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Abstract: In the current study, an electronic nose (E-nose) and gas chromatography–ion mobility
spectrometry (GC-IMS) were employed to investigate the volatile flavor compounds (VFCs) of intense
flavor beef tallow (L) and ordinary beef tallow (P). The study results indicate that an E-nose combined
with an LDA and GC-IMS combined with an OPLS-DA can effectively distinguish between the
two types of beef tallow. Compared with ordinary beef tallow, the E-nose sensors of intense flavor
beef tallow have stronger response signals to sulfides, terpenes, and nitrogen oxides. A total of 22
compounds contribute to making the flavor of intense flavor beef tallow more typical and richer;
in contrast, ethyl acetate was the main aroma-active compound found in the ordinary beef tallow.
Sulfur-containing compounds and terpenoids might be the key substances that cause sensory flavor
differences between the two types of beef tallow. In conclusion, the results of this study clarify the
characteristics and differences of the two types of beef tallow and provide an enhanced understanding
of the differences in the flavors of the two types of beef tallow.

Keywords: beef tallow; E-nose; GC-IMS; OPLS-DA; flavor profile

1. Introduction

Refined fat, also known as beef tallow, is a type of edible animal fat made by removing
impurities through a series of complex processes such as high-temperature refinement,
degumming, deacidification, decolorization, and deodorization [1–3]. In addition to its
desirable physical properties, such as its good heat stability, strong antioxidant properties,
and mild taste with a pure and authentic flavor, beef tallow contains a variety of fatty
acids, vitamins, and minerals [4]. Due to these properties, it is widely used in margarine,
condiments, artificial animal creams, plasticized oils, shortening, hotpots, etc.

In hotpot seasoning and condiments, beef tallow is the main raw material that is
used [4]. Its special animal fat aroma can better cover the unpleasant flavors of various
ingredients, and its suitable solubility helps it to absorb the spicy, pungent, and numbing
flavors of peppers and peppercorns [5]. This helps to make hot pots not only spicy, but
also mild and safe, resulting in a red-colored soup with a rich aroma and rich taste without
being greasy. Therefore, the quality of the hotpot condiment is fundamentally determined
by the quality of the beef tallow. Regarding spicy hotpot products from Chongqing and
Sichuan, China, beef tallow is an irreplaceable ingredient in hotpot seasoning and has
become one of the most distinctive dietary ingredients in Chongqing and Sichuan [6].

The beef tallow used for hotpot on the market can be divided into two types: intense
flavor beef tallow (Lao huo guo beef tallow) and ordinary beef tallow (Putong beef tal-
low). The two types of beef tallow differ in terms of raw materials, refinement processes,
refinement degrees, and product quality characteristics. The raw materials used for intense
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flavor beef tallow include grass-fed beef, which is mainly derived from Xinjiang and Inner
Mongolia, and the raw materials used for ordinary beef tallow originate from grain-fed beef,
which is mainly derived from Henan and Shandong. Therefore, the flavor characteristics
and application of these two types of beef tallow are different. Consumer acceptability and
market competitiveness are directly affected by the odor of food [7]; therefore, aroma is an
important indicator for assessing beef tallow in terms of the product quality of beef tallow
hotpot seasoning. However, there is still uncertainty about the quality characteristics and
distinguishing methods of the two types of beef tallow. The identification of the complex
flavor constituents in food remains a challenge. Over the past 100 years, GC-MS, GC-Q-
TOP/MS, GC-Orbitrap-MS, GC-O, GC-IMS, and E-noses have been applied to identify
the flavor compounds in various types of food [8,9]. In recent years, in particular, gas
chromatograph–ion migration spectrometry (GC-IMS) has been employed to characterize
volatile flavor components for food classification and quality control. This method has
shown great merits, such as the fact that samples do not need to be pretreated, and ben-
efits in terms of its high sensitivity, fast detection speed, high separation efficiency, and
satisfactory visualization [10,11]. Recently, GC × GC-TOF/MS, flash GC electronic nose,
GC-MS, and GC-O have been employed to identify the characteristic aromatic components
of different kinds of beef tallow and hotpot seasoning products [5,12,13]. In addition,
research trends highlight the key differential compounds based on a multivariate statistical
analysis (PLS-DA or OPLS-DA), which can be used to better understand the flavor profiles
of different food products [14]. However, studies on the identification fingerprinting and
differential analysis of the volatile organic components in different types of beef tallow
using GC-IMS and an E-nose are rarely published.

