; Farm Animal Welfare Council: London, UK, 2009.
- McCulloch, S.P. A Critique of FAWC’s Five Freedoms as a Framework for the Analysis of Animal Welfare. J. Agric. Environ. Ethics 2013, 26, 959–975. [Google Scholar] [CrossRef]
- Mellor, D. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Rault, J.-L.; Waiblinger, S.; Boivin, X.; Hemsworth, P. The Power of a Positive Human–Animal Relationship for Animal Welfare. Front. Vet. Sci. 2020, 7, 590867. [Google Scholar] [CrossRef]
- Calamari, L.; Bertoni, G. Model to Evaluate Welfare in Dairy Cow Farms. Ital. J. Anim. Sci. 2009, 8, 301–323. [Google Scholar] [CrossRef]
- Welfare Quality. Welfare Quality Assessment Protocol for Cattle; Welfare Quality Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Jordan, K.; Cook, N.; Darr, D.; DeCoite, C.; Doak, R.; Endres, M.; Humphrey, P.; Keyserlingk, N.V.; Maddox, S.; Mahoney, J.; et al. Farmers Assuring Responsible Management: Animal Care Reference Manual; FARM: Arlington, VA, USA, 2016. [Google Scholar]
- Krueger, A.; Cruickshank, J.; Trevisi, E.; Bionaz, M. Systems for Evaluation of Welfare on Dairy Farms. J. Dairy Res. 2020, 87, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Premi, M.; Mezzetti, M.; Ferronato, G.; Barbato, M.; Piccioli Cappelli, F.; Minuti, A.; Trevisi, E. Changes of Plasma Analytes Reflecting Metabolic Adaptation to the Different Stages of the Lactation Cycle in Healthy Multiparous Holstein Dairy Cows Raised in High-Welfare Conditions. Animals 2021, 11, 1714. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezzetti, M.; Passamonti, M.M.; Dall’Asta, M.; Bertoni, G.; Trevisi, E.; Ajmone Marsan, P. Emerging Parameters Justifying a Revised Quality Concept for Cow Milk. Foods 2024, 13, 1650. https://doi.org/10.3390/foods13111650
Mezzetti M, Passamonti MM, Dall’Asta M, Bertoni G, Trevisi E, Ajmone Marsan P. Emerging Parameters Justifying a Revised Quality Concept for Cow Milk. Foods. 2024; 13(11):1650. https://doi.org/10.3390/foods13111650
Chicago/Turabian StyleMezzetti, Matteo, Matilde Maria Passamonti, Margherita Dall’Asta, Giuseppe Bertoni, Erminio Trevisi, and Paolo Ajmone Marsan. 2024. "Emerging Parameters Justifying a Revised Quality Concept for Cow Milk" Foods 13, no. 11: 1650. https://doi.org/10.3390/foods13111650