Insights into the Volatile Flavor Profiles of Two Types of Beef Tallow via Electronic Nose and Gas Chromatography–Ion Mobility Spectrometry Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electronic Nose Analysis
2.3. HS-GC-IMS Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. E-Nose Analysis
3.2. E-Nose Analysis Combined with LDA
3.3. GC-IMS Analysis
A GC-IMS Spectrum Analysis of the Two Types of Beef Tallow
3.4. The Differences in Volatile Compounds between the Two Types of Beef Tallow
3.5. GC-IMS Integral Parameter Analysis of Volatile Fractions in the Two Types of Beef Tallow
3.6. Similarity Comparison of Volatile Components via Cluster Models
3.7. An OPLS-DA of the Two Types of Beef Tallow
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, J.; Wang, Y.; Wang, Q.; Yang, L.; Zhang, Y.; Karrar, E.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Prediction of flavor of Maillard reaction product of beef tallow residue based on artificial neural network. Food Chem. X 2022, 15, 100447. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Xu, G.Z.; Yu, Y.C.; Yan, X.B.; Zhang, B.L. Optimization of transesterification of beef tallow for biodiesel production catalyzed by solid catalysts. Trans. Chin. Soc. Agric. Eng. 2013, 29, 196–203. [Google Scholar] [CrossRef]
- Kerth, C.R.; Miller, R.K. Beef flavor: A review from chemistry to consumer. J. Sci. Food Agric. 2015, 95, 2783–2798. [Google Scholar] [CrossRef]
- Zou, S.; Zhang, Y.R.; Wang, Q.J.; Yang, L.X.; Karrar, E.; Jin, Q.Z.; Zhang, H.; Wu, G.C.; Wang, X. Effect of palm stearin on the physicochemical characterization and capsaicinoid digestion of Sichuan hotpot oil. Food Chem. 2022, 371, 131167. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Liu, Y.; Olajide, T.M.; Jiang, Y.R.; Cao, W.M. Identification of key aroma-active compounds in beef tallow varieties using flash GC electronic nose and GC× GC-TOF/MS. Eur. Food Res. Technol. 2022, 248, 1733–1747. [Google Scholar] [CrossRef]
- Ding, Y.P.; Gao, P.; Mao, Y.N.; Liu, H.; Zhong, W.; Hu, C.R.; He, D.P.; Wang, X.G. Assessment of the Physicochemical Properties of Fragrant Rapeseed Blended Hotpot Oil by Principal Component Analysis. J. Oleo Sci. 2023, 72, 263–272. [Google Scholar] [CrossRef]
- Qin, G.H.; Tao, S.T.; Cao, Y.F.; Wu, J.Y.; Zhang, H.P.; Huang, W.J.; Zhang, S.L. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food Chem. 2012, 134, 2367–2382. [Google Scholar] [CrossRef]
- Song, H.L.; Liu, J.B. GC-O-MS technique and its applications in food flavor analysis. Food Res. Int. 2018, 114, 187–198. [Google Scholar] [CrossRef]
- Jin, W.A.; Liu, J.X.; Zhao, P.; Chen, X.H.; Han, H.; Pei, J.J.; Zhou, J.; Zhang, J.; Geng, J.Z.; Jiang, P.F. Analysis of volatile flavor components in cooked unpolished rice of different colors from Yangxian County by headspace-gas chromatography-ion mobility spectroscopy. Food Sci. 2022, 43, 258–264. [Google Scholar] [CrossRef]
- Jin, W.G.; Zhao, P.; Jiang, P.F.; Liu, J.X. Analysis of differential volatile organic compounds in different colored millet porridges by gas chromatography-ion mobility spectrometry combined with multivariate statistical analysis. Food Sci. 2023, 44, 277–284. [Google Scholar] [CrossRef]
- Rao, W.J.; Li, X.; Ouyang, L.H.; Zhu, S.L.; Hu, S.; Zhou, J.Y. Characterization of key aroma compounds in Rice flavor baijiu from different rice raw materials by gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-quadrupole time of flight mass spectrometry. Food Biosci. 2023, 56, 103370. [Google Scholar] [CrossRef]
