Nutritional Genomic Approach for Improving Grain Protein Content in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Grain Samples and Measurement of GPC
2.3. Statistical Analysis
2.4. Phylogenetic Analysis
2.5. Genome-Wide Association Study (GWAS) Analysis
2.6. Candidate Gene Search
3. Results
3.1. Phenotypic Assessment
3.2. Phylogenetic Analysis
3.3. Association Mapping Analysis
3.4. Candidate Genes Associated with Significant SNPs
4. Discussion
4.1. Phenotypic Variation for Grain Protein Content
4.2. Quantitative Trait Nucleotides
4.3. Candidate Genes
4.3.1. Transporters
4.3.2. Proteins, Implemented in Transcriptional and Post-Translational Regulation
4.3.3. Proteins, Involved in the Biosynthesis of Other Storage Materials
4.3.4. Protective Proteins
4.3.5. Structural Proteins
4.3.6. Metal Accumulation and Homeostasis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDRC. Facts and Figures on Food and Biodiversity; IDRC Communications, International Development Research Centre: Ottawa, ON, Canada, 2010; Available online: https://www.idrc.ca/en/research-in-action/facts-figures-food-and-biodiversity (accessed on 20 May 2022).
- Veraverbeke, W.S.; Delcour, J.A. Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit. Rev. Food Sci. Nutr. 2002, 42, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, M.; Zurn, J.D.; Molero, G.; Singh, P.; He, X.; Aoun, M.; Juliana, P.; Bockleman, H.; Bonman, M.; El-Sohl, M.; et al. The role of wheat in global food security. In Agricultural Development and Sustainable Intensification, 1st ed.; Nagothu, U.S., Ed.; Taylor & Francis Group: London, UK, 2018; Chapter 4; pp. 81–110. ISBN 9780203733301. [Google Scholar] [CrossRef]
- Obeidat, B.A.; Abdul-Hussain, S.S.; Al Omari, D.Z. Effect of addition of germinated lupin flour on the physiochemical and organoleptic properties of cookies. J. Food Process. Preserv. 2013, 37, 637–643. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat bread fortification by grape pomace powder: Nutritional, technological, antioxidant, and sensory properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Alomari, D.Z.; Eggert, K.; von Wirén, N.; Alqudah, A.M.; Polley, A.; Plieske, J.; Ganal, M.W.; Pillen, K.; Röder, M.S. Identifying candidate genes for enhancing grain Zn concentration in wheat. Front. Plant Sci. 2018, 9, 1313. [Google Scholar] [CrossRef] [Green Version]
- Alomari, D.Z.; Eggert, K.; von Wirén, N.; Pillen, K.; Röder, M.S. Genome-Wide Association Study of calcium accumulation in grains of European wheat cultivars. Front. Plant Sci. 2017, 8, 1797. [Google Scholar] [CrossRef] [Green Version]
- Alomari, D.Z.; Eggert, K.; von Wirén, N.; Polley, A.; Plieske, J.; Ganal, M.W.; Liu, F.; Pillen, K.; Röder, M.S. Whole-Genome Association mapping and genomic prediction for iron concentration in wheat grains. Int. J. Mol. Sci. 2019, 20, 76. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.K.; Balyan, H.S.; Sharma, S.; Kumar, R. Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theor. Appl. Genet. 2021, 134, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Barać, M.; Pešić, M.; Dodig, D.; Ignjatović-Micić, D. Characterization of proteins from grain of different bread and durum wheat genotypes. Int. J. Mol. Sci. 2011, 12, 5878–5894. [Google Scholar] [CrossRef]
