Encapsulation of Rosemary Extracts using High Voltage Electrical Discharge in Calcium Alginate/Zein/Hydroxypropyl Methylcellulose Microparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction Using HVED
2.2.2. Microparticle Preparation
2.2.3. Determination of Total Polyphenolic Content (TPC)
2.2.4. Determination of Antioxidant Capacity of Extracts Using ABTS and DPPH Assays
2.2.5. Determination of Total Flavonoids of Extracts (TF)
2.2.6. Determination of Total Protein Content in Extracts (TP)
2.2.7. Encapsulation Efficiency, Loading Capacity, and Swelling Degree of Microparticles
2.2.8. In Vitro Phenolic Release from Microparticles
2.2.9. Fourier-Transform Infrared Spectroscopy Analysis
2.2.10. Microscopic Observations
- Optical microscopy (Leica MZ16a stereomicroscope, Leica Microsystems Ltd., Saint Gallen, Switzerland) was used to examine the size and shape of the microparticles. An average diameter of prepared dry microparticles was determined using Olympus Soft Imaging Solutions GmbH, version E_LCmicro_09Okt2009. Diameters of about 100 microparticles, randomly selected from batches produced in triplicate, were measured.
- Scanning electron microscopy (SEM) (FE-SEM, model JSM-7000 F, Jeol Ltd., Akishima City, Japan) was used to determine the microparticle morphology properties. Microparticles were put on the high-conductive graphite tape. Energy-dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of the surface. FE-SEM was linked to an EDS/INCA 350 (energy dispersive X-ray analyzer) manufactured by Oxford Instruments Ltd. (Abingdon, UK). Various compounds and elements were analyzed and marked as: C (CaCO3), O (SiO2), Na (Albite), Cl (KCl), Ca (CaCO3), Ca (CaCO3), Ca (CaCO3), Ca (CaCO3), Ca (CaCO3), Ca (C (Wollastonite)).
- The atomic force microscopy (AFM) using the MultiMode Scanning Probe Microscope with Nanoscope IIIa controller (Bruker Corporation, Billerica, MA, USA) was used to determine the surface morphology and obtain the topography of microparticles. The samples for AFM imaging were prepared by deposition of a microparticle suspension on the mica substrate. The microparticles were flushed three times with 50 μL MiliQ water to remove all residual impurities. The microparticle surface, cross-section, and grain size distribution within each sample were analyzed using MultiMode Scanning Probe Microscope with Nanoscope IIIa controller (Bruker Corporation, Billerica, MA, USA) with SJV-JV-130 V (“J” scanner with vertical engagement); Vertical engagement (JV) 125 μm scanner (Bruker Corporation, Billerica, MA, USA); Tapping mode silicon tips (R-TESPA, Bruker, Nom. Freq. 300 kHz, Nom. spring constant of 40 N/m). Accordingly, three-dimensional information about the surface topology was obtained and the roughness was quantified. All AFM imaging was performed at three different regions of each microparticle to ensure the consistency of obtained results.
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Properties of Rosemary Extract for Encapsulation
3.2. Physical Properties of Microparticles Composed of Variable Coating Materials
3.2.1. Swelling Degree and Diameter of Microparticles
3.2.2. Morphological Characterization of Microparticles Using SEM
3.2.3. Morphology of Microparticles Determined Using AFM
3.3. Functional Properties of Microparticles Composed of Variable Coating Materials
3.3.1. Encapsulation Efficiency (EE), Loading Capacity (LC), and Total Protein Content (TP)
3.3.2. Molecular Interactions in Microparticles Formulations