In this investigation, we explored the differences in the volatile components of two
types of beef tallow by combining an E-nose and GC-IMS. Moreover, the key differential
compounds were elucidated through a multivariate statistical analysis.

2. Materials and Methods
2.1. Materials

The beef tallow samples used in this study were collected from Guanghan Maidele
Food Co., Ltd. (manufacturer A) (Chengdu, China) and Sichuan Hangjia Biotechnology
Co., Ltd. (manufacturer B) (Chengdu, China). Collect 2–3 batches of samples from each
manufacturer, and three samples are randomly selected from each batch. Information about
the samples is shown in Table 1.

Table 1. Sample information.

Classification Class Sample Number Notes

Intense flavor beef tallow L

L1 Batch 1 from manufacturer A
L2 Batch 2 from manufacturer A
L3 Batch 3 from manufacturer A
L4 Batch 1 from manufacturer B
L5 Batch 2 from manufacturer B

Ordinary beef tallow P

P1 Batch 1 from manufacturer A
P2 Batch 2 from manufacturer A
P3 Batch 3 from manufacturer A
P4 Batch 1 from manufacturer B
P5 Batch 2 from manufacturer B

2.2. Electronic Nose Analysis

Five grams of the beef tallow sample was placed into 40 mL headspace injection
bottles. The samples were left for 30 min at room temperature to facilitate the emission of
the volatile compounds before further processing using the E-nose device. The parameters
of the E-nose device (PEN3, Mecklenburg-Vorpommern, Germany) were as follows: a
pre-sampling time of 5 s; a zero-point trim time of 5 s; a measurement time of 120 s;
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a flush time of 150 s; a chamber flow of 300 mL/min; and an initial injection flow of
300 mL/min. The aromatic characteristics of each sample were described via the response
values corresponding to the 10 sensors, as presented in Table 2.

Table 2. The corresponding aromatic types of the different sensors of the electronic nose.

Array No. Sensor Name Performance Description

S1 W1W Sensitive to inorganic sulfides and terpenes
S2 W1S Sensitive to methyls
S3 W2S Sensitive to alcohols, aldehydes, and ketones
S4 W3S Sensitive to long-chain alkanes
S5 W2W Aromatic ingredients, sensitive to organic sulfur compounds
S6 W1C Sensitive to aromatic benzene
S7 W6S Mainly selective to hydrides
S8 W5C Short-chain alkanes, sensitive to aromatic compounds
S9 W3C Ammonia, sensitive to aromatic components

S10 W5S Very sensitive to nitrogen oxides, especially negative to
nitrogen oxides

2.3. HS-GC-IMS Analysis

The VOCs were analyzed through the use of a FlavourSpecr® (Gesellschaft für analytis-
che sensorsysteme GmbH, Dortmund, Germany), which was equipped with an automatic
sampler unit (CTC analytics AG, Zwingen, Switzerland). Briefly, 2 g of beef tallow was
sampled in a 20 mL headspace vial and then incubated at 60 ◦C for 15 min. Subsequently,
500 µL of the sample headspace gas was automatically injected into the injector through the
use of a heated syringe at 65 ◦C. Then, the separation of volatile components was performed
using GC-IMS, and the GC conditions were as follows: an FS-SE-54-CB-1 capillary column
(15 m × 0.53 mm), a film thickness of 1 µm (RESTEK, Bellefonte, PA, USA), a column
temperature of 60 ◦C, carrier gas/drift gas N2 (with a purity of 99.999%), and an initial gas
flow rate of 2.0 mL/min, which was held for 2 min and then ramped up to 100 mL/min for
2~10 min. IMS conditions were as follows: a temperature of 45 ◦C and a drift gas flow rate
of 150 mL/min. LAV software version 2.2.1 (Gesellschaft fur analytische sensorsysteme
GmbH, Dortmund, Germany) was used to determine the analytical spectrum. The volatile
compounds were characterized through comparing drift time (DT) and RI through the use
of IMS database retrieval software 2.1 (GAS, Dortmund, Germany) and the NIST 11 library.
The relative quantitative analysis of volatile compounds was based on the peak intensity in
HS-GC-IMS.

2.4. Statistical Analysis

The E-nose data were analyzed through the use of Winmuster software (version
1.6.2.18/Sep 25, AIRSENSE Analytics GmbH, Schwerin, Germany), which includes PEN3
E-nose, and a linear discriminant analysis (LDA) was also utilized.

The GC-IMS data were pre-processed using Excel 2016 software and expressed as the
mean ± SD (standard deviation), and differences were compared using one-way analysis of
variance, with p < 0.05 considered as significant and p < 0.01 considered as highly significant.
Heatmap clustering of VOCs was performed using Origin 2022 (Northampton, MA, USA),
and orthogonal partial least-squares discrimination analysis (OPLS-DA) modeling was
conducted using SIMCA-14.1 software (Umetrics AB, Umea, Sweden) to quickly and
accurately determine the differences in volatile flavor components in the samples.

3. Results and Discussion
3.1. E-Nose Analysis

A sensor differential contribution rate analysis (loading analysis, LA) is a measure of
the magnitude of the sensor’s contribution during the process of discrimination. It can be
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used to confirm the contribution rate of each sensor to sample differentiation, thus revealing
the aromatic components that play the main role in the sample differentiation process.

The results of the loading analysis are shown in Figure 1. The contribution rate of the
first principal component (PC-1) was 94.50%, that of the second component (PC-2) was
5.14%, and the total contribution was 99.64%, indicating that the first and second principal
components were able to explain 99.40% of the total variance. W1W and W5S showed
a high contribution rate on PC-1 and PC-2, indicating that they could be identified as
feature sensors.
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3.2. E-Nose Analysis Combined with LDA

A linear discriminant analysis (LDA) is a commonly used chemometric method that
is utilized to reveal the relationship between variables through data dimensionality re-
duction [15]. As shown in Figure 2, the contribution rate of the first principal component
was 67.84%, and that of the second principal component was 4.09%, with a cumulative
contribution rate of 71.93%. The first principal component played a major role in the sample,
and the greater the distance between two samples on the X-axis, the greater the difference.
As shown in Figure 2, the intense flavor beef tallow was mainly distributed between 3.145
and 3.149; in contrast, the ordinary beef tallow was mainly distributed between 3.137 and
3.142. The flavor components of the different types of beef tallow were in regions with
an obvious boundary, indicating that the use of an LDA makes it possible to significantly
distinguish between the different types of beef tallow.

According to the analysis of different sensor loads, as shown in Figure 1, the difference
in the flavors of the two types of beef tallow was mainly related to the information captured
by the W5S and W1W sensors, and W5S and W1W were highly correlated with PC1,
showing a positive correlation. In turn, W5S (sensitive to nitrogen oxides) and W1W
(sensitive to sulfides and terpenes) also showed a high correlation with principal component
2. W1W showed a positive correlation, while W5S showed a negative correlation. Based on
the above analysis, it can be concluded that nitrogen oxides and inorganic sulfides can serve
as important indicators of differences in odor. Compared with ordinary beef tallow, intense
flavor beef tallow has a stronger flavor comprising nitrogen oxides, inorganic sulfides,
and terpenes.
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Figure 2. LDA of beef tallow flavor using electronic nose.

3.3. GC-IMS Analysis
A GC-IMS Spectrum Analysis of the Two Types of Beef Tallow

In order to directly compare the differences in volatile components between the ordi-
nary beef tallow and intense flavor beef tallow, a two-dimensional top view with a blue
background was created (Figure 3). The vertical coordinate represents the retention time
(s) of the GC, the horizontal coordinate represents the ion migration time (normalized),
the red vertical line at the horizontal coordinate 1.0 is the RIP peak (reactive ion peak, nor-
malized), and each spot on both sides of the RIP peak represents a volatile compound [16].
The presence or absence of the spots and the depth of the color indicate the degrees of
accumulation and decomposition of the substance, and the color change from white to red
is directly proportional to the concentration.
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Figure 3 reflects the differences in the types and concentrations of compounds between
the ordinary beef tallow and the intense flavor beef tallow. The migration times of both
samples were within 1.0–1.5, and the retention time of most compounds was between
100 s and 500 s. The difference in the substance composition was not obvious; however,
the intensity of the compound signals in the samples manifested a clear difference. This
difference indicated that the variety and concentration of volatile compounds between the
two types of samples were different.

3.4. The Differences in Volatile Compounds between the Two Types of Beef Tallow

To visually and quantitatively compare the differences in the volatile compounds
between the samples, visual fingerprint spectra of the volatile compounds (Figure 4) were
established. In Figure 4, each row represents a sample, each column depicts a volatile
compound, the color and brightness of each point indicate the compound concentration,
“M” and “D” indicate the monomers and dimers of the same compound, and the numbered
peaks indicate unidentified peaks.
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As shown in Figure 4, the topography of the two samples was relatively similar but
with differences in the volatile compound concentration. It was not difficult to establish
that most of the components, such as (E)-2-octenal-M(5), (E)-2-heptenal-D, (E)-2-hexenal-
D, nonanal-M, nonanal-D, octanal-D, 3-methylbutanal, phenylacetaldehyde, benzalde-
hyde, gama-butyrolactone, 2-pentanone, 2-hexanone, 2-butanone, 1-octen-3-ol, 1-hexanol,
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unkonw-3, unkonw-9, unkonw-10, etc., were more abundant in the intense flavor beef
tallow. Only a few components, such as hexanal, pentanal, ethyl acetate, and ethanol,
were higher in concentration in the normal beef tallow. Differences in the concentration of
volatile compounds can bring about changes in flavor. For example, aldehyde compounds
can provoke strong citrus, meat, and fat aromas, while alcohol, esters, and ketones can
provoke floral and fruit aromas [9,17–19], indicating that the flavors of the two types of
beef tallow differ significantly.

3.5. GC-IMS Integral Parameter Analysis of Volatile Fractions in the Two Types of Beef Tallow

A qualitative analysis of the volatile flavor compounds in the two types of beef tallow
was conducted according to the GC retention time and ion migration time. A total of 51
volatile compounds (Table 3) were identified through a comparison with the NIST 2014 gas
retention index database and the IMS migration temporal database, including 20 aldehydes,
6 ketones, 5 alcohols, 4 esters, 4 alkenes, 1 acid, 1 sulfur compound, and 10 unknown
compounds. Among them, with the exception of the unknown compounds, the most
abundant were aldehydes, followed by ketones and alcohols. The proportions of aldehydes,
ketones, alcohols, alkenes, esters, acids, sulfur compounds, heterocyclic compounds, and
unknown components in the intense flavor beef tallow were 53.1%, 20.0%, 3.1%, 5.1%,
3.9%, 0.2%, 0.2%, 4.4%, and 9.9%, and their proportions were 52.3%, 18.9%, 4.8%, 4.5%,
5.6%, 0.1%, 0.12%, 3.3%, and 10.3% in the ordinary beef tallow (Figure 5). The intense
flavor beef tallow was similar to the ordinary beef tallow in terms of the types of volatile
compounds; however, their intensities differed significantly. The results of the one-way
ANOVA showed that there were significant differences between the two types of beef tallow
flavor compounds. With the exception of 11 compounds, including (E)-2-nonenal-D and
camphene, which did not show significant differences (p > 0.05), the other 40 compounds
showed significant or highly significant differences, among which 5 components, including
α-terpinene (monomer), showed significant differences (p < 0.05), and 35 components,
including (E)-2-nonenal, nonenal, etc., showed highly significant differences (p < 0.01).

Table 3. Information on the volatile compounds identified via GC-IMS.

No. Compound CAS RI Rt [s]
Peak Intensities

L P

Aldehydics

2-Undecenal C2463776 1400.2 921.264 543.22 ± 63.35 ** 408.45 ± 37.76

(E)-2-Nonenal-M C18829566 1187.1 614.745 526.96 ± 86.90 ** 303.25 ± 32.18

(E)-2-Nonenal-D C18829566 1183.5 609.657 179.13 ± 21.44 178.42 ± 13.27

Nonanal-M C124196 1107.5 500.277 1760.46 ± 415.91 ** 736.39 ± 175.76

Nonanal-D C124196 1106.6 499.005 506.46 ± 171.03 ** 206.19 ± 27.39

(E)-2-Octenal-M C2548870 1055.8 425.967 710.09 ± 178.21 ** 299.16 ± 48.24

(E)-2-Octenal-D C2548870 1053.8 422.999 189.42 ± 44.64 ** 121.96 ± 13.91

Phenylacetaldehyde C122781 1036.5 398.26 245.98 ± 37.90 ** 127.89 ± 34.13

Octanal-M C124130 1005.2 353.235 1296.18 ± 253.06 ** 916.82 ± 301.66

Octanal-D C124130 1004.2 351.751 968.09 ± 360.33 ** 287.34 ± 116.11

(E)-2-Heptenal-M C18829555 954.4 305.737 857.48 ± 194.21 * 668.43 ± 192.24

(E)-2-Heptenal-D C18829555 953.8 305.242 1037.32 ± 374.15 ** 275.36 ± 101.52

Heptanal C111717 900.7 261.207 2025.22 ± 363.43 ** 1488.67 ± 495.88

(E)-2-Hexenal-M C6728263 847.0 231.52 404.12 ± 76.13 388.41 ± 104.00

(E)-2-Hexenal-D C6728263 845.5 230.755 965.74 ± 356.60 ** 290.55 ± 110.20

Hexanal C66251 798.1 206.995 1581.85 ± 142.58 1701.70 ± 344.57
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Table 3. Cont.

No. Compound CAS RI Rt [s]
Peak Intensities

L P

Pentanal C110623 688.4 163.264 486.62 ± 54.99 641.02 ± 143.64 **

3-Methylbutanal C590863 637.6 151.78 809.91 ± 350.19 ** 227.02 ± 76.00

Butanal C123728 586.1 140.137 703.51 ± 122.33 630.29 ± 98.25

Benzaldehyde C100527 953.3 304.825 152.53 ± 45.34 ** 91.90 ± 7.68

Alcohols

Ethanol C64175 426.1 104.007 545.00 ± 166.72 735.54 ± 112.53 **

1-Octen-3-ol C3391864 983.0 329.486 136.97 ± 24.24 ** 70.92 ± 9.70

1-Hexanol C111273 867.0 241.496 75.03 ± 12.51 ** 31.27 ± 4.35

1-Pentanol C71410 756.9 189.535 215.96 ± 31.72 * 182.12 ± 43.28

Ketones

2-Hexanone C591786 777.0 197.23 168.71 ± 28.87 ** 89.05 ± 10.14

Acetone C67641 493.6 119.246 3408.19 ± 659.32 * 2835.62 ± 485.20

Hydroxyacetone C116096 618.6 147.481 324.38 ± 48.92 ** 221.05 ± 108.25

2-Pentanone C107879 686.1 162.739 399.65 ± 54.64 ** 259.32 ± 23.46

2-Butanone C78933 570.9 136.712 1346.01 ± 565.07 ** 467.27 ± 122.81

2-Heptanone C110430 888.5 252.301 414.42 ± 82.78 ** 170.69 ± 29.05

Alkenes

α-terpinene-M C99865 1018.3 372.037 302.43 ± 233.61 ** 105.79 ± 98.63

α-terpinene-D C99865 1021.8 376.984 421.39 ± 294.30 * 192.74 ± 166.68

Myrcene C123353 987.7 333.396 343.52 ± 264.92 ** 118.82 ± 90.25

Camphene C79925 966.3 315.632 488.92 ± 272.66 355.85 ± 393.66

Esters

Ethyl Acetate C141786 589.0 140.802 254.22 ± 85.22 465.02 ± 64.16 **

Butyl acetate C123864 799.9 207.896 151.10 ± 36.09 162.75 ± 30.24

γ-Butyrolactone C96480 916.3 274.181 585.13 ± 97.86 ** 234.91 ± 90.13

Hexyl
2-Methylbutanoate C10032152 1268.4 731.756 315.31 ± 31.99 ** 251.73 ± 16.46

Acid 3-Methylbutyric acid C503742 832.5 224.246 64.48 ± 9.30 ** 26.31 ± 5.68

Sulfides Dimethyl disulfide C624920 724.5 177.094 47.63 ± 29.36 * 29.56 ± 5.74

Heterocyclic
compounds 2,5-Dimethylfuran C625865 742.4 183.972 1365.13 ± 200.14 ** 677.36 ± 145.30

Unknown

Unknown-1 / / / 558.29 ± 99.78 659.91 ± 265.71

Unknown-2 / / / 176.46 ± 20.33 179.13 ± 26.97

Unknown-3 / / / 117.29 ± 27.59 ** 36.77 ± 9.39

Unknown-4 / / / 248.48 ± 63.21 245.61 ± 96.58

Unknown-5 / / / 293.58 ± 21.11 304.77 ± 30.28

Unknown-6 / / / 949.31 ± 315.06 ** 321.22 ± 94.02

Unknown-7 / / / 203.16 ± 24.41 221.95 ± 31.84

Unknown-8 / / / 130.14 ± 46.72 ** 72.09 ± 10.57

Unknown-9 / / / 202.12 ± 37.82 ** 86.09 ± 22.16

Unknown-10 / / / 123.72 ± 12.92 ** 70.82 ± 10.62

The values are the means ± standard deviation; * and ** represent statistically significant (p < 0.05) and highly
significant (p < 0.01) differences; / represents compounds which could not be identified; and L and P represent
intense flavor beef tallow and ordinary beef tallow, respectively.
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Aldehydes are the most important flavor compounds in beef tallow; they are mainly
produced via lipid oxidation and the Maillard reaction [20] and have strong aromatization
ability and a low threshold of around 2.5 ppm–0.001 ppm [20–23], and they mainly present
fruit, fat, and nut aromas. As shown in Table 3, the aldehydes in the intense flavor beef tal-
low and ordinary beef tallow include saturated aldehydes, monoenals, and dieneals; among
them, (E)-2-octenal was responsible for the fat and meat aromas; 2-undecenaldehyde and
benzaldehyde were responsible for the aldehyde flavor, citrus flavor, fat flavor, and other
characteristics; (E)-2-nonanal was responsible for the tallowy, fat, and beefy flavors [24],
and the other aldehydes, such as nonanal, phenylacetaldehyde, octanal, heptaldehyde
(E)-2-hexenal, hexanal, isovaleraldehyde, etc., were mainly responsible for the fruit and
grass aromas [25]. In particular, (E)-2-nonenal and (E)-2-heptenal have been reported as im-
portant contributors to beef flavor [26,27]. A single-factor analysis of variance showed that,
among the 19 detected aldehydes, 12 aldehydes, including some key aromatic compounds
such as (E)-2-nonenal and nonenal, showed significant differences (p < 0.05) or highly
significant differences (p < 0.01), and only 7 aldehydes, namely 2-undecenaldehyde, (E)-2-
octenal (dimer), octaldehyde (monomer), octaldehyde (dimer), (E)-2-hepenal, heptanal, and
isovaleraldehyde, did not show significant differences. Due to their low odor thresholds
and high contents, the differences in these components may lead to flavor differences
between the two types of beef tallow.

Ketones are thought to primarily originate from the oxidative dissociation of lipids [28]
and have been noted as a major flavor component in beef tallow [5]. Most ketones possess
a certain floral and fruity fragrance and have a positive effect on food flavor, and their
odor threshold concentration is low [16]. As shown in Table 3, the intensities of all of
the ketone peaks were higher in the intense flavor beef tallow, and the hydroxyacetone,
γ-butyrolactone, 2-butanone, and 2-heptanone contents were significantly higher in the
intense flavor beef tallow.

Alcohols are produced through the oxidative decomposition of oils and fats, and
they have a high threshold [5]. As shown in Table 3, 1-octen-3-ol, 1-hexanol, ethanol, and
1-pentanol were the main alcohols found in the beef tallow. The results of the one-way
ANOVA showed that, except for ethanol, 1-octen-3-ol, 1-hexanol, and 1-pentanol were
significantly more abundant in the intense flavor beef tallow. Straight-chain alcohols, 1-
hexanol, and 1-pentanol were the main lipid oxidation products, and they present musty,
sweet, and woody flavors and fuel oil, sweet, and balsam odors, respectively [5]. 1-octen-
3-ol is a compound that is usually detected in oils or foods that are rich in oils, and its
formation often relates to the oxidation of polyunsaturated fatty acid, showing mushroom,
rose, and hay scents [29,30]. The results of the one-way ANOVA showed that there was no



Foods 2024, 13, 1489 10 of 15

significant difference in the relative percentage content of this substance in the two types of
beef tallow (p > 0.05).

Regarding esters, only three compounds were detected (butyl acetate, ethyl acetate,
and γ-butyrolactone). They are mainly produced via the esterification of alcohols and
free fatty acids during the oxidation of fats and provide a fruity and sweet odor, which is
also associated with beef tallow, as shown in previous studies [5,31,32]. The information
displayed in Table 3 shows that the content of γ-butyrolactone was significantly higher
in the intense flavor beef tallow, and the ethyl acetate content was significantly higher in
the ordinary beef tallow. Of note, there was no difference between the two types of beef
tallow. γ-butyrolactone is a molecule used as a natural–identical substance in flavoring
formulations, which has a faint sweet, aromatic and buttery flavor and has been identified
in various natural food matrices and foodstuffs [33]. Ethyl acetate, which is formed from
ethanol and acetic acid, contributes a pineapple odor and is a key odor component in
beef [12].

One sulfur-containing compound (dimethyl disulfide) and three terpenoids (α-terpinene,
camphene, and myrcene) were detected via GC-IMS. Dimethyl disulfide is mainly formed
through the thermal degradation of sulfur amino acids. Research has shown that sulfur-
containing compounds possess a low flavor threshold and have a significant impact on the
overall flavor of beef [34], and the results displayed in Table 3 show that dimethyl disulfide
is higher in intense flavor beef tallow. Although there was no significant difference in the
content of sulfur compounds between the two types of fat, there is still a possibility of a
significant flavor differences due to its low threshold and strong odor. Terpenoids are a
more abundant class of compounds; they are mostly produced following the breakdown of
lipids, giving beef tallow citrus/herbal and sweet aromas. The content of α-terpinene and
myrcene was higher in the intense flavor beef tallow, and some terpenoids such as myrcene
possess a low threshold (0.0012 µg/mL) [35,36]. The results suggest that sulfur-containing
compounds and terpenoids may play key roles in the flavor profile of beef tallow, which is
in agreement with the results of the E-nose analysis.

3.6. Similarity Comparison of Volatile Components via Cluster Models

Cluster models were used to analyze the difficult-to-find and complex variables and to
distinguish between differences in volatile components in the different samples. All of the
GC-IMS spectrum data of the two group samples were analyzed via a cluster comparison,
and the results are shown in Figure 6.
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The results show that the volatile components of the intense flavor beef tallow were
relatively clustered together. These findings further confirmed the differences in the volatile
components in the different types of beef tallow. Thus, the volatile compounds of the two
types of beef tallow can be suitably distinguished via a cluster analysis.

3.7. An OPLS-DA of the Two Types of Beef Tallow

The fingerprint spectra only roughly distinguished the volatile components in the dif-
ferent types of beef tallow, and it was difficult to precisely establish the volatile components
that contributed to the differences between the samples. In order to effectively discriminate
the flavor differences between the different varieties of beef tallow, two groups of samples
were analyzed using multivariate statistical methods, of which OPLS-DA is a supervised
statistical analysis method that can be used to model the relationship between compound
expression and samples, providing a powerful method for distinguishing between sam-
ples with different characteristics [37]. Therefore, the OPLS-DA model was used in this
study to identify the specific marker compounds responsible for the aromatic differences in
the two types of beef tallow based on the data matrix of the detected aroma-active com-
pounds. As shown in Figure 7, the forecast capacity (Q2 = 0.971), goodness-of-fit parameter
(R2X = 0.74), and explanatory ability (R2X = 0.986) indicate that the findings regarding the
flavor compounds within the different types of beef tallow were covered by the fitting
equation. According to the results shown in Figure 7, the intense flavor beef tallow was
only distributed on the left side of the Y-axis. In contrast, the ordinary beef tallow was
distributed on the right side of the Y-axis, and the results are consistent with the fingerprint
profiles and heatmap clustering, indicating that there is a significant difference between
the intense flavor beef tallow and ordinary beef tallow. In addition, to avoid overfitting, a
permutation test (n = 200) was performed to evaluate the reliability of the OPLS-DA model,
and the results are shown in Figure 7; after 200 cross-validations, all test R2 and Q2 values
were lower than the original values, and the regression line of Q2 crossed the abscissa and
demonstrated a negative intercept with the vertical axis, indicating that the model was not
over-fitted and that it was stable and reliable.

The key compounds responsible for the aromatic profile differences between the two
types of beef tallow were further analyzed according to their load values (Figure 8). For
example, nonanal, (E)-2-octenal, etc., appeared in higher concentrations in the intense
flavor beef tallow compared to the ordinary beef tallow, while ethyl acetate and pentanal
occurred in higher concentrations in the ordinary beef tallow. Moreover, the variable
importance projection (VIP) was calculated via the construction of a reliable OPLS-DA
simulation and used to quantify the impact of each component for classification, and the
volatile chemicals with VIP > 1 were considered as the differential marker components in
the different samples [38–40]. According to the results for the single-variable criterion of the
one-way ANOVA (p < 0.05) and VIP > 1.0, except for the unknown components, 23 aromatic
compounds were screened out as differential marker components in the different samples,
including 1-hexanol (fruity aroma), 3-methylbutyric acid, 2,5-dimethylfuran, 2-heptanone
(pear-like fruit aroma), 2-hexanone, gamma-butyrolacton, phenylacetaldehyde (sweet
aroma), 1-octen-3-ol (mushroom, lavender, rose, and hay aromas), 2-pentaone (acetone-like
odor), (E)-2-nonenal-M (fatty green cucumber, citrus, and cardboard flavors), nonanal-D
(rose and citrus aromas with a strong oily odor), nonanal-M, (E)-2-octenal-D, (E)-2-octenal-
M (fat and meat aromas, with cucumber and chicken aromas as well), (E)-2-heptenal-D
(green grass aroma), octanal-D (fruity aroma), ethyl acetate, (E)-2-hexenal-D (fresh green
leaf aroma), 3-methylbutanal, 2-undecenal, hexyl 2-methylbutanoate (spicy flavor), 2-
butanone (acetone-like odor), and benzaldehyde (bitter almond, cherry, and nut aromas).
Only ethyl acetate was dominant in the ordinary beef tallow sample, whereas the other
22 components were dominant in the intense flavor beef tallow sample. The higher content
of volatile components makes the flavor of intense flavor beef tallow more typical and richer.
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4. Conclusions

In this study, an E-nose, in combination with GC-IMS, was employed to investigate
the flavors of intense flavor beef tallow and ordinary beef tallow. An E-nose combined
with an LDA can be used to distinguish intense flavor beef tallow from ordinary beef
tallow, and intense flavor beef tallow is characterized by a stronger flavor comprising
nitrogen oxides, inorganic sulfides, and terpenes. A total of 51 volatile compounds were
detected in the two types of beef tallow, including 20 aldehydes, 6 ketones, 5 alcohols, 4
esters, 4 alkenes, 1 acid, 1 sulfur compound, and 10 unknown compounds. In terms of
the types of volatile compounds, no differences were found; however, the concentrations
differed significantly. The differences in volatile compounds in the different types of beef
tallow can be satisfactorily recognized through the use of GC-IMS data together with a
heatmap clustering analysis and OPLS-DA. A total of 23 differential volatile components
were screened out as volatile markers in order to distinguish between the two types of
beef tallow. Sulfur-containing compounds and terpenoids might be the key substances that
distinguish the flavors of the two types of beef tallow. In summary, based on an E-nose and
GC-IMS, we were able to establish the aromatic characteristics and fingerprint spectra of
the volatile compounds in the two types of beef tallow examined, and this study might
provide a theoretical basis for the quality control and analysis of the characteristics of
different types of beef tallow in the future.
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