Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material and Experimental Design
2.2. Ultrasound Extraction of Bioactive Compounds
2.3. Bioactive Compounds Analysis
2.4. Statistical Analysis
3. Results
3.1. Variables according to Raw Material: Part of the Broccoli
3.2. Operating Conditions during UAE of Broccoli in Leaves and in Florets: Ratio, Time, and Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT Statistics Database. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 8 March 2022).
- Artés-Hernández, F.; Martínez-Zamora, L.; Cano-Lamadrid, M.; Hashemi, S.; Castillejo, N. Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023, 12, 561. [Google Scholar] [CrossRef] [PubMed]
- Formica-Oliveira, A.C.; Martínez-Hernández, G.B.; Díaz-López, V.; Artés, F.; Artés-Hernández, F. Use of Postharvest UV-B and UV-C Radiation Treatments to Revalorize Broccoli Byproducts and Edible Florets. Innov. Food Sci. Emerg. Technol. 2017, 43, 77–83. [Google Scholar] [CrossRef]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef]
- Kamal, M.M.; Akter, S.; Lin, C.N.; Nazzal, S. Sulforaphane as an Anticancer Molecule: Mechanisms of Action, Synergistic Effects, Enhancement of Drug Safety, and Delivery Systems. Arch. Pharm. Res. 2020, 43, 371–384. [Google Scholar] [CrossRef]
- Raiola, A.; Errico, A.; Petruk, G.; Monti, D.M.; Barone, A.; Rigano, M.M. Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases. Molecules 2018, 23, 15. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, D.; Li, X.; Xiao, J.; Guo, L. Enhancement of Ultrasound-Assisted Extraction of Sulforaphane from Broccoli Seeds via the Application of Microwave Pretreatment. Ultrason. Sonochem. 2022, 87, 106061. [Google Scholar] [CrossRef]
- Mahn, A.; Quintero, J.; Castillo, N.; Comett, R. Effect of Ultrasound-Assisted Blanching on Myrosinase Activity and Sulforaphane Content in Broccoli Florets. Catalysts 2020, 10, 616. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Bao, T.; Zheng, X.; Chen, W.; Wang, J. A Recyclable Protein Resource Derived from Cauliflower By-Products: Potential Biological Activities of Protein Hydrolysates. Food Chem. 2017, 221, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Amofa-Diatuo, T.; Anang, D.M.; Barba, F.J.; Tiwari, B.K. Development of New Apple Beverages Rich in Isothiocyanates by Using Extracts Obtained from Ultrasound-Treated Cauliflower by-Products: Evaluation of Physical Properties and Consumer Acceptance. J. Food Compos. Anal. 2017, 61, 73–81. [Google Scholar] [CrossRef]
- Borja-Martínez, M.; Lozano-Sánchez, J.; Borrás-Linares, I.; Pedreño, M.A.; Sabater-Jara, A.B. Revalorization of Broccoli By-Products for Cosmetic Uses Using Supercritical Fluid Extraction. Antioxidants 2020, 9, 1195. [Google Scholar] [CrossRef]