3.3.3. In Vitro Release Profiles of Total Polyphenols from Microparticle Formulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hcini, K.; Lozano-Pérez, A.A.; Cenis, J.L.; Quílez, M.; Jordán, M.J. Extraction and encapsulation of phenolic compounds of tunisian rosemary (Rosmarinus officinalis L.) extracts in silk fibroin nanoparticles. Plants 2021, 10, 2312. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Kelly, N.P.; Kelly, A.L.; O’Mahony, J.A. Strategies for enrichment and purification of polyphenols from fruit-based materials. Trends Food Sci. Technol. 2019, 83, 248–258. [Google Scholar] [CrossRef]
- Saénz, C.; Tapia, S.; Chávez, J.; Robert, P. Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Nutrizio, M.; Chemat, F.; Muangrat, R.; Seesuriyachan, P.; Phimolsiripol, Y.; Donsi, F.; Jambrak, A.R. Toward Green Extraction Processes. In Sustainable Separation Engineering; Wiley: Hoboken, NJ, USA, 2022; pp. 519–561. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G.; Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Fan, Y.; Xi, J. Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chem. 2019, 277, 246–260. [Google Scholar] [CrossRef]
- Nutrizio, M.; Maltar-Strmečki, N.; Chemat, F.; Duić, B.; Jambrak, A.R. High-Voltage Electrical Discharges in Green Extractions of Bioactives from Oregano Leaves (Origanum vulgare L.) Using Water and Ethanol as Green Solvents Assessed by Theoretical and Experimental Procedures. Food Eng. Rev. 2020, 13, 161–174. [Google Scholar] [CrossRef]
- Nutrizio, M.; Kljusurić, J.G.; Marijanović, Z.; Dubrović, I.; Viskić, M.; Mikolaj, E.; Chemat, F.; Jambrak, A.R. The potential of high voltage discharges for green solvent extraction of bioactive compounds and aromas from rosemary (Rosmarinus officinalis L.)—Computational simulation and experimental methods. Molecules 2020, 25, 3711. [Google Scholar] [CrossRef]
- Neu, W.K.; Neu, J.C. Theory of electroporation. In Cardiac Bioelectric Therapy: Mechanisms and Practical Implications; Springer: New York, NY, USA, 2009; pp. 133–161. ISBN 9780387794020. [Google Scholar]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- De la Cruz Pech-Canul, A.; Ortega, D.; García-Triana, A.; González-Silva, N.; Solis-Oviedo, R.L. A brief review of edible coating materials for the microencapsulation of probiotics. Coatings 2020, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Suganya, V.; Anuradha, V. Microencapsulation and Nanoencapsulation: A Review. Int. J. Pharm. Clin. Res. 2017, 9, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Costamagna, M.S.; Gómez-Mascaraque, L.G.; Zampini, I.C.; Alberto, M.R.; Pérez, J.; López-Rubio, A.; Isla, M.I. Microencapsulated chañar phenolics: A potential ingredient for functional foods development. J. Funct. Foods 2017, 37, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.F.; Chen, X.W.; Guo, J.; Yang, X.Q. Zein-based core-shell microcapsules for the potential delivery of algae oil and lipophilic compounds. Food Funct. 2019, 10, 1504–1512. [Google Scholar] [CrossRef]
- Bhawani, S.A.; Moheman, A.; Yakout, A.A.; Ibrahim, M.N.M. Nanostructured Biopolymers for Application as Drug-Delivery Vehicles. In Nanostructured Polymer Composites for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 189–210. ISBN 9780128167717. [Google Scholar]
- Wong, J.J.L.; Wong, A.I.C.; Xu, Y.; Yuliarti, O. Zein as a water insoluble excipient for spray dry encapsulation of hydrophilic bioactives. J. Food Eng. 2020, 283, 110054. [Google Scholar] [CrossRef]
- Deshmukh, K.; Basheer Ahamed, M.; Deshmukh, R.R.; Khadheer Pasha, S.K.; Bhagat, P.R.; Chidambaram, K. Biopolymer Composites with High Dielectric Performance: Interface Engineering. In Biopolymer Composites in Electronics; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 27–128. ISBN 9780081009741. [Google Scholar]
- Brady, J.; Drig, T.; Lee, P.I.; Li, J.X. Polymer properties and characterization. In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 181–223. ISBN 9780128024478. [Google Scholar]
- Sheng, K.; Zhang, G.; Kong, X.; Wang, J.; Mu, W.; Wang, Y. Encapsulation and characterisation of grape seed proanthocyanidin extract using sodium alginate and different cellulose derivatives. Int. J. Food Sci. Technol. 2021, 56, 6420–6430. [Google Scholar] [CrossRef]
- Kumar, V.; MarkoviĆ, T.; Emerald, M.; Dey, A. Herbs: Composition and Dietary Importance. In Encyclopedia of Food and Health; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 332–337. ISBN 9780123849533. [Google Scholar]
- Takaki, I.; Bersani-Amado, L.E.; Vendruscolo, A.; Sartoretto, S.M.; Diniz, S.P.; Bersani-Amado, C.A.; Cuman, R.K.N. Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J. Med. Food 2008, 11, 741–746. [Google Scholar] [CrossRef]
- Anadón, A.; Ares, I.; Martínez-Larrañaga, M.R.; Martínez, M.A. Interactions between nutraceuticals/nutrients and nutrients and therapeutic drugs. In Nutraceuticals: Efficacy, Safety and Toxicity; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1175–1197. ISBN 9780128210383. [Google Scholar]
- Silva, E.K.; Zabot, G.L.; Náthia-Neves, G.; Nogueira, G.C.; Meireles, A.M.A. Process Engineering Applying Supercritical Technology for Obtaining Functional and Therapeutic Products. In Advances in Biotechnology for Food Industry; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 14, pp. 327–358. ISBN 9780128114957. [Google Scholar]
- Turasan, H.; Sahin, S.; Sumnu, G. Encapsulation of rosemary essential oil. LWT 2015, 64, 112–119. [Google Scholar] [CrossRef]
- Hosseini, F.; Miri, M.A.; Najafi, M.; Soleimanifard, S.; Aran, M. Encapsulation of rosemary essential oil in zein by electrospinning technique. J. Food Sci. 2021, 86, 4070–4086. [Google Scholar] [CrossRef]
- Rashidaie Abandansarie, S.S.; Ariaii, P.; Charmchian Langerodi, M. Effects of encapsulated rosemary extract on oxidative and microbiological stability of beef meat during refrigerated storage. Food Sci. Nutr. 2019, 7, 3969–3978. [Google Scholar] [CrossRef]
- Kanakidi, L.-D.; Tsimogiannis, D.; Kiokias, S.; Oreopoulou, V. Formulation of Rosemary Extracts through Spray-Drying Encapsulation or Emulsification. Nutraceuticals 2022, 2, 1. [Google Scholar] [CrossRef]
- Jurić, S.; Tanuwidjaja, I.; Fuka, M.M.; Kahlina, K.V.; Marijan, M.; Boras, A.; Kolić, N.U.; Vinceković, M. Encapsulation of two fermentation agents, Lactobacillus sakei and calcium ions in microspheres. Colloids Surf. B Biointerfaces 2021, 197, 111387. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, M.A.; Jurić, S.; Vidrih, R.; Vinceković, M.; Vuković, M.; Jemrić, T. The effects of postharvest application of lecithin to improve storage potential and quality of fresh goji (Lycium barbarum L.) berries. Food Chem. 2017, 230, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Vinceković, M.; Maslov Bandić, L.; Jurić, S.; Jalšenjak, N.; Čaić, A.; Živičnjak, I.; Đermić, E.; Karoglan, M.; Osrečak, M.; Topolovec-Pintarić, S. The enhancement of bioactive potential in Vitis vinifera leaves by application of microspheres loaded with biological and chemical agents. J. Plant Nutr. 2019, 42, 543–558. [Google Scholar] [CrossRef]
- Vinceković, M.; Jurić, S.; Đermić, E.; Topolovec-Pintarić, S. Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules. J. Agric. Food Chem. 2017, 65, 9608–9617. [Google Scholar] [CrossRef] [PubMed]
- Živković, I.P.; Jurić, S.; Vinceković, M.; Galešić, M.A.; Marijan, M.; Vlahovićek-Kahlina, K.; Mikac, K.M.; Lemic, D. Polyphenol-Based Microencapsulated Extracts as Novel Green Insecticides for Sustainable Management of Polyphagous Brown Marmorated Stink Bug (Halyomorpha halys Stål, 1855). Sustainability 2020, 12, 10079. [Google Scholar] [CrossRef]