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Jain, S.; Elias, E.M.; Ibrahim, M.; Sharma, L.K. An overview of QTL identification and marker-assisted selection for grain protein content in wheat. In Eco-Friendly Agro-Biological Techniques for Enhancing Crop Productivity; Sengar, R., Singh, A., Eds.; Springer: Singapore, 2018; Chapter 11; pp. 245–274. [Google Scholar] [CrossRef]
- Prasad, M.; Kumar, N.; Kulwal, P.L.; Röder, M.S.; Balyan, H.S.; Dhaliwal, H.S.; Gupta, P.K. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor. Appl. Genet. 2003, 106, 659–667. [Google Scholar] [CrossRef]
- Ruan, Y.; Yu, B.; Knox, R.E.; Zhang, W.; Singh, A.K.; Cuthbert, R.; Fobert, P.; DePauw, R.; Berraies, S.; Sharpe, A.; et al. Conditional mapping identified quantitative trait loci for grain protein concentration expressing independently of grain yield in Canadian durum wheat. Front. Plant Sci. 2021, 12, 642955. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Sallam, A.; Baenziger, P.S.; Börner, A. GWAS: Fast-forwarding gene identification and characterization in temperate cereals: Lessons from barley—A review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; Wang, C.; Liu, Y.; Yan, Z.; Wang, Z.; Xiang, L.; Zhong, X.; Gong, F.; Zheng, Y.; et al. Genome-wide association study reveals novel genomic regions associated with high grain protein content in wheat lines derived from wild emmer wheat. Front. Plant Sci. 2019, 10, 464. [Google Scholar] [CrossRef] [Green Version]
- Alemu, A.; El Baouchi, A.; El Hanafi, S.; Kehel, Z.; Eddakhir, K.; Tadesse, W. Genetic analysis of grain protein content and dough quality traits in elite spring bread wheat (Triticum aestivum) lines through association study. J. Cereal Sci. 2021, 100, 103214. [Google Scholar] [CrossRef]
- Leonova, I.N.; Kiseleva, A.A.; Berezhnaya, A.A.; Stasyuk, A.I.; Likhenko, I.E.; Salina, E.A. Identification of QTLs for grain protein content in Russian spring wheat varieties. Plants 2022, 11, 437. [Google Scholar] [CrossRef]
- Rathan, N.D.; Krishna, H.; Ellur, R.K.; Sehgal, D.; Govindan, V.; Ahlawat, A.K.; Krishnappa, G.; Jaiswal, J.P.; Singh, J.B.; Saiprasad, S.V.; et al. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Sci. Rep. 2022, 12, 7037. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubkovsky, J.A. NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peleg, Z.; Cakmak, I.; Ozturk, L.; Yazici, A.; Jun, Y.; Budak, H.; Korol, A.B.; Fahima, T.; Saranga, Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population. Theor. Appl. Genet. 2009, 119, 353–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; An, D.; Liu, D.; Zhang, A.; Xu, H.; Li, B. Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crops Res. 2012, 138, 57–62. [Google Scholar] [CrossRef]
- Alomari, D.Z.; Alqudah, A.M.; Pillen, K.; von Wirén, N.; Röder, M.S. Toward identification of a putative candidate gene for nutrient mineral accumulation in wheat grains for human nutrition purposes. J. Exp. Bot. 2021, 72, 6305–6318. [Google Scholar] [CrossRef]
- Krishnappa, G.; Rathan, N.D.; Sehgal, D.; Ahlawat, A.K.; Singh, S.K.; Singh, S.K.; Shukla, R.B.; Jaiswal, J.P.; Solanki, I.S.; Singh, G.P.; et al. Identification of novel genomic regions for biofortification traits using an SNP marker-enriched linkage map in wheat (Triticum aestivum L.). Front. Nutr. 2021, 8, 669444. [Google Scholar] [CrossRef]
- Mossé, J.; Huet, J.C.; Baudet, J. The amino acid composition of wheat grain as a function of nitrogen content. J. Cereal Sci. 1985, 3, 115–130. [Google Scholar]
- STATISTICA, version 14; StatSoft Inc.: Tulsa, OK, USA, 2020.
- Chen, W.C. Phylogenetic Clustering with R package Phyclust. Phyloclustