Proximate Composition and Fatty Acid Profile of Gilthead Seabream (Sparus aurata) Fed with Pelvetia canaliculata-Supplemented Diets: An Insight towards the Valorization of Seaweed Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Chemicals and Biological Materials
2.3. Experimental Design and Diets Formulation
2.4. Rearing Conditions
2.5. Proximate Composition
2.5.1. Moisture Content
2.5.2. Ash Content
2.5.3. Protein Content
2.5.4. Total Lipid Content
2.6. Fatty Acid Profile
2.7. Health Lipid Indices Calculation
2.8. Statistical Analyses
3. Results and Discussion
3.1. Nutritional Characterization of Algal Biomass
3.2. Nutritional Characterization of Experimental Diets
3.3. Nutritional Composition and Fatty Acid Profile of S. aurata Muscle
3.4. Health Lipid Indices Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corrado, S.; Sala, S. Food Waste Accounting along Global and European Food Supply Chains: State of the Art and Outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Girotto, F.; Alibardi, L.; Cossu, R. Food Waste Generation and Industrial Uses: A Review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Naziri, E.; Nenadis, N.; Mantzouridou, F.T.; Tsimidou, M.Z. Valorization of the Major Agrifood Industrial By-Products and Waste from Central Macedonia (Greece) for the Recovery of Compounds for Food Applications. Food Res. Int. 2014, 65, 350–358. [Google Scholar] [CrossRef]
- Kennedy, S.R.; Bickerdike, R.; Berge, R.K.; Dick, J.R.; Tocher, D.R. Influence of Conjugated Linoleic Acid (CLA) or Tetradecylthioacetic Acid (TTA) on Growth, Lipid Composition, Fatty Acid Metabolism and Lipid Gene Expression of Rainbow Trout (Oncorhynchus Mykiss L.). Aquaculture 2007, 272, 489–501. [Google Scholar] [CrossRef]
- Ramos, A.; Bandarra, N.M.; Rema, P.; Vaz-Pires, P.; Nunes, M.L.; Andrade, A.M.; Cordeiro, A.R.; Valente, L.M.P. Time Course Deposition of Conjugated Linoleic Acid in Market Size Rainbow Trout (Oncorhynchus mykiss) Muscle. Aquaculture 2008, 274, 366–374. [Google Scholar] [CrossRef]
- Rosa, R.; Andrade, A.M.; Bandarra, N.M.; Nunes, M.L. Physiological and Biochemical Effects of Conjugated Linoleic Acid and Its Use in Aquaculture. Rev. Aquac. 2010, 2, 59–72. [Google Scholar] [CrossRef]
- Ramalho Ribeiro, A.; Gonçalves, A.; Colen, R.; Nunes, M.L.; Dinis, M.T.; Dias, J. Dietary Macroalgae Is a Natural and Effective Tool to Fortify Gilthead Seabream Fillets with Iodine: Effects on Growth, Sensory Quality and Nutritional Value. Aquaculture 2015, 437, 51–59. [Google Scholar] [CrossRef]
- Rajauria, G. Seaweeds: A sustainable feed source for livestock and aquaculture. In Seaweed Sustainability; Elsevier: Amsterdam, The Netherlands, 2015; pp. 389–420. [Google Scholar]
- Jusadi, D.; Ekasari, J.; Suprayudi, M.A.; Setiawati, M.; Fauzi, I.A. Potential of Underutilized Marine Organisms for Aquaculture Feeds. Front. Mar. Sci. 2021, 7, 609471. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Hurd, C.L. Seaweed Nutrient Physiology: Application of Concepts to Aquaculture and Bioremediation. Phycologia 2019, 58, 552–562. [Google Scholar] [CrossRef]
- Sáez, M.I.; Martínez, T.; Alarcón, J. Effect of Dietary Inclusion of Seaweeds on Intestinal Proteolytic Activity of Juvenile Sea Bream, Sparus aurata. Int. Aquafeed 2013, 16, 38–40. [Google Scholar]
- Lomartire, S.; Gonçalves, A.M.M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs 2022, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, B.; Chauhan, O.P.; Mishra, A. Edible Seaweeds: A Potential Novel Source of Bioactive Metabolites and Nutraceuticals with Human Health Benefits. Front. Mar. Sci. 2021, 8, 740054. [Google Scholar] [CrossRef]
- Connan, S.; Deslandes, E.; Gall, E.A. Influence of Day–Night and Tidal Cycles on Phenol Content and Antioxidant Capacity in Three Temperate Intertidal Brown Seaweeds. J. Exp. Mar. Biol. Ecol. 2007, 349, 359–369. [Google Scholar] [CrossRef]
- Peixoto, M.J.; Ferraz, R.; Magnoni, L.J.; Pereira, R.; Gonçalves, J.F.; Calduch-Giner, J.; Pérez-Sánchez, J.; Ozório, R.O.A. Protective Effects of Seaweed Supplemented Diet on Antioxidant and Immune Responses in European Seabass (Dicentrarchus labrax) Subjected to Bacterial Infection. Sci. Rep. 2019, 9, 16134. [Google Scholar] [CrossRef] [PubMed]
- Emre, Y.; Ergun, S.; Kurtoglu, A.; Guroy, B.; Guroy, D. Effects of Ulva Meal on Growth Performance of Gilthead Seabream (Sparus aurata) at Different Levels of Dietary Lipid. Turk. J. Fish. Aquat. Sci. 2013, 13, 841–846. [Google Scholar] [CrossRef]
- Araújo, M.; Rema, P.; Sousa-Pinto, I.; Cunha, L.M.; Peixoto, M.J.; Pires, M.A.; Seixas, F.; Brotas, V.; Beltrán, C.; Valente, L.M.P. Dietary Inclusion of IMTA-Cultivated Gracilaria Vermiculophylla in Rainbow Trout (Oncorhynchus mykiss) Diets: Effects on Growth, Intestinal Morphology, Tissue Pigmentation, and Immunological Response. J. Appl. Phycol. 2016, 28, 679–689. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Gouveia, A.; Rema, P.; Matos, J.; Gomes, E.F.; Pinto, I.S. Evaluation of Three Seaweeds Gracilaria Bursa-Pastoris, Ulva Rigida and Gracilaria Cornea as Dietary Ingredients in European Sea Bass (Dicentrarchus labrax) Juveniles. Aquaculture 2006, 252, 85–91. [Google Scholar] [CrossRef]
- Rico, R.M.; Tejedor-Junco, M.T.; Tapia-Paniagua, S.T.; Alarcón, F.J.; Mancera, J.M.; López-Figueroa, F.; Balebona, M.C.; Abdala-Díaz, R.T.; Moriñigo, M.A. Influence of the Dietary Inclusion of Gracilaria Cornea and Ulva Rigida on the Biodiversity of the Intestinal Microbiota of Sparus aurata Juveniles. Aquac. Int. 2016, 24, 965–984. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Mendes, S.I.; Varela, J.L.; Ruiz-Jarabo, I.; Rico, R.; Figueroa, F.L.; Abdala, R.; Moriñigo, M.Á.; Mancera, J.M.; Alarcón, F.J. Growth, Tissue Metabolites and Digestive Functionality in Sparus aurata Juveniles Fed Different Levels of Macroalgae, Gracilaria Cornea and Ulva Rigida. Aquac. Res. 2016, 47, 3224–3238. [Google Scholar] [CrossRef]
- Llorente, I.; Fernández-Polanco, J.; Baraibar-Diez, E.; Odriozola, M.D.; Bjørndal, T.; Asche, F.; Guillen, J.; Avdelas, L.; Nielsen, R.; Cozzolino, M.; et al. Assessment of the Economic Performance of the Seabream and Seabass Aquaculture Industry in the European Union. Mar. Policy 2020, 117, 103876. [Google Scholar] [CrossRef]
- Magnoni, L.J.; Martos-Sitcha, J.A.; Queiroz, A.; Calduch-Giner, J.A.; Gonçalves, J.F.M.; Rocha, C.M.R.; Abreu, H.T.; Schrama, J.W.; Ozorio, R.O.A.; Pérez-Sánchez, J. Dietary Supplementation of Heat-Treated Gracilaria and Ulva Seaweeds Enhanced Acute Hypoxia Tolerance in Gilthead Seabream (Sparus Aurata). Biol. Open 2017, 6, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Wassef, E.A.; El-sayed, A.; Kandeel, K.M.; Sakr, E.M. Evaluation of Pterocladia and Ulva Meals as Additives to Gilthead Seabream Sparus aurata Diets. Egypcian J. Aquat. Res. 2005, 31, 321–332. [Google Scholar]
- Sousa, G.; Trifunovska, M.; Antunes, M.; Miranda, I.; Moldão, M.; Alves, V.; Vidrih, R.; Lopes, P.A.; Aparicio, L.; Neves, M.; et al. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Pelvetia Canaliculata to Sunflower Oil. Foods 2021, 10, 1732. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.; Passos, R.; do Carmo, B.; Tchobanov, C.F.; Forte, S.; Vaz, M.; Antunes, M.; Neves, M.; Tecelão, C.; Baptista, T. Pelvetia Canaliculata as an Aquafeed Supplement for Gilthead Seabream Sparus aurata: A Biorefinery Approach for Seaweed Biomass Valorisation. Sustainability 2022, 14, 11469. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. (Ed.) Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016; ISBN 0935584870. [Google Scholar]
- Iverson, S.J.; Lang, S.L.C.; Cooper, M.H. Comparison of the Bligh and Dyer and Folch Methods for Total Lipid Determination in a Broad Range of Marine Tissue. Lipids 2001, 36, 1283–1287. [Google Scholar] [CrossRef]
- Neves, M.; Antunes, M.; Fernandes, W.; Campos, M.J.; Azevedo, Z.M.; Freitas, V.; Rocha, J.M.; Tecelão, C. Physicochemical and Nutritional Profile of Leaves, Flowers, and Fruits of the Edible Halophyte Chorão-Da-Praia (Carpobrotus edulis) on Portuguese West Shores. Food Biosci. 2021, 43, 101288. [Google Scholar] [CrossRef]
- Fernández, A.; Grienke, U.; Soler-vila, A.; Guihéneuf, F.; Stengel, D.B.; Tasdemir, D. Seasonal and Geographical Variations in the Biochemical Composition of the Blue Mussel (Mytilus edulis L.) from Ireland. Food Chem. 2015, 177, 43–52. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Fatty Acid Contents and Profiles of 16 Macroalgae Collected from the Irish Coast at Two Seasons. J. Appl. Phycol. 2014, 26, 451–463. [Google Scholar] [CrossRef]
- Maehre, H.K.; Malde, M.K.; Eilertsen, K.-E.; Elvevoll, E.O. Characterization of Protein, Lipid and Mineral Contents in Common Norwegian Seaweeds and Evaluation of Their Potential as Food and Feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef]
- Circuncisão, A.; Catarino, M.; Cardoso, S.; Silva, A. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef] [PubMed]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Indiarto, R.; Qonit, M.A.H. A Review of Soybean Oil Lipid Oxidation and Its PreventionTechniques. Int. J. Adv. Sci. Technol. 2020, 29, 5030–5037. [Google Scholar]
- Martínez-Llorens, S.; Vidal, A.T.; Moñino, A.V.; Torres, M.P.; Cerdá, M.J. Effects of Dietary Soybean Oil Concentration on Growth, Nutrient Utilization and Muscle Fatty Acid Composition of Gilthead Sea Bream (Sparus aurata L.). Aquac. Res. 2007, 38, 76–81. [Google Scholar] [CrossRef]
- Mechlaoui, M.; Dominguez, D.; Robaina, L.; Geraert, P.-A.; Kaushik, S.; Saleh, R.; Briens, M.; Montero, D.; Izquierdo, M. Effects of Different Dietary Selenium Sources on Growth Performance, Liver and Muscle Composition, Antioxidant Status, Stress Response and Expression of Related Genes in Gilthead Seabream (Sparus aurata). Aquaculture 2019, 507, 251–259. [Google Scholar] [CrossRef]
- Vasconi, M.; Caprino, F.; Bellagamba, F.; Moretti, V.M. Fatty Acid Composition of Gilthead Sea Bream (Sparus aurata) Fillets as Affected by Current Changes in Aquafeed Formulation. Turk. J. Fish. Aquat. Sci. 2017, 17, 451–459. [Google Scholar] [CrossRef]
- Pateiro, M.; Munekata, P.E.S.; Domínguez, R.; Wang, M.; Barba, F.J.; Bermúdez, R.; Lorenzo, J.M. Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream (Sparus aurata). Mar. Drugs 2020, 18, 101. [Google Scholar] [CrossRef]
- Eshak, E.S.; Yamagishi, K.; Iso, H. Dietary fat and risk of cardiovascular disease. In Encyclopedia of Cardiovascular Research and Medicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 60–89. [Google Scholar]
- Strobel, C.; Jahreis, G.; Kuhnt, K. Survey of N- 3 and n-6 Polyunsaturated Fatty Acids in Fish and Fish Products. Lipids Health Dis. 2012, 11, 144. [Google Scholar] [CrossRef]
- Kien, C.L.; Bunn, J.Y.; Stevens, R.; Bain, J.; Ikayeva, O.; Crain, K.; Koves, T.R.; Muoio, D.M. Dietary Intake of Palmitate and Oleate Has Broad Impact on Systemic and Tissue Lipid Profiles in Humans. Am. J. Clin. Nutr. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Ghaeni, M.; Ghahfarokhi, K.N. Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in Leiognathusbindus and Upeneussulphureus. J. Mar. Sci. Res. Dev. 2013, 3, 3–5. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.d.S.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B. de M. Nutritional and Lipid Profiles in Marine Fish Species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Testi, S.; Bonaldo, A.; Gatta, P.; Badiani, A. Nutritional Traits of Dorsal and Ventral Fillets from Three Farmed Fish Species. Food Chem. 2006, 98, 104–111. [Google Scholar] [CrossRef]
Fatty Acid | Abreviation | % Total FA |
---|---|---|
Lauric acid | C12:0 | 0.10 ± 0.01 |
Tridecanoic acid | C13:0 | 0.07 ± 0.00 |
Myristic acid | C14:0 | 9.78 ± 0.28 |
Pentadecanoic acid | C15:0 | 0.43 ± 0.01 |
Palmitic acid | C16:0 | 13.40 ± 0.22 |
Heptadecanoic acid | C17:0 | 0.24 ± 0.01 |
Stearic acid | C18:0 | 1.54 ± 0.04 |
Arachidic acid | C20:0 | 0.34 ± 0.01 |
Behenic acid | C22:0 | 0.38 ± 0.01 |
Lignoceric acid | C24:0 | 0.42 ± 0.02 |
Myristoleic acid | C14:1 n-5 | 0.15 ± 0.01 |
Palmitoleic Acid | C16:1 n-7 | 1.65 ± 0.03 |
Elaidic acid | C18:1 n-9 trans | 0.19 ± 0.01 |
Oleic acid | C18:1 n-9 | 29.59 ± 0.40 |
11Z-Octadecenoic acid | C18:1 n-7 | 0.33 ± 0.02 |
7Z-Octadecenoic acid | C18:1 n-11 | 0.16 ± 0.01 |
11Z-Eicosenoic acid | C20:1 n-9 | 0.13 ± 0.01 |
9Z-Eicosenoic acid | C20:1 n-11 | 0.03 ± 0.01 |
Linoleic acid | C18:2 n-6 | 9.95 ± 0.03 |
11Z,14Z-Octadecadienoic acid | C18:2 n-4 | 0.07 ± 0.00 |
γ-Linolenic acid | C18:3 n-6 | 1.20 ± 0.02 |
α-Linolenic acid (ALA) | C18:3 n-3 | 5.30 ± 0.13 |
Stearidonic acid | C18:4 n-3 | 1.32 ± 0.02 |
11Z, 14Z-Eicosadienoic acid | C20:2 n-6 | 0.67 ± 0.01 |
8Z, 11Z, 14Z-Eicosatrienoic acid | C20:3 n-6 | 1.73 ± 0.05 |
Arachidonic acid | C20:4 n-6 | 16.17 ± 0.19 |
Eicosapentaenoic acid (EPA) | C20:5 n-3 | 4.69 ± 0.07 |
SFA | 26.68 ± 0.48 | |
MUFA | 32.23 ± 0.39 | |
PUFA | 41.09 ± 0.29 | |
n-3 | 11.31 ± 0.19 | |
n-6 | 29.71 ± 0.26 | |
n-6/n-3 | 2.63 ± 0.05 | |
PUFA/SFA | 1.54 ± 0.03 |
Fatty Acid (%) | CT | Pc1 | Pc5 | Pc10 | W1 | W10 |
---|---|---|---|---|---|---|
C12:0 | 0.13 ± 0.01 a | 0.15 ± 0.01 a b | 0.15 ± 0.01 ab | 0.17 ± 0.00 b | 0.16 ± 0.01 b | 0.14 ± 0.02 ab |
C14:0 | 3.46 ± 0.09 a | 3.84 ± 0.01 b | 3.99 ± 0.04 b | 4.23 ± 0.08 c | 3.94 ± 0.03 b | 3.92 ± 0.08 b |
C15:0 | 0.28 ± 0.00 a | 0.30 ± 0.00 b | 0.30 ± 0.00 b | 0.31 ± 0.01 c | 0.30 ± 0.00 b | 0.29 ± 0.01 b |
C16:0 | 17.11 ± 0.20 a | 17.78 ± 0.01 b | 17.72 ± 0.03 b | 17.82 ± 0.15 b | 17.72 ± 0.1 b | 15.97 ± 0.16 c |
C17:0 | 0.31 ± 0.00 a | 0.32 ± 0.00 b | 0.32 ± 0.00 b | 0.32 ± 0.00 b | 0.32 ± 0.00 b | 0.29 ± 0.00 c |
C18:0 | 3.77 ± 0.05 a | 3.69 ± 0.03 a | 3.73 ± 0.01 a | 3.75 ± 0.03 a | 3.69 ± 0.04 a | 3.54 ± 0.01 b |
C14:1 n-5 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.00 | n.d. | n.d. |
C16:1 n-7 | 4.70 ± 0.09 a | 4.96 ± 0.00 b | 4.92 ± 0.00 b | 4.99 ± 0.06 b | 4.98 ± 0.03 b | 4.93 ± 0.07 b |
C18:1 n-9 | 17.47 ± 0.01 ab | 17.41 ± 0.01 a | 17.49 ± 0.06 ab | 17.69 ± 0.06 b | 18.61 ± 0.02 c | 30.00 ± 0.19 d |
C18:1 n-7 | 2.29 ± 0.03 a | 2.25 ± 0.02 ab | 2.25 ± 0.01 b | 2.24 ± 0.00 b | 2.24 ± 0.01 b | 2.07 ± 0.01 c |
C20:1 n-9 | 0.77 ± 0.03 | 0.70 ± 0.00 | 0.70 ± 0.00 | 0.70 ± 0.01 | 0.69 ± 0.00 | 0.70 ± 0.01 |
C16:3 n-4 | 0.54 ± 0.01 a | 0.57 ± 0.00 b | 0.57 ± 0.00 b | 0.58 ± 0.01 b | 0.57 ± 0.01 b | 0.57 ± 0.01 b |
C16:4 n-1 | 0.60 ± 0.06 | 0.66 ± 0.02 | 0.61 ± 0.01 | 0.58 ± 0.01 | 0.65 ± 0.03 | 0.67 ± 0.02 |
C18:2 n-6 trans | 1.18 ± 0.02 a | 1.23 ± 0.00 b | 1.23 ± 0.00 b | 1.24 ± 0.02 b | 1.26 ± 0.01 b | 1.23 ± 0.02 b |
C18:2 n-6 cis | 27.83 ± 0.04 a | 27.55 ± 0.04 b | 27.11 ± 0.02 c | 26.35 ± 0.07 d | 26.77 ± 0.04 e | 18.12 ± 0.03 f |
C18:3 n-6 | 0.18 ± 0.01 | 0.19 ± 0.03 | 0.20 ± 0.00 | n.d. | 0.19 ± 0.01 | 0.17 ± 0.01 |
C18:3 n-4 | 0.50 ± 0.01 | 0.47 ± 0.01 | 0.47 ± 0.01 | 0.36 ± 0.08 | 0.36 ± 0.08 | 0.38 ± 0.09 |
C18:3 n-3 (ALA) | 3.21 ± 0.01 a | 3.19 ± 0.00 a | 3.22 ± 0.03 a | 3.21 ± 0.01 a | 3.10 ± 0.01 b | 2.14 ± 0.02 c |
C18:4 n-3 | 1.07 ± 0.01 a | 1.07 ± 0.00 a | 1.09 ± 0.00 b | 1.13 ± 0.00 c | 1.07 ±0.00 a | 1.10 ±0.00 d |
C20:2 n-6 | 0.14 ± 0.02 | 0.03 ± 0.00 | 0.14 ± 0.02 | 0.02 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.02 |
C20:4 n-6 | 0.73 ± 0.05 | 0.70 ± 0.00 | 0.89 ± 0.00 | 1.14 ± 0.03 | 0.68 ± 0.01 | 0.90 ± 0.05 |
C20:5 n-3 (EPA) | 8.13 ± 0.13 a | 7.80 ± 0.02 b | 7.74 ± 0.01 b | 7.89 ± 0.13 b | 7.66 ± 0.07 b | 7.75 ± 0.07 b |
C22:5 n-3 | 0.78 ± 0.03 | 0.71 ± 0.00 | 0.72 ± 0.01 | 0.72 ± 0.01 | 0.70 ± 0.01 | 0.71 ± 0.01 |
C22:6 n-3 (DHA) | 4.81 ± 0.21 a | 4.38 ± 0.02 b | 4.41 ± 0.01 b | 4.44 ± 0.09 b | 4.27 ± 0.04 b | 4.30 ± 0.05 b |
SFA | 25.06 ± 0.26 a | 26.09 ± 0.03 b | 26.22 ± 0.07 b | 26.60 ± 0.23 b | 26.13 ± 0.14 b | 24.16 ± 0.27 c |
MUFA | 25.25 ± 0.05 a | 25.35 ± 0.01 a | 25.38 ± 0.06 a | 25.66 ± 0.03 b | 26.53 ± 0.02 c | 37.70 ± 0.14 d |
PUFA | 49.70 ± 0.31 a | 48.56 ± 0.04 b | 48.40 ± 0.02 b | 47.75 ± 0.23 c | 47.34 ± 0.15 c | 38.15 ± 0.19 d |
n-3 | 18.00 ± 0.36 a | 17.15 ± 0.03 bc | 17.18 ± 0.04 bc | 17.40 ± 0.24 b | 16.80 ± 0.12 c | 16.00 ± 0.15 d |
n-6 | 30.06 ± 0.04 a | 29.70 ± 0.07 b | 29.57 ± 0.04 b | 28.82 ± 0.06 c | 28.95 ± 0.06 c | 20.54 ± 0.06 d |
n-3/n-6 | 0.60 ± 0.03 ab | 0.58 ± 0.01 c | 0.58 ± 0.01 ac | 0.60 ± 0.02 b | 0.58 ± 0.01 c | 0.78 ± 0.01 d |
Fatty Acid (%) | CT | Pc 1 | Pc 5 | Pc 10 | W1 | W10 |
---|---|---|---|---|---|---|
C14:0 | 3.09 ± 0.08 ab | 3.13 ± 0.06 ab | 3.16 ± 0.13 ab | 3.22 ± 0.13 a | 3.03 ± 0.06 b | 3.11 ± 0.04 ab |
C15:0 | 0.26 ± 0.03 ab | 0.26 ± 0.01 a | 0.26 ± 0.01 a | 0.22 ± 0.12 ab | 0.24 ± 0.00 b | 0.26 ± 0.01 a |
C16:0 | 16.32 ± 0.41 ab | 16.57 ± 0.71 a | 16.01 ± 0.50 ab | 16.00 ± 0.60 ab | 16.78 ± 0.27 a | 15.46 ± 0.38 b |
C17:0 | 0.25 ± 0.06 a | 0.20 ± 0.02 a | 0.36 ± 0.01 b | 0.20 ± 0.02 a | 0.22 ± 0.07 a | 0.19 ± 0.04 a |
C18:0 | 4.46 ± 0.20 ab | 4.37 ± 0.22 ab | 4.31 ± 0.11 ab | 4.28 ± 0.13 a | 4.57 ± 0.09 b | 3.96 ± 0.13 c |
C21:0 | 0.33 ± 0.04 | 0.32 ± 0.05 | 0.37 ± 0.05 | 0.29 ± 0.05 | 0.32 ± 0.03 | 0.35 ± 0.06 |
C16:1 n-7 | 5.12 ± 0.13 | 5.17 ± 0.10 | 5.21 ± 0.14 | 5.10 ± 0.17 | 5.08 ± 0.13 | 5.18 ± 0.07 |
C18:1 n-9 trans | 0.15 ± 0.04 | 0.23 ± 0.07 | 0.18 ± 0.05 | 0.15 ± 0.03 | 0.16 ± 0.06 | 0.15 ± 0.03 |
C18:1 n-9 cis | 23.52 ± 0.73 a | 23.11 ± 0.85 a | 24.13 ± 1.82 a | 23.51 ± 2.19 a | 25.27 ± 1.62 a | 35.37 ± 0.31 b |
C18:1 n-7 | 3.54 ± 0.11 | 3.55 ± 0.19 | 3.40 ± 0.02 | 3.72 ± 0.08 | n. d | n. d |
C18:1 n-11 | 0.67 ± 0.02 a | 0.66 ± 0.06 a | 0.47 ± 0.01 b | 0.61 ± 0.07 a | 0.52 ± 0.09 b | 0.68 ± 0.03 a |
C20:1 n-9 | 0.93 ± 0.10 a | 0.82 ± 0.06 ab | 0.82 ± 0.09 ab | 0.81 ± 0.04 ab | 0.75 ± 0.06 b | 0.90 ± 0.03 a |
C20:1 n-11 | 0.81 ± 0.07 | 0.80 ± 0.07 | 0.78 ± 0.03 | 0.79 ± 0.04 | 0.76 ± 0.04 | 0.78 ± 0.04 |
C24:1 n-9 | 0.57 ± 0.07 ab | 0.58 ± 0.07 ab | 0.60 ± 0.06 a | 0.62 ± 0.05 a | 0.48 ± 0.04 b | 0.55 ± 0.09 ab |
C18:2 n-6 | 22.63 ± 0.39 a | 23.03 ± 0.66 a | 23.29 ± 0.90 a | 23.25 ± 0.69 a | 23.67 ± 0.76 a | 16.77 ± 0.28 b |
C18:3 n-6 | 0.38 ± 0.05 ab | 0.46 ± 0.10 a | 0.50 ± 0.07 a | 0.42 ± 0.10 ab | 0.45 ± 0.07 ab | 0.32 ± 0.04 b |
C18:3 n-3 (ALA) | 2.52 ± 0.02 a | 2.53 ± 0.14 a | 2.46 ± 0.06 a | 2.48 ± 0.11 a | 2.46 ± 0.06 a | 1.89 ± 0.10 b |
C18:4 n-3 | 0.17 ± 0.04 | 0.21 ± 0.06 | 0.18 ± 0.02 | 0.17 ± 0.07 | 0.17 ± 0.06 | 0.17 ± 0.03 |
C20:2 n-6 | 0.40 ± 0.05 ab | 0.37 ± 0.06 ab | 0.45 ± 0.09 a | 0.41 ± 0.03 ab | 0.37 ± 0.03 ab | 0.34 ± 0.04 b |
C20:3 n-6 | 0.32 ± 0.03 a | 0.35 ± 0.04 ab | 0.42 ± 0.06 b | 0.39 ± 0.04 b | 0.37 ± 0.03 ab | 0.32 ± 0.02 a |
C20:4 n-6 | 0.61 ± 0.09 a | 0.61 ± 0.09 a | 0.80 ± 0.06 b | 0.76 ± 0.09 b | 0.57 ± 0.08 a | 0.56 ± 0.03 a |
C20:5 n-3 (EPA) | 5.25 ± 0.21 | 5.30 ± 0.18 | 5.43 ± 0.17 | 5.52 ± 0.17 | 5.40 ± 0.13 | 5.31 ± 0.10 |
C22:5 n-3 | 1.91 ± 0.08 | 1.79 ± 0.10 | 1.91 ± 0.21 | 1.94 ± 0.10 | 1.93 ± 0.10 | 1.95 ± 0.03 |
C22:6 n-3 (DHA) | 5.79 ± 0.53 ab | 5.74 ± 0.35 ab | 6.40 ± 0.30 a | 6.36 ± 0.73 a | 5.52 ± 0.13 b | 5.73 ± 0.20 ab |
SFA | 24.71 ± 0.52 a | 24.85 ± 0.80 a | 24.47 ± 0.60 a | 24.21 ± 0.58 ab | 25.16 ± 0.27 a | 23.33 ± 0.43 b |
MUFA | 35.30 ± 0.62 a | 34.82 ± 0.58 ab | 33.86 ± 0.87 b | 34.08 ± 0.85 ab | 33.91 ± 0.86 b | 43.31 ± 0.27 c |
PUFA | 39.99 ± 0.84 a | 40.34 ± 1.34 a | 41.66 ± 0.93 a | 41.71 ± 1.30 a | 40.93 ± 1.02 a | 33.37 ± 0.59 b |
n-3 | 15.63 ± 0.76 ab | 15.57 ± 0.61 ab | 16.34 ± 0.48 a | 16.48 ± 0.89 a | 15.50 ± 0.25 ab | 15.05 ± 0.27 b |
n-6 | 24.3 ± 0.41 a | 24.76 ± 0.88 a | 25.32 ± 0.85 a | 25.23 ± 0.74 a | 25.44 ± 0.82 a | 18.31 ± 0.36 b |
DFA | 79.74 ± 0.39 ab | 79.52 ± 0.69 a | 79.83 ± 0.57 ab | 80.07 ± 0.70 ab | 79.41 ± 0.30 a | 80.63 ± 0.38 b |
EFA | 25.76 ± 0.35 a | 26.16 ± 0.84 a | 26.56 ± 0.94 a | 26.49 ± 0.70 a | 26.71 ± 0.80 a | 19.22 ± 0.35 b |
UFA/SFA | 3.05 ± 0.09 a | 3.03 ± 0.13 a | 3.09 ± 0.10 a | 3.13 ± 0.10 ab | 2.97 ± 0.04 a | 3.29 ± 0.08 b |
PUFA/SFA | 1.62 ± 0.06 a | 1.63 ± 0.11 a | 1.70 ± 0.07 a | 1.72 ± 0.09 a | 1.63 ± 0.05 a | 1.43 ± 0.05 b |
n-3/n-6 | 1.56 ± 0.08 a | 1.59 ± 0.05 a | 1.55 ± 0.07 a | 1.53 ± 0.09 a | 1.64 ± 0.04 a | 1.22 ± 0.02 b |
h/H | 3.21 ± 0.08 a | 3.16 ± 0.13 a | 3.36 ± 0.14 a | 3.22 ± 0.16 a | 3.27 ± 0.13 a | 3.64 ± 0.09 b |
AI | 0.38 ± 0.00 ab | 0.39 ± 0.01 a | 0.38 ± 0.01 ab | 0.38 ± 0.02 ab | 0.39 ± 0.01 a | 0.36 ± 0.01 b |
TI | 0.31 ± 0.01 | 0.31 ± 0.02 | 0.29 ± 0.01 | 0.29 ± 0.02 | 0.31 ± 0.01 | 0.29 ± 0.01 |
PI | 122.8 ± 5.8 ab | 122.7 ± 4.5 ab | 130.1 ± 3.0 a | 130.5 ± 7.4 a | 122.6 ± 2.6 ab | 115.6 ± 2.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, M.; Neves, M.; Pires, D.; Passos, R.; do Carmo, B.; Tchobanov, C.F.; Forte, S.; Vaz, M.; Baptista, T.; Tecelão, C. Proximate Composition and Fatty Acid Profile of Gilthead Seabream (Sparus aurata) Fed with Pelvetia canaliculata-Supplemented Diets: An Insight towards the Valorization of Seaweed Biomass. Foods 2023, 12, 1810. https://doi.org/10.3390/foods12091810
Antunes M, Neves M, Pires D, Passos R, do Carmo B, Tchobanov CF, Forte S, Vaz M, Baptista T, Tecelão C. Proximate Composition and Fatty Acid Profile of Gilthead Seabream (Sparus aurata) Fed with Pelvetia canaliculata-Supplemented Diets: An Insight towards the Valorization of Seaweed Biomass. Foods. 2023; 12(9):1810. https://doi.org/10.3390/foods12091810
Chicago/Turabian StyleAntunes, Madalena, Marta Neves, Damiana Pires, Ricardo Passos, Beatriz do Carmo, Carolina F. Tchobanov, Sara Forte, Mariana Vaz, Teresa Baptista, and Carla Tecelão. 2023. "Proximate Composition and Fatty Acid Profile of Gilthead Seabream (Sparus aurata) Fed with Pelvetia canaliculata-Supplemented Diets: An Insight towards the Valorization of Seaweed Biomass" Foods 12, no. 9: 1810. https://doi.org/10.3390/foods12091810