- Sun, J.; Ma, M.J.; Sun, B.G.; Ren, F.Z.; Chen, H.T.; Zhang, N.; Zhang, Y.Y. Identification of characteristic aroma components of butter from Chinese butter hotpot seasoning. Food Chem. 2021, 338, 127838. [Google Scholar] [CrossRef]
- Yang, M.; Mei, Y.; Lai, H.; Wang, Y.; Huang, Y.; Zeng, X.; Ge, L.; Zhao, N. Characterization of the universal flavor in Chinese butter hotpot by multiple mass spectrometry detection technology. J. Food Qual. 2024, 2024, 7500234. [Google Scholar] [CrossRef]
- Jin, W.G.; Cai, W.Q.; Zhao, S.B.; Gao, R.C.; Jiang, P.F. Uncovering the differences in flavor volatiles of different colored foxtail millets based on gas chromatography-ion migration spectrometry and chemometrics. Curr. Res. Food Sci. 2023, 7, 100585. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.J.; Wang, L.; Zhang, Q.; Wei, X.P. Face recognition based on PCA image reconstruction and LDA. Optik 2013, 124, 5599–5603. [Google Scholar] [CrossRef]
- Li, M.Q.; Du, H.T.; Lin, S.Y. Flavor changes of tricholoma matsutake singer under different processing conditions by using HS-GC-IMS. Foods 2021, 10, 531. [Google Scholar] [CrossRef]
- Zhou, C. Analysis and Isolation of Flavor Components in Tea Brown Porcini Mushrooms; Kunming University of Technology: Kunming, China, 2017. [Google Scholar]
- Bi, S.; Wang, A.J.D.; Wang, Y.P.; Xu, X.X.; Luo, D.S.; Shen, Q.; Wu, J.H. Effect of cooking on aroma profiles of Chinese foxtail millet (Setaria italica) and correlation with sensory quality. Food Chem. 2019, 289, 680–692. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Yang, N.; Fray, R.G.; Fisk, I.; Liu, C.J.; Li, H.Y.; Han, Y.H. Characterization of volatile aroma compounds after in-vial cooking of foxtail millet porridge with gas chromatography-mass spectrometry. J. Cereal Sci. 2018, 82, 8–15. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, S.S.; Zhou, P.; Zhang, W.S.; Luo, X.L.; Cao, J.J.; Sun, D.F. Analysis of volatile flavor substances in the enzymatic hydrolysate of Lanmaoa asiatica mushroom and its Maillard reaction products based on E-Nose and GC-IMS. Foods 2022, 11, 4056. [Google Scholar] [CrossRef]
- Wang, H.X.; Qin, L.; Wang, Y.; Zhou, D.Y.; Song, S.; Wang, X.S.; Zhu, B.W. Effects of heating conditions on fatty acids and volatile compounds in foot muscle of abalone Haliotis discus hannai Ino. Fish. Sci. 2014, 80, 1097–1107. [Google Scholar] [CrossRef]
- Zhang, J.H.; Cao, J.; Pei, Z.S.; Wei, P.Y.; Xiang, D.; Cao, X.Y.; Shen, X.R.; Li, C. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS. Food Res. Int. 2019, 123, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Brunton, N.P.; Cronin, D.A.; Monahan, F.J.; Durcan, R. A comparison of solid-phase microextraction (SPME) fibres for measurement of hexanal and pentanal in cooked turkey. Food Chem. 2000, 68, 339–345. [Google Scholar] [CrossRef]
- Sun, Y.W.; Zhang, Y.; Song, H.L. Variation of aroma components during frozen storage of cooked beef balls by SPME and SAFE coupled with GC-O-MS. J. Food Process. Preserv. 2021, 45, e15036. [Google Scholar] [CrossRef]
- Salum, P.; Guclu, G.; Selli, S. Comparative evaluation of key aroma-active compounds in raw and cooked red mullet (Mullus barbatus) by aroma extract dilution analysis. J. Agric. Food Chem. 2017, 65, 8402–8408. [Google Scholar] [CrossRef] [PubMed]
- Christlbauer, M.; Schieberle, P. Characterization of the key aroma compounds in beef and pork vegetable gravies á la chef by application of the aroma extract dilution analysis. J. Agric. Food Chem. 2009, 57, 9114–9122. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Q.; Zhang, X.M.; Hayat, K.; Liu, P.; Jia, C.S.; Xia, S.Q.; Xiao, Z.B.; Tian, H.X.; Niu, Y.W. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem. 2011, 124, 203–209. [Google Scholar] [CrossRef]
- Yeh, E.B.; Schiano, A.N.; Jo, Y.; Barbano, D.M.; Drake, M.A. The effect of vitamin concentrates on the flavor of pasteurized fluid milk. J. Dairy Sci. 2017, 100, 4335–4348. [Google Scholar] [CrossRef] [PubMed]
- Hiraide, M.; Miyazaki, Y.; Shibata, Y. The smell and odorous components of dried shiitake mushroom, Lentinula edodes I: Relationship between sensory evaluations and amounts of odorous components. J. Wood Sci. 2004, 50, 358–364. [Google Scholar] [CrossRef]
- Guo, Q.; Kong, X.F.; Hu, C.J.; Zhou, B.; Wang, C.T.; Shen, Q.W. Fatty acid content, flavor compounds, and sensory quality of pork loin as affected by dietary supplementation with L-arginine and glutamic acid. J. Food Sci. 2019, 84, 3445–3453. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Rivas-Cañedo, A.; Ávila, M.; Garde, S.; Nuñez, M.; Picon, A. Influence of physicochemical characteristics and high pressure processing on the volatile fraction of Iberian dry-cured ham. Meat Sci. 2017, 131, 40–47. [Google Scholar] [CrossRef]
- Selli, S. Volatile constituents of orange wine obtained from moro oranges (Citrus sinensis [L.] Osbeck). J. Food Qual. 2007, 30, 330–341. [Google Scholar] [CrossRef]
- Tateo, F.; Bononi, M. Determination of gamma-butyrolactone (GBL) in foods by SBSE-TD/GC/MS. J. Food Compos. Anal. 2003, 16, 721–727. [Google Scholar] [CrossRef]
- Wasserman, A.E. Chemical basis for meat favor: A review. J. Food Sci. 1979, 44, 6–11. [Google Scholar] [CrossRef]
- An, K.J.; Liu, H.C.; Fu, M.Q.; Qian, M.C.; Yu, Y.S.; Wu, J.J.; Xiao, G.S.; Xu, Y. Identification of the cooked off-flavor in heat-sterilized lychee (Litchi chinensis Sonn.) juice by means of molecular sensory science. Food Chem. 2019, 301, 125282. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Deng, Y.N.; Chen, X.; Wang, K.; Zhao, L.; Wang, Z.C.; Liu, X.W.; Hu, Z.Y. Elucidating the effects of Lactobacillus plantarum fermentation on the aroma profiles of pasteurized litchi juice using multi-scale molecular sensory science. Curr. Res. Food Sci. 2023, 6, 100481. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Rogers, K.M.; Li, Y.; Yang, S.P.; Chen, L.Z.; Zhou, J.H. Untargeted and targeted discrimination of honey collected by Apis cerana and Apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC–MS. J. Agric. Food Chem. 2019, 67, 12144–12152. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Lin, Q.B.; Zhong, H.N.; Zeng, Y. Identification and source analysis of volatile flavor compounds in paper packaged yogurt by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Food Packag. Shelf Life 2022, 34, 100947. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.X.; Du, W.B.; Jin, L.X.; Ren, P.F.; Ren, F.; Xie, J.C. Comparative analysis of aroma compounds in Chinese traditional dry-rendered fat by HS/GC-IMS, SPME/GC-MS, and SPME/GC-O. J. Food Compos. Anal. 2022, 107, 104378. [Google Scholar] [CrossRef]
- Li, C.; Al-Dalali, S.; Wang, Z.P.; Xu, B.C.; Zhou, H. Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC–MS–O, GC–IMS, and E-nose. Food Chem. 2022, 386, 132728. [Google Scholar] [CrossRef]
Classification | Class | Sample Number | Notes |
---|---|---|---|
Intense flavor beef tallow | L | L1 | Batch 1 from manufacturer A |
L2 | Batch 2 from manufacturer A | ||
L3 | Batch 3 from manufacturer A | ||
L4 | Batch 1 from manufacturer B | ||
L5 | Batch 2 from manufacturer B | ||
Ordinary beef tallow | P | P1 | Batch 1 from manufacturer A |
P2 | Batch 2 from manufacturer A | ||
P3 | Batch 3 from manufacturer A | ||
P4 | Batch 1 from manufacturer B | ||
P5 | Batch 2 from manufacturer B |
Array No. | Sensor Name | Performance Description |
---|---|---|
S1 | W1W | Sensitive to inorganic sulfides and terpenes |
S2 | W1S | Sensitive to methyls |
S3 | W2S | Sensitive to alcohols, aldehydes, and ketones |
S4 | W3S | Sensitive to long-chain alkanes |
S5 | W2W | Aromatic ingredients, sensitive to organic sulfur compounds |
S6 | W1C | Sensitive to aromatic benzene |
S7 | W6S | Mainly selective to hydrides |
S8 | W5C | Short-chain alkanes, sensitive to aromatic compounds |
S9 | W3C | Ammonia, sensitive to aromatic components |
S10 | W5S | Very sensitive to nitrogen oxides, especially negative to nitrogen oxides |
No. | Compound | CAS | RI | Rt [s] | Peak Intensities | |
---|---|---|---|---|---|---|
L | P | |||||
Aldehydics | 2-Undecenal | C2463776 | 1400.2 | 921.264 | 543.22 ± 63.35 ** | 408.45 ± 37.76 |
(E)-2-Nonenal-M | C18829566 | 1187.1 | 614.745 | 526.96 ± 86.90 ** | 303.25 ± 32.18 | |
(E)-2-Nonenal-D | C18829566 | 1183.5 | 609.657 | 179.13 ± 21.44 | 178.42 ± 13.27 | |
Nonanal-M | C124196 | 1107.5 | 500.277 | 1760.46 ± 415.91 ** | 736.39 ± 175.76 | |
Nonanal-D | C124196 | 1106.6 | 499.005 | 506.46 ± 171.03 ** | 206.19 ± 27.39 | |
(E)-2-Octenal-M | C2548870 | 1055.8 | 425.967 | 710.09 ± 178.21 ** | 299.16 ± 48.24 | |
(E)-2-Octenal-D | C2548870 | 1053.8 | 422.999 | 189.42 ± 44.64 ** | 121.96 ± 13.91 | |
Phenylacetaldehyde | C122781 | 1036.5 | 398.26 | 245.98 ± 37.90 ** | 127.89 ± 34.13 | |
Octanal-M | C124130 | 1005.2 | 353.235 | 1296.18 ± 253.06 ** | 916.82 ± 301.66 | |
Octanal-D | C124130 | 1004.2 | 351.751 | 968.09 ± 360.33 ** | 287.34 ± 116.11 | |
(E)-2-Heptenal-M | C18829555 | 954.4 | 305.737 | 857.48 ± 194.21 * | 668.43 ± 192.24 | |
(E)-2-Heptenal-D | C18829555 | 953.8 | 305.242 | 1037.32 ± 374.15 ** | 275.36 ± 101.52 | |
Heptanal | C111717 | 900.7 | 261.207 | 2025.22 ± 363.43 ** | 1488.67 ± 495.88 | |
(E)-2-Hexenal-M | C6728263 | 847.0 | 231.52 | 404.12 ± 76.13 | 388.41 ± 104.00 | |
(E)-2-Hexenal-D | C6728263 | 845.5 | 230.755 | 965.74 ± 356.60 ** | 290.55 ± 110.20 | |
Hexanal | C66251 | 798.1 | 206.995 | 1581.85 ± 142.58 | 1701.70 ± 344.57 | |
Pentanal | C110623 | 688.4 | 163.264 | 486.62 ± 54.99 | 641.02 ± 143.64 ** | |
3-Methylbutanal | C590863 | 637.6 | 151.78 | 809.91 ± 350.19 ** | 227.02 ± 76.00 | |
Butanal | C123728 | 586.1 | 140.137 | 703.51 ± 122.33 | 630.29 ± 98.25 | |
Benzaldehyde | C100527 | 953.3 | 304.825 | 152.53 ± 45.34 ** | 91.90 ± 7.68 | |
Alcohols | Ethanol | C64175 | 426.1 | 104.007 | 545.00 ± 166.72 | 735.54 ± 112.53 ** |
1-Octen-3-ol | C3391864 | 983.0 | 329.486 | 136.97 ± 24.24 ** | 70.92 ± 9.70 | |