- Jurić, S.; Ferrari, G.; Velikov, K.P.; Donsì, F. High-pressure homogenization treatment to recover bioactive compounds from tomato peels. J. Food Eng. 2019, 262, 170–180. [Google Scholar] [CrossRef]
- Vinceković, M.; Jalšenjak, N.; Topolovec-Pintarić, S.; Đermić, E.; Bujan, M.; Jurić, S. Encapsulation of Biological and Chemical Agents for Plant Nutrition and Protection: Chitosan/Alginate Microcapsules Loaded with Copper Cations and Trichoderma viride. J. Agric. Food Chem. 2016, 64, 8073–8083. [Google Scholar] [CrossRef]
- Afonso, M.S.; De O Silva, A.M.; Carvalho, E.B.; Rivelli, D.P.; Barros, S.B.; Rogero, M.M.; Lottenberg, A.M.; Torres, R.P.; Mancini-Filho, J. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr. Metab. 2013, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.; Pinheiro, R.S.; Heldt, L.F.S.; de Moura, C.; Bianchin, M.; de Almeida, J.; dos Reis, A.S.; Ribeiro, I.S.; Haminiuk, C.W.I.; Carpes, S.T. Rosemary as natural antioxidant to prevent oxidation in chicken burgers. Food Sci. Technol. 2017, 37, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Justo, O.R.; Moraes, Â.M.; Barreto, G.P.D.M.; Mercadante, A.Z.; Rosa, P.D.T.V. Evaluation of the antioxidant potential of plant extracts obtained by supercritical fluid extraction. Quim. Nova 2008, 31, 1699–1705. [Google Scholar] [CrossRef] [Green Version]
- Munekata, P.E.S.; Alcántara, C.; Žugčić, T.; Abdelkebir, R.; Collado, M.C.; García-Pérez, J.V.; Jambrak, A.R.; Gavahian, M.; Barba, F.J.; Lorenzo, J.M. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res. Int. 2020, 134, 109242. [Google Scholar] [CrossRef] [PubMed]
- Malpure, P.S.; Patil, S.S.; More, Y.M.; Nikam, P.P. A Review On- Hydrogel. Am. J. PharmTech Res. 2018, 8, 41–61. [Google Scholar] [CrossRef]
- Nochos, A.; Douroumis, D.; Bouropoulos, N. In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr. Polym. 2008, 74, 451–457. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef]
- Jurić, S.; Đermić, E.; Topolovec-Pintarić, S.; Bedek, M.; Vinceković, M. Physicochemical properties and release characteristics of calcium alginate microspheres loaded with Trichoderma viride spores. J. Integr. Agric. 2019, 18, 2534–2548. [Google Scholar] [CrossRef]
- Jurić, S.; Šegota, S.; Vinceković, M. Influence of surface morphology and structure of alginate microparticles on the bioactive agents release behavior. Carbohydr. Polym. 2019, 218, 234–242. [Google Scholar] [CrossRef]
- Kolar, S.; Jurić, S.; Marijan, M.; Vlahoviček-Kahlina, K.; Vinceković, M. Applicability of alginate-based composite microspheres loaded with aqueous extract of Stevia rebaudiana Bertoni leaves in food and pharmaceutical products. Food Biosci. 2022, 50, 101970. [Google Scholar] [CrossRef]
- Arriola, N.D.A.; Chater, P.I.; Wilcox, M.; Lucini, L.; Rocchetti, G.; Dalmina, M.; Pearson, J.P.; de Mello Castanho Amboni, R.D. Encapsulation of stevia rebaudiana Bertoni aqueous crude extracts by ionic gelation—Effects of alginate blends and gelling solutions on the polyphenolic profile. Food Chem. 2019, 275, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Seczyk, L.; Swieca, M.; Kapusta, I.; Gawlik-Dziki, U. Protein–phenolic interactions as a factor affecting the physicochemical properties of white bean proteins. Molecules 2019, 24, 408. [Google Scholar] [CrossRef] [Green Version]
- Papoutsis, K.; Golding, J.; Vuong, Q.; Pristijono, P.; Stathopoulos, C.; Scarlett, C.; Bowyer, M. Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and ι-Carrageenan. Foods 2018, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Cho, A.R.; Chun, Y.G.; Kim, B.K.; Park, D.J. Preparation of alginate-CaCl2 microspheres as resveratrol carriers. J. Mater. Sci. 2014, 49, 4612–4619. [Google Scholar] [CrossRef]
- Sartori, C.; Finch, D.S.; Ralph, B.; Gilding, K. Determination of the cation content of alginate thin films by FTi.r. spectroscopy. Polymer (Guildf) 1997, 38, 43–51. [Google Scholar] [CrossRef]
- Oh, C.M.; Heng, P.W.S.; Chan, L.W. Influence of Hydroxypropyl Methylcellulose on Metronidazole Crystallinity in Spray-Congealed Polyethylene Glycol Microparticles and Its Impact with Various Additives on Metronidazole Release. AAPS PharmSciTech 2015, 16, 1357–1367. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Khan, Z.H.; Khalid, A. Prospects of robotics in food industry. Food Sci. Technol. 2017, 37, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Peng, F.; Liu, F.; Xiao, Y.; Li, F.; Lei, H.; Wang, J.; Li, M.; Xu, H. Zein-pectin composite nanoparticles as an efficient hyperoside delivery system: Fabrication, characterization, and in vitro release property. LWT 2020, 133, 109869. [Google Scholar] [CrossRef]
- Ali, S.; Khatri, Z.; Oh, K.W.; Kim, I.S.; Kim, S.H. Zein/cellulose acetate hybrid nanofibers: Electrospinning and characterization. Macromol. Res. 2014, 22, 971–977. [Google Scholar] [CrossRef]
- Liu, J.; Lai, R.; Wang, X.; Wang, H.; Liu, Y. Preparation and Characterization of Composites of Hydroxypropyl Tapioca Starch and Zein. Starch—Stärke 2020, 72, 1900204. [Google Scholar] [CrossRef]
- Alijani, H.Q.; Pourseyedi, S.; Torkzadeh-Mahani, M.; Seifalian, A.; Khatami, M. Bimetallic nickel-ferrite nanorod particles: Greener synthesis using rosemary and its biomedical efficiency. Artif. Cells Nanomed. Biotechnol. 2020, 48, 242–251. [Google Scholar] [CrossRef]
- Daemi, H.; Barikani, M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci. Iran. 2012, 19, 2023–2028. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.; Caleja, C.; Barros, L.; Santos-Buelga, C.; Barreiro, M.F.; Ferreira, I.C.F.R. Rosemary extracts in functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food Funct. 2016, 7, 2185–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcântara, A.C.S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. J. Mater. Chem. 2010, 20, 9495–9504. [Google Scholar] [CrossRef]
- Awasthi, R.; Kulkarni, G.T. Development of novel gastroretentive drug delivery system of gliclazide: Hollow beads. Drug Dev. Ind. Pharm. 2014, 40, 398–408. [Google Scholar] [CrossRef]
- Song, P.; Wu, Y.; Zhang, X.; Yan, Z.; Wang, M.; Xu, F. Preparation of Covalently Crosslinked Sodium Alginate/Hydroxypropyl Methylcellulose Ph-Sensitive Microspheres for Controlled Drug Release. BioResources 2018, 13, 8614–8628. [Google Scholar] [CrossRef]
- Amjadi, S.; Almasi, H.; Ghorbani, M.; Ramazani, S. Reinforced ZnONPs/rosemary essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydr. Polym. 2020, 232, 115800. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002, 56, 276–282. [Google Scholar] [CrossRef]
- Singh, G.; Passsari, A.K.; Leo, V.V.; Mishra, V.K.; Subbarayan, S.; Singh, B.P.; Kumar, B.; Kumar, S.; Gupta, V.K.; Lalhlenmawia, H.; et al. Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from india. Front. Plant Sci. 2016, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, K.; Lakra, R.; Rajaram, R.; Korrapati, P.S. Development and characterization of zein-based micro carrier system for sustained delivery of aceclofenac sodium. AAPS PharmSciTech 2012, 13, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Patole, V.C.; Pandit, A.P. Mesalamine-loaded alginate microspheres filled in enteric coated HPMC capsules for local treatment of ulcerative colitis: In vitro and in vivo characterization. J. Pharm. Investig. 2018, 48, 257–267. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Sharma, S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004, 59, 129–140. [Google Scholar] [CrossRef]
- Colín-Orozco, J.; Zapata-Torres, M.; Rodríguez-Gattorno, G.; Pedroza-Islas, R. Properties of Poly (ethylene oxide)/whey Protein Isolate Nanofibers Prepared by Electrospinning. Food Biophys. 2015, 10, 134–144. [Google Scholar] [CrossRef]
Microparticles | Vibration Frequency (Hz) | Amplitude | Pressure (mbar) |
---|---|---|---|
Alg | 50 | 3 | 30 |
Alg/Z | 60 | 3 | 20 |
Alg/HPMC | 40 | 3 | 80 |
Alg/Z/HPMC | 40 | 3 | 60 |
Method | Determination Value |
---|---|
TPC (mg GAE/L) | 333.07 ± 12.32 |
TF (mg QE/L) | 333.08 ± 24.22 |
ABTS (mmol TE/L) | 1.94 ± 0.15 |
DPPH (mmol TE/L) | 1.98 ± 0.16 |
TP (mg BSA/mL) | 8.48 ± 0.07 |
Microparticles | Loaded Material | Swelling Degree (%) | Diameter (μm) |
---|---|---|---|
Alg | water | 55.88 ± 1.79 bA | 651.29 ± 79.22 aA |
extract | 52.63 ± 6.98 aA | 698.79 ± 90.39 aB | |
Alg/Z | water | 48.95 ± 1.82 aA | 691.32 ± 60.17 bA |
extract | 50.57 ± 5.86 aA | 711.57 ± 69.12 bB | |
Alg/HPMC | water | 126.75 ± 11.64 cA | 874.51 ± 166.64 cA |
extract | 114.72 ± 22.97 bA | 1202.90 ± 311.42 cB | |
Alg/Z/HPMC | water | 138.95 ± 12.34 cA | 1034.12 ± 163.56 dA |
extract | 119.83 ± 11.94 bA | 1087.37 ± 236.51 dB |
Microparticles | Grain Height (nm) | Grain Diameter (nm) | Ra (nm) | Rq (nm) | Z (nm) |
---|---|---|---|---|---|
Alg | 7.9 ± 5.5 a | 25 ± 64 a | 31 ± 2 a | 39 ± 3 a | 327 ± 22 a |
Alg/Z | 8.5 ± 4.2 a | 76 ± 164 a | 29 ± 1 a | 38 ± 2 a | 342 ± 16 a |
Alg/HPMC | 11.3 ± 2.8 a | 77 ± 59 a | 46 ± 3 b | 53 ± 4 b | 340 ± 13 a |
Alg/Z/HPMC | 6.3 ± 5.5 a | 58 ± 54 a | 28 ± 2 a | 38 ± 1 a | 432 ± 21 b |
Microparticles | EE (%) | LC (mg GAE/g) | TP (mg BSA/mL) |
---|---|---|---|
Alg | 110.94 ± 2.14 a | 5.55 ± 0.42 a | 3.73 ± 0.68 a |
Alg/Z | 117.75 ± 7.28 a | 10.42 ± 0.72 d | 11.31 ± 1.47 d |
Alg/HPMC | 113.31 ± 3.26 a | 6.74 ± 0.74 b | 4.30 ± 0.81 b |
Alg/Z/HPMC | 120.59 ± 2.37 b | 9.33 ± 0.62 c | 9.77 ± 1.29 c |
Coating Material | Vibration (cm−1) | Assignment |
---|---|---|
Zein | 1643 | Amide I (C=O stretching) |
1531 | Amide II (N-H bending) | |
1240 | Amide III (C-N stretching) | |
3292 | N-H stretching | |
3304 | O-H stretching | |
2958 | reflected the stretching vibration of the intermolecular bonded hydroxyl group | |
HPMC | 3444 | stretching frequency of the hydroxyl (-OH) group |
1373 | bending vibration of -OH | |
2929, 1055 | stretching vibration bands related to C-H and C-O | |
1300 to 900 | C-O-C stretching | |
3000–2800 | C-H stretching |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nutrizio, M.; Jurić, S.; Kucljak, D.; Švaljek, S.L.; Vlahoviček-Kahlina, K.; Režek Jambrak, A.; Vinceković, M. Encapsulation of Rosemary Extracts using High Voltage Electrical Discharge in Calcium Alginate/Zein/Hydroxypropyl Methylcellulose Microparticles. Foods 2023, 12, 1570. https://doi.org/10.3390/foods12081570
Nutrizio M, Jurić S, Kucljak D, Švaljek SL, Vlahoviček-Kahlina K, Režek Jambrak A, Vinceković M. Encapsulation of Rosemary Extracts using High Voltage Electrical Discharge in Calcium Alginate/Zein/Hydroxypropyl Methylcellulose Microparticles. Foods. 2023; 12(8):1570. https://doi.org/10.3390/foods12081570
Chicago/Turabian StyleNutrizio, Marinela, Slaven Jurić, Damir Kucljak, Silvija Lea Švaljek, Kristina Vlahoviček-Kahlina, Anet Režek Jambrak, and Marko Vinceković. 2023. "Encapsulation of Rosemary Extracts using High Voltage Electrical Discharge in Calcium Alginate/Zein/Hydroxypropyl Methylcellulose Microparticles" Foods 12, no. 8: 1570. https://doi.org/10.3390/foods12081570
APA StyleNutrizio, M., Jurić, S., Kucljak, D., Švaljek, S. L., Vlahoviček-Kahlina, K., Režek Jambrak, A., & Vinceković, M. (2023). Encapsulation of Rosemary Extracts using High Voltage Electrical Discharge in Calcium Alginate/Zein/Hydroxypropyl Methylcellulose Microparticles. Foods, 12(8), 1570. https://doi.org/10.3390/foods12081570