- García, S.L.R.; Raghavan, V. Microwave-Assisted Extraction of Phenolic Compounds from Broccoli (Brassica oleracea) Stems, Leaves, and Florets: Optimization, Characterization, and Comparison with Maceration Extraction. Recent Prog. Nutr. 2022, 2, 11. [Google Scholar] [CrossRef]
- Petkowicz, C.L.O.; Williams, P.A. Pectins from Food Waste: Characterization and Functional Properties of a Pectin Extracted from Broccoli Stalk. Food Hydrocoll. 2020, 107, 105930. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Artés–Hernández, F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2022, 11, 59. [Google Scholar] [CrossRef]
- Pezeshkpour, V.; Khosravani, S.A.; Ghaedi, M.; Dashtian, K.; Zare, F.; Sharifi, A.; Jannesar, R.; Zoladl, M. Ultrasound Assisted Extraction of Phenolic Acids from Broccoli Vegetable and Using Sonochemistry for Preparation of MOF-5 Nanocubes: Comparative Study Based on Micro-Dilution Broth and Plate Count Method for Synergism Antibacterial Effect. Ultrason. Sonochem. 2018, 40, 1031–1038. [Google Scholar] [CrossRef]
- Yagoub, A.A.; Ma, H.; Zhou, C. Ultrasonic-Assisted Extraction of Protein from Rapeseed (Brassica napus L.) Meal: Optimization of Extraction Conditions and Structural Characteristics of the Protein. Int. Food Res. J. 2017, 24, 621–629. [Google Scholar]
- Oniszczuk, A.; Olech, M. Optimization of Ultrasound-Assisted Extraction and LC-ESI-MS/MS Analysis of Phenolic Acids from Brassica oleracea L. Var. Sabellica. Ind. Crops Prod. 2016, 83, 359–363. [Google Scholar] [CrossRef]
- Prá, V.D.; Dolwitsch, C.B.; Lima, F.O.; de Carvalho, C.A.; Viana, C.; do Nascimento, P.C.; da Rosa, M.B. Ultrasound-Assisted Extraction and Biological Activities of Extracts of Brassica oleracea Var. Capitata. Food Technol. Biotechnol. 2015, 53, 102–109. [Google Scholar] [CrossRef]
- Pagliari, S.; Giustra, C.M.; Magoni, C.; Celano, R.; Fusi, P.; Forcella, M.; Sacco, G.; Panzeri, D.; Campone, L.; Labra, M. Optimization of Ultrasound-Assisted Extraction of Naturally Occurring Glucosinolates from by-Products of Camelina sativa L. and Their Effect on Human Colorectal Cancer Cell Line. Front. Nutr. 2022, 9, 901944. [Google Scholar] [CrossRef]
- Li, W.; Gong, P.; Ma, H.; Xie, R.; Wei, J.; Xu, M. Ultrasound Treatment Degrades, Changes the Color, and Improves the Antioxidant Activity of the Anthocyanins in Red Radish. LWT 2022, 165, 113761. [Google Scholar] [CrossRef]
- Major, N.; Prekalj, B.; Perković, J.; Ban, D.; Užila, Z.; Ban, S.G. The Effect of Different Extraction Protocols on Brassica oleracea Var. Acephala Antioxidant Activity, Bioactive Compounds, and Sugar Profile. Plants 2020, 9, 1792. [Google Scholar] [CrossRef]
- Ares, A.M.; Nozal, M.J.; Bernal, J.L.; Bernal, J. Optimized extraction, separation, and quantification of twelve intact glucosinolates in broccoli leaves. Food Chem. 2014, 152, 66–74. [Google Scholar] [CrossRef]