1-Hexanol | C111273 | 867.0 | 241.496 | 75.03 ± 12.51 ** | 31.27 ± 4.35 | |
1-Pentanol | C71410 | 756.9 | 189.535 | 215.96 ± 31.72 * | 182.12 ± 43.28 | |
Ketones | 2-Hexanone | C591786 | 777.0 | 197.23 | 168.71 ± 28.87 ** | 89.05 ± 10.14 |
Acetone | C67641 | 493.6 | 119.246 | 3408.19 ± 659.32 * | 2835.62 ± 485.20 | |
Hydroxyacetone | C116096 | 618.6 | 147.481 | 324.38 ± 48.92 ** | 221.05 ± 108.25 | |
2-Pentanone | C107879 | 686.1 | 162.739 | 399.65 ± 54.64 ** | 259.32 ± 23.46 | |
2-Butanone | C78933 | 570.9 | 136.712 | 1346.01 ± 565.07 ** | 467.27 ± 122.81 | |
2-Heptanone | C110430 | 888.5 | 252.301 | 414.42 ± 82.78 ** | 170.69 ± 29.05 | |
Alkenes | α-terpinene-M | C99865 | 1018.3 | 372.037 | 302.43 ± 233.61 ** | 105.79 ± 98.63 |
α-terpinene-D | C99865 | 1021.8 | 376.984 | 421.39 ± 294.30 * | 192.74 ± 166.68 | |
Myrcene | C123353 | 987.7 | 333.396 | 343.52 ± 264.92 ** | 118.82 ± 90.25 | |
Camphene | C79925 | 966.3 | 315.632 | 488.92 ± 272.66 | 355.85 ± 393.66 | |
Esters | Ethyl Acetate | C141786 | 589.0 | 140.802 | 254.22 ± 85.22 | 465.02 ± 64.16 ** |
Butyl acetate | C123864 | 799.9 | 207.896 | 151.10 ± 36.09 | 162.75 ± 30.24 | |
γ-Butyrolactone | C96480 | 916.3 | 274.181 | 585.13 ± 97.86 ** | 234.91 ± 90.13 | |
Hexyl 2-Methylbutanoate | C10032152 | 1268.4 | 731.756 | 315.31 ± 31.99 ** | 251.73 ± 16.46 | |
Acid | 3-Methylbutyric acid | C503742 | 832.5 | 224.246 | 64.48 ± 9.30 ** | 26.31 ± 5.68 |
Sulfides | Dimethyl disulfide | C624920 | 724.5 | 177.094 | 47.63 ± 29.36 * | 29.56 ± 5.74 |
Heterocyclic compounds | 2,5-Dimethylfuran | C625865 | 742.4 | 183.972 | 1365.13 ± 200.14 ** | 677.36 ± 145.30 |
Unknown | Unknown-1 | / | / | / | 558.29 ± 99.78 | 659.91 ± 265.71 |
Unknown-2 | / | / | / | 176.46 ± 20.33 | 179.13 ± 26.97 | |
Unknown-3 | / | / | / | 117.29 ± 27.59 ** | 36.77 ± 9.39 | |
Unknown-4 | / | / | / | 248.48 ± 63.21 | 245.61 ± 96.58 | |
Unknown-5 | / | / | / | 293.58 ± 21.11 | 304.77 ± 30.28 | |
Unknown-6 | / | / | / | 949.31 ± 315.06 ** | 321.22 ± 94.02 | |
Unknown-7 | / | / | / | 203.16 ± 24.41 | 221.95 ± 31.84 | |
Unknown-8 | / | / | / | 130.14 ± 46.72 ** | 72.09 ± 10.57 | |
Unknown-9 | / | / | / | 202.12 ± 37.82 ** | 86.09 ± 22.16 | |
Unknown-10 | / | / | / | 123.72 ± 12.92 ** | 70.82 ± 10.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Zhang, L.; Yi, D.; Luo, Y.; Zheng, C.; Wu, Y. Insights into the Volatile Flavor Profiles of Two Types of Beef Tallow via Electronic Nose and Gas Chromatography–Ion Mobility Spectrometry Analysis. Foods 2024, 13, 1489. https://doi.org/10.3390/foods13101489
Li K, Zhang L, Yi D, Luo Y, Zheng C, Wu Y. Insights into the Volatile Flavor Profiles of Two Types of Beef Tallow via Electronic Nose and Gas Chromatography–Ion Mobility Spectrometry Analysis. Foods. 2024; 13(10):1489. https://doi.org/10.3390/foods13101489
Chicago/Turabian StyleLi, Ke, Liangyao Zhang, Danhui Yi, Yunxiao Luo, Chao Zheng, and Yinglong Wu. 2024. "Insights into the Volatile Flavor Profiles of Two Types of Beef Tallow via Electronic Nose and Gas Chromatography–Ion Mobility Spectrometry Analysis" Foods 13, no. 10: 1489. https://doi.org/10.3390/foods13101489
APA StyleLi, K., Zhang, L., Yi, D., Luo, Y., Zheng, C., & Wu, Y. (2024). Insights into the Volatile Flavor Profiles of Two Types of Beef Tallow via Electronic Nose and Gas Chromatography–Ion Mobility Spectrometry Analysis. Foods, 13(10), 1489. https://doi.org/10.3390/foods13101489