- Cao, Y.; Song, Z.; Dong, C.; Ni, W.; Xin, K.; Yu, Q.; Han, L. Green Ultrasound-Assisted Natural Deep Eutectic Solvent Extraction of Phenolic Compounds from Waste Broccoli Leaves: Optimization, Identification, Biological Activity, and Structural Characterization. LWT 2023, 190, 115407. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Aurora-Vigo, E.F.; Villagrán, Z.; Rodríguez-Lafitte, E.; Ruvalcaba-Gómez, J.M.; Solano-Cornejo, M.Á.; Zamora-Gasga, V.M.; Montalvo-González, E.; Gómez-Rodríguez, H.; Aceves-Aldrete, C.E.; et al. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023, 28, 7752. [Google Scholar] [CrossRef] [PubMed]
- AOAC Moisture in Malt Gravimetric Method. (935.29). In Official Methods of Analysis, 17th ed.; Association of Official Analysis Chemists International: Gaithersburg, MD, USA, 2000.
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Castillejo, N.; Martínez-Zamora, L.; Artés–Hernández, F. A Photoperiod Including Visible Spectrum LEDs Increased Sulforaphane in Fresh-Cut Broccoli. Postharvest Biol. Technol. 2023, 200, 112337. [Google Scholar] [CrossRef]
- Villamil-Galindo, E.; Gastélum-Estrada, A.; Chuck-Hernandez, C.; Antunes-Ricardo, M.; Reza-Zaldivar, E.E.; Piagentini, A.; Jacobo-Velázquez, D.A. Kinetic Ultrasound-Assisted Extraction as a Sustainable Approach for the Recovery of Phenolics Accumulated through UVA Treatment in Strawberry By-Products. Foods 2023, 12, 2989. [Google Scholar] [CrossRef] [PubMed]
- Chadni, M.; Isidore, E.; Diemer, E.; Ouguir, O.; Brunois, F.; Catteau, R.; Cassan, L.; Ioannou, I. Optimization of Extraction Conditions to Improve Chlorogenic Acid Content and Antioxidant Activity of Extracts from Forced Witloof Chicory Roots. Foods 2022, 11, 1217. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. Experimental Design, Modeling, and Optimization of High-Pressure-Assisted Extraction of Bioactive Compounds from Pomegranate Peel. Food Bioproc. Technol. 2017, 10, 886–900. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. High-Pressure Assisted Extraction of Bioactive Compounds from Industrial Fermented Fig by-Product. J. Food Sci. Technol. 2017, 54, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Doulabi, M.; Golmakani, M.T.; Ansari, S. Evaluation and Optimization of Microwave-Assisted Extraction of Bioactive Compounds from Eggplant Peel by-Product. J. Food Process Preserv. 2020, 44, e14853. [Google Scholar] [CrossRef]
- Bengardino, M.B.; Fernandez, M.V.; Nutter, J.; Jagus, R.J.; Agüero, M.V. Recovery of Bioactive Compounds from Beet Leaves through Simultaneous Extraction: Modelling and Process Optimization. Food Bioprod. Process. 2019, 118, 227–236. [Google Scholar] [CrossRef]
- Pantuzza Silva, G.F.; Pereira, E.; Melgar, B.; Stojković, D.; Sokovic, M.; Calhelha, R.C.; Pereira, C.; Abreu, R.M.V.; Ferreira, I.C.F.R.; Barros, L. Eggplant Fruit (Solanum melongena L.) and Bio-residues as a Source of Nutrients, Bioactive Compounds, and Food Colorants, Using Innovative Food Technologies. Appl. Sci. 2021, 11, 151. [Google Scholar] [CrossRef]
- Trystram, G. Modelling of Food and Food Processes. J. Food Eng. 2012, 110, 269–277. [Google Scholar] [CrossRef]
- Sanou, A.; Konaté, K.; kabakdé, K.; Dakuyo, R.; Bazié, D.; Hemayoro, S.; Dicko, M.H. Modelling and Optimisation of Ultrasound-Assisted Extraction of Roselle Phenolic Compounds Using the Surface Response Method. Sci. Rep. 2023, 13, 358. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.V.N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef] [PubMed]
- Castillejo, N.; Martínez-Hernández, G.B.; Artés-Hernández, F. Revalorized Broccoli By-Products and Mustard Improved Quality during Shelf Life of a Kale Pesto Sauce. Food Sci. Technol. Int. 2021, 27, 734–745. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, J.; Yang, L.; Wang, R.; Wang, C. Ultrasonic-Assisted Enzymatic Extraction of Phenolics from Broccoli (Brassica oleracea L. Var. Italica) Inflorescences and Evaluation of Antioxidant Activity in Vitro. Food Sci. Technol. Int. 2015, 21, 306–319. [Google Scholar] [CrossRef]
- González, F.; Quintero, J.; del Río, R.; Mahn, A. Optimization of an Extraction Process to Obtain a Food-Grade Sulforaphane-Rich Extract from Broccoli (Brassica oleracea Var. Italica). Molecules 2021, 26, 4042. [Google Scholar] [CrossRef]
- Shokri, S.; Jegasothy, H.; Augustin, M.A.; Shiferaw Terefe, N. Thermosonication for the Production of Sulforaphane Rich Broccoli Ingredients. Biomolecules 2021, 11, 321. [Google Scholar] [CrossRef]
- Gudiño, I.; Martín, A.; Casquete, R.; Prieto, M.H.; Ayuso, M.C.; Córdoba, M.G. Evaluation of Broccoli (Brassica oleracea Var. Italica) Crop by-Products as Sources of Bioactive Compounds. Sci. Hortic. 2022, 304, 111284. [Google Scholar] [CrossRef]
- Shekhar, S.; Prakash, P.; Singha, P.; Prasad, K.; Singh, S.K. Modeling and Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Allium Sativum Leaves Using Response Surface Methodology and Artificial Neural Network Coupled with Genetic Algorithm. Foods 2023, 12, 1925. [Google Scholar] [CrossRef]
Broccoli Florets | Broccoli Leaves | |
---|---|---|
TPC (g GAE kg−1 dw) | 7.17 ± 0.23 | 35.24 ± 0.81 |
TAC–FRAP (g TE kg−1 dw) | 0.04 ± 0.00 | 11.44 ± 0.25 |
TAC–DPPH (g TE kg−1 dw) | 0.10 ± 0.00 | 15.78 ± 1.01 |
TAC–ABTS (g TE kg−1 dw) | 0.25 ± 0.03 | 25.05 ± 0.41 |
SFN (g kg−1 dw) | 5.51 ± 0.07 | 2.52 ± 0.09 |
GLF (g kg−1 dw) | 5.50 ± 0.11 | 5.01 ± 0.07 |
GLB (g kg−1 dw) | 5.31 ± 0.08 | 5.12 ± 0.12 |
ΣGL (g kg−1 dw) | 10.81 ± 0.12 | 10.13 ± 0.31 |
Moisture (%) | 12.36 ± 0.36 | 8.80 ± 0.40 |
Common Variables | Broccoli Florets | ||||||
---|---|---|---|---|---|---|---|
Time (min) | Tª (°C) | Ratio (g/mL) | TPC (g GAE kg−1 dw) | SFN (g kg−1 dw) | GLF (g kg−1 dw) | GLB (g kg−1 dw) | ∑GL (g kg−1 dw) |
0 | 25 | 1:25 | 6.7 ± 0.6 | 5.5 ± 0.1 | 5.5 ± 0.0 | 4.9 ± 0.1 | 10.4 ± 0.1 |
0 | 40 | 1:25 | 7.3 ± 0.3 | 5.1 ± 0.0 | 5.6 ± 0.0 | 5.4 ± 0.2 | 11.0 ± 0.3 |
0 | 55 | 1:25 | 7.5 ± 0.4 | 7.1 ± 0.9 | 5.6 ± 0.0 | 5.4 ± 0.0 | 11.0 ± 0.0 |
0 | 25 | 2:25 | 4.5 ± 0.9 | 6.1 ± 0.4 | 2.9 ± 0.0 | 2.6 ± 0.1 | 5.5 ± 0.1 |
0 | 40 | 2:25 | 6.2 ± 0.8 | 7.4 ± 0.2 | 2.9 ± 0.0 | 2.8 ± 0.0 | 5.7 ± 0.0 |
0 | 55 | 2:25 | 6.4 ± 0.7 | 8.2 ± 0.6 | 2.9 ± 0.0 | 3.2 ± 0.2 | 6.1 ± 0.2 |
2.5 | 25 | 1:25 | 7.2 ± 0.3 | 9.6 ± 0.5 | 5.5 ± 0.1 | 4.9 ± 0.0 | 10.4 ± 0.1 |
2.5 | 40 | 1:25 | 5.4 ± 0.4 | 8.5 ± 0.9 | 5.6 ± 0.0 | 5.4 ± 0.1 | 11.0 ± 0.1 |
2.5 | 55 | 1:25 | 6.2 ± 1.0 | 11.2 ± 1.2 | 5.6 ± 0.0 | 5.5 ± 0.1 | 11.1 ± 0.1 |
2.5 | 25 | 2:25 | 5.4 ± 0.4 | 11.9 ± 1.7 | 2.9 ± 0.0 | 2.6 ± 0.4 | 5.5 ± 0.4 |
2.5 | 40 | 2:25 | 6.1 ± 1.0 | 8.2 ± 0.3 | 2.9 ± 0.0 | 2.8 ± 0.0 | 5.7 ± 0.0 |
2.5 | 55 | 2:25 | 6.5 ± 1.3 | 7.1 ± 0.9 | 2.9 ± 0.0 | 3.1 ± 0.1 | 6.0 ± 0.1 |
5 | 25 | 1:25 | 5.6 ± 0.3 | 13.7 ± 0.9 | 5.4 ± 0.0 | 5.3 ± 0.0 | 10.7 ± 0.0 |
5 | 40 | 1:25 | 5.8 ± 0.7 | 10.5 ± 1.1 | 5.5 ± 0.1 | 5.5 ± 0.1 | 11.0 ± 0.2 |
5 | 55 | 1:25 | 8.3 ± 0.1 | 14.3 ± 1.5 | 5.3 ± 0.1 | 5.1 ± 0.0 | 10.4 ± 0.1 |
5 | 25 | 2:25 | 6.7 ± 1.0 | 15.5 ± 1.6 | 2.9 ± 0.0 | 3.2 ± 0.1 | 6.1 ± 0.1 |
5 | 40 | 2:25 | 6.7 ± 1.3 | 17.3 ± 1.8 | 2.9 ± 0.0 | 3.1 ± 0.1 | 6.0 ± 0.1 |
5 | 55 | 2:25 | 8.4 ± 0.4 | 12.8 ± 1.3 | 3.0 ± 0.0 | 3.3 ± 0.1 | 6.3 ± 0.1 |
7.5 | 25 | 1:25 | 6.5 ± 0.2 | 10.6 ± 1.0 | 5.7 ± 0.0 | 5.9 ± 0.1 | 11.6 ± 0.1 |
7.5 | 40 | 1:25 | 8.4 ± 0.3 | 10.3 ± 1.5 | 5.7 ± 0.0 | 5.3 ± 0.2 | 11.0 ± 0.2 |
7.5 | 55 | 1:25 | 8.5 ± 0.7 | 12.7 ± 1.3 | 5.7 ± 0.0 | 5.6 ± 0.0 | 11.3 ± 0.0 |
7.5 | 25 | 2:25 | 6.1 ± 0.2 | 18.6 ± 1.5 | 3.0 ± 0.0 | 3.2 ± 0.1 | 6.2 ± 0.1 |
7.5 | 40 | 2:25 | 6.7 ± 0.6 | 20.7 ± 0.3 | 3.0 ± 0.0 | 3.1 ± 0.1 | 6.1 ± 0.1 |
7.5 | 55 | 2:25 | 7.7 ± 1.3 | 15.3 ± 1.3 | 3.0 ± 0.0 | 3.2 ± 0.1 | 6.2 ± 0.1 |
10 | 25 | 1:25 | 9.0 ± 0.5 | 9.5 ± 1.0 | 5.7 ± 0.0 | 5.7 ± 0.1 | 11.4 ± 0.1 |
10 | 40 | 1:25 | 10.4 ± 0.5 | 11.0 ± 1 | 5.7 ± 0.0 | 5.6 ± 0.2 | 11.3 ± 0.2 |
10 | 55 | 1:25 | 9.3 ± 0.3 | 12.4 ± 1 | 5.7 ± 0.1 | 5.4 ± 0.0 | 11.1 ± 0.1 |
10 | 25 | 2:25 | 5.6 ± 0.2 | 22.3 ± 2.0 | 3.0 ± 0.0 | 3.0 ± 0.2 | 6.0 ± 0.2 |
10 | 40 | 2:25 | 6.9 ± 1.1 | 24.9 ± 1.9 | 3.0 ± 0.0 | 3.0 ± 0.0 | 6.0 ± 0.0 |
10 | 55 | 2:25 | 6.9 ± 0.6 | 18.4 ± 0.4 | 3.0 ± 0.0 | 3.1 ± 0.1 | 6.1 ± 0.1 |
15 | 25 | 1:25 | 11.7 ± 0.2 | 12.7 ± 1.1 | 5.6 ± 0.0 | 5.6 ± 0.0 | 11.2 ± 0.0 |
15 | 40 | 1:25 | 13.0 ± 0.8 | 10.8 ± 1.1 | 5.5 ± 0.0 | 5.4 ± 0.1 | 10.9 ± 0.1 |
15 | 55 | 1:25 | 12.5 ± 0.7 | 11.8 ± 0.1 | 5.3 ± 0.3 | 5.7 ± 0.4 | 11.0 ± 0.7 |
15 | 25 | 2:25 | 5.8 ± 0.6 | 21.7 ± 0.2 | 2.8 ± 0.1 | 2.7 ± 0.1 | 5.5 ± 0.2 |
15 | 40 | 2:25 | 6.1 ± 1.1 | 14.7 ± 1.8 | 2.8 ± 0.0 | 2.9 ± 0.1 | 5.7 ± 0.1 |
15 | 55 | 2:25 | 7.8 ± 0.4 | 12.3 ± 1.2 | 2.8 ± 0.0 | 2.9 ± 0.1 | 5.7 ± 0.1 |
20 | 25 | 1:25 | 7.3 ± 0.3 | 11.8 ± 1.0 | 5.3 ± 0.0 | 5.3 ± 0.1 | 10.6 ± 0.1 |
20 | 40 | 1:25 | 8.6 ± 0.7 | 11.3 ± 1.2 | 5.3 ± 0.0 | 5.3 ± 0.1 | 10.6 ± 0.1 |
20 | 55 | 1:25 | 8.9 ± 0.1 | 12.2 ± 1.1 | 5.3 ± 0.1 | 5.2 ± 0.0 | 10.5 ± 0.1 |
20 | 25 | 2:25 | 5.7 ± 0.1 | 22.7 ± 0.2 | 2.8 ± 0.0 | 3.0 ± 0.1 | 5.8 ± 0.1 |
20 | 40 | 2:25 | 5.9 ± 0.1 | 15.5 ± 2.5 | 2.8 ± 0.0 | 3.0 ± 0.0 | 5.8 ± 0.0 |
20 | 55 | 2:25 | 6.2 ± 0.1 | 11.9 ± 1.0 | 2.8 ± 0.0 | 3.1 ± 0.0 | 5.9 ± 0.0 |
Common Variables | Broccoli Leaves | ||||||
---|---|---|---|---|---|---|---|
Time (min) | Tª (°C) | Ratio (g/mL) | TPC (g GAE kg−1 dw) | SFN (g kg−1 dw) | GLF (g kg−1 dw) | GLB (g kg−1 dw) | ∑GL (g kg−1 dw) |
0 | 25 | 1:25 | 34.3 ± 3.2 | 2.5 ± 0.7 | 5.0 ± 0.1 | 5.1 ± 0.1 | 10.1 ± 0.2 |
0 | 40 | 1:25 | 62.2 ± 6.1 | 2.5 ± 0.5 | 5.1 ± 0.0 | 5.2 ± 0.0 | 10.3 ± 0.1 |
0 | 55 | 1:25 | 56.4 ± 9.1 | 1.9 ± 0.1 | 5.0 ± 0.0 | 5.1 ± 0.0 | 10.1 ± 0.1 |
0 | 25 | 2:25 | 45.6 ± 7.7 | 2.4 ± 0.0 | 2.6 ± 0.1 | 2.7 ± 0.1 | 5.3 ± 0.1 |
0 | 40 | 2:25 | 40.0 ± 8.7 | 3.2 ± 0.4 | 2.6 ± 0.0 | 2.7 ± 0.1 | 5.3 ± 0.1 |
0 | 55 | 2:25 | 43.5 ± 11.8 | 1.9 ± 0.2 | 2.7 ± 0.0 | 2.8 ± 0.0 | 5.5 ± 0.1 |
2.5 | 25 | 1:25 | 50.9 ± 3.8 | 4.1 ± 0.0 | 5.0 ± 0.0 | 5.0 ± 0.0 | 10.0 ± 0.0 |
2.5 | 40 | 1:25 | 62.2 ± 6.1 | 3.7 ± 0.3 | 5.0 ± 0.0 | 5.0 ± 0.0 | 10.0 ± 0.1 |
2.5 | 55 | 1:25 | 56.4 ± 9.1 | 2.2 ± 0.1 | 5.1 ± 0.0 | 5.1 ± 0.0 | 10.2 ± 0.0 |
2.5 | 25 | 2:25 | 68.0 ± 0.2 | 2.9 ± 0.1 | 2.7 ± 0.0 | 2.6 ± 0.0 | 5.3 ± 0.1 |
2.5 | 40 | 2:25 | 56.2 ± 4.2 | 2.8 ± 0.5 | 2.7 ± 0.0 | 2.7 ± 0.0 | 5.4 ± 0.0 |
2.5 | 55 | 2:25 | 78.1 ± 4.6 | 2.4 ± 0.1 | 2.9 ± 0.0 | 2.9 ± 0.0 | 5.8 ± 0.0 |
5 | 25 | 1:25 | 56.0 ± 4.1 | 4.6 ± 0.0 | 5.0 ± 0.0 | 4.9 ± 0.0 | 9.9 ± 0.0 |
5 | 40 | 1:25 | 68.4 ± 6.7 | 3.6 ± 0.1 | 4.9 ± 0.0 | 5.0 ± 0.0 | 9.9 ± 0.1 |
5 | 55 | 1:25 | 77.0 ± 4.3 | 2.8 ± 0.2 | 4.9 ± 0.1 | 4.8 ± 0.0 | 9.7 ± 0.1 |
5 | 25 | 2:25 | 99.3 ± 7.2 | 3.0 ± 0.1 | 2.5 ± 0.0 | 2.6 ± 0.1 | 5.1 ± 0.1 |
5 | 40 | 2:25 | 117.5 ± 7.3 | 3.2 ± 0.1 | 2.5 ± 0.0 | 2.6 ± 0.0 | 5.1 ± 0.0 |
5 | 55 | 2:25 | 112.4 ± 4.5 | 2.9 ± 0.2 | 2.6 ± 0.0 | 2.7 ± 0.0 | 5.3 ± 0.0 |
7.5 | 25 | 1:25 | 72.8 ± 5.3 | 5.0 ± 0.0 | 5.0 ± 0.0 | 4.9 ± 0.0 | 9.9 ± 0.0 |
7.5 | 40 | 1:25 | 89.0 ± 8.8 | 3.4 ± 0.6 | 4.9 ± 0.1 | 4.9 ± 0.0 | 9.8 ± 0.1 |
7.5 | 55 | 1:25 | 100.1 ± 5.6 | 3.4 ± 0.7 | 5.0 ± 0.0 | 5.0 ± 0.0 | 10.0 ± 0.0 |
7.5 | 25 | 2:25 | 104.2 ± 7.6 | 3.1 ± 0.1 | 2.5 ± 0.0 | 2.5 ± 0.0 | 5.0 ± 0.0 |
7.5 | 40 | 2:25 | 123.4 ± 7.7 | 3.3 ± 0.5 | 2.5 ± 0.0 | 2.6 ± 0.0 | 5.1 ± 0.1 |
7.5 | 55 | 2:25 | 118.1 ± 4.7 | 3.4 ± 0.1 | 2.6 ± 0.0 | 2.6 ± 0.0 | 5.2 ± 0.0 |
10 | 25 | 1:25 | 94.6 ± 7.0 | 5.5 ± 0.0 | 4.9 ± 0.0 | 5.0 ± 0.0 | 9.9 ± 0.1 |
10 | 40 | 1:25 | 115.7 ± 11.4 | 4.3 ± 0.4 | 4.9 ± 0.0 | 4.9 ± 0.1 | 9.8 ± 0.0 |
10 | 55 | 1:25 | 130.2 ± 7.3 | 4.2 ± 0.3 | 4.9 ± 0.0 | 5.0 ± 0.0 | 9.9 ± 0.1 |
10 | 25 | 2:25 | 109.5 ± 8.0 | 3.5 ± 0.3 | 2.5 ± 0.0 | 2.5 ± 0.0 | 5.0 ± 0.0 |
10 | 40 | 2:25 | 129.6 ± 8.1 | 3.2 ± 0.1 | 2.6 ± 0.0 | 2.7 ± 0.0 | 5.3 ± 0.1 |
10 | 55 | 2:25 | 124.0 ± 5.0 | 4.0 ± 0.0 | 2.6 ± 0.0 | 2.7 ± 0.0 | 5.3 ± 0.1 |
15 | 25 | 1:25 | 122.1 ± 6.5 | 4.4 ± 0.5 | 5.0 ± 0.0 | 5.1 ± 0.0 | 10.1 ± 0.0 |
15 | 40 | 1:25 | 146.0 ± 18.9 | 4.7 ± 0.2 | 5.0 ± 0.0 | 5.0 ± 0.1 | 10.0 ± 0.1 |
15 | 55 | 1:25 | 133.7 ± 7.4 | 2.5 ± 0.3 | 5.0 ± 0.0 | 5.0 ± 0.1 | 10.0 ± 0.1 |
15 | 25 | 2:25 | 114.9 ± 8.3 | 3.3 ± 0.5 | 2.5 ± 0.0 | 2.6 ± 0.2 | 5.1 ± 0.2 |
15 | 40 | 2:25 | 136.0 ± 8.5 | 3.8 ± 0.1 | 2.6 ± 0.0 | 2.7 ± 0.2 | 5.3 ± 0.2 |
15 | 55 | 2:25 | 130.2 ± 5.2 | 3.2 ± 0.1 | 2.6 ± 0.0 | 2.7 ± 0.1 | 5.3 ± 0.1 |
20 | 25 | 1:25 | 128.2 ± 6.8 | 4.7 ± 0.6 | 5.0 ± 0.1 | 5.0 ± 0.0 | 10.0 ± 0.1 |
20 | 40 | 1:25 | 153.4 ± 19.8 | 3.2 ± 0.4 | 4.9 ± 0.0 | 4.9 ± 0.0 | 9.8 ± 0.0 |
20 | 55 | 1:25 | 140.4 ± 7.7 | 2.8 ± 0.3 | 5.1 ± 0.1 | 4.9 ± 0.0 | 10.0 ± 0.0 |
20 | 25 | 2:25 | 158.7 ± 16.2 | 2.6 ± 0.2 | 2.6 ± 0.0 | 2.5 ± 0.0 | 5.1 ± 0.0 |
20 | 40 | 2:25 | 155.2 ± 16.6 | 3.4 ± 0.3 | 2.6 ± 0.1 | 2.5 ± 0.0 | 5.1 ± 0.1 |
20 | 55 | 2:25 | 133.4 ± 19.7 | 3.0 ± 0.1 | 2.7 ± 0.1 | 2.6 ± 0.0 | 5.3 ± 0.1 |
Broccoli Byproduct | Ratio S/L (g/mL) | Tª (°C) | TPC (g GAE kg−1 dw) | SFN (g kg−1 dw) | ∑GL (g kg−1 dw) | |||
---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | |||
Florets | 1:25 | 25 | 5.6 | 11.7 | 5.5 | 13.7 | 10.5 | 11.6 |
40 | 5.4 | 13.0 | 5.1 | 11.5 | 10.9 | 11.3 | ||
55 | 6.2 | 12.5 | 7.1 | 14.3 | 10.4 | 11.2 | ||
2:25 | 25 | 4.5 | 6.7 | 6.1 | 22.7 | 5.5 | 6.2 | |
40 | 5.9 | 6.9 | 7.4 | 24.9 | 5.7 | 6.1 | ||
55 | 6.2 | 8.4 | 7.1 | 18.4 | 6.0 | 6.3 | ||
Leaves | 1:25 | 25 | 34.3 | 128.2 | 2.5 | 5.5 | 9.9 | 10.1 |
40 | 62.2 | 153.4 | 2.5 | 4.7 | 9.8 | 10.3 | ||
55 | 56.4 | 140.4 | 1.9 | 4.2 | 9.7 | 10.2 | ||
2:25 | 25 | 45.6 | 158.7 | 2.4 | 3.5 | 5.0 | 5.3 | |
40 | 40 | 155.2 | 2.8 | 3.8 | 5.1 | 5.4 | ||
55 | 43.5 | 133.4 | 1.9 | 4.0 | 5.1 | 5.7 |
Ratio | T (°C) | Peleg Model | R2 | Cubic Model | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
y0 | k1 | k2 | a0 | a1 | a2 | a3 | ||||
R1 | 25 | 32.1242 (3.8302) | 0.1465 (0.0258) | 0.0025 (0.0012) | 0.96 | 79.8496 (1.28) | 150.8509 (5.8655) | −16.5087 (5.8655) | −20.353 (5.8655) | 0.98 |
40 | 52.7071 (6.9503) | 0.1772 (0.0559) | 4 × 10−4 (0.0027) | 0.87 | 99.5657 (2.5244) | 161.0544 (11.5682) | −3.1431 (11.5682) | −38.4214 (11.5682) | 0.92 | |
55 | 47.5688 (6.5134) | 0.1068 (0.0309) | 0.0047 (0.0015) | 0.89 | 99.1674 (2.2504) | 144.5158 (10.3127) | −38.7141 (10.3127) | −23.6763 (10.3127) | 0.93 | |
R2 | 25 | 48.2699 (6.8495) | 0.1021 (0.0312) | 0.0051 (0.0015) | 0.88 | 100.0213 (1.9958) | 144.3157 (9.1457) | −17.6421 (9.1457) | 42.9451 (9.1457) | 0.94 |
40 | 34.9605 (8.019) | 0.0443 (0.0124) | 0.0062 (8 × 10−4) | 0.89 | 108.253 (2.9528) | 160.2136 (13.5312) | −69.2244 (13.5312) | 31.875 (13.5312) | 0.91 | |
55 | 42.1358 (5.5329) | 0.0346 (0.0086) | 0.0089 (7 × 10−4) | 0.92 | 105.6543 (2.0459) | 116.6464 (9.3754) | −70.4337 (9.3754) | 28.3497 (9.3754) | 0.93 |
Ratio | T (°C) | Peleg Model | R2 | Cubic Model | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
y0 | k1 | k2 | a0 | a1 | a2 | a3 | ||||
R1 | 25 | 5.4566 (1.1569) | 0.1265 (0.1518) | 0.1518 (0.0345) | 0.56 | 10.4803 (0.4774) | 6.5165 (2.1876) | −4.7602 (2.1876) | 4.2494 (2.1876) | 0.51 |
40 | 5.0718 (0.7891) | 0.2945 (0.1735) | 0.1471 (0.0242) | 0.71 | 9.6195 (0.3067) | 6.986 (1.4056) | −5.0749 (1.4056) | 3.1211 (1.4056) | 0.72 | |
55 | 7.1287 (0.9008) | 0.0465 (0.1185) | 0.1806 (0.0363) | 0.63 | 11.6921 (0.318) | 3.9105 (1.4571) | −6.0302 (1.4571) | 5.4192 (1.4571) | 0.69 | |
R2 | 25 | 5.8323 (1.0622) | 0.2655 (0.0665) | 0.0436 (0.0044) | 0.91 | 16.9584 (0.3884) | 23.1796 (1.78) | −11.962 (1.78) | 2.3361 (1.78) | 0.93 |
40 | 6.5492 (2.7517) | 0.189 (0.1794) | 0.0698 (0.0202) | 0.46 | 15.5111 (0.7818) | 11.0634 (3.5828) | −19.942 (3.5828) | 4.6796 (3.5828) | 0.71 | |
55 | 7.451 (1.7599) | 0.4373 (0.4558) | 0.1188 (0.0413) | 0.39 | 12.2975 (0.5135) | 6.6053 (2.3531) | −11.9192 (2.3531) | 0.553 (2.3531) | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Zamora, L.; Hashemi, S.; Cano-Lamadrid, M.; Bueso, M.C.; Aguayo, E.; Kessler, M.; Artés-Hernández, F. Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products. Foods 2024, 13, 1441. https://doi.org/10.3390/foods13101441
Martínez-Zamora L, Hashemi S, Cano-Lamadrid M, Bueso MC, Aguayo E, Kessler M, Artés-Hernández F. Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products. Foods. 2024; 13(10):1441. https://doi.org/10.3390/foods13101441
Chicago/Turabian StyleMartínez-Zamora, Lorena, Seyedehzeinab Hashemi, Marina Cano-Lamadrid, María Carmen Bueso, Encarna Aguayo, Mathieu Kessler, and Francisco Artés-Hernández. 2024. "Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products" Foods 13, no. 10: 1441. https://doi.org/10.3390/foods13101441
APA StyleMartínez-Zamora, L., Hashemi, S., Cano-Lamadrid, M., Bueso, M. C., Aguayo, E., Kessler, M., & Artés-Hernández, F. (2024). Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products. Foods, 13(10), 1441. https://doi.org/10.3390/foods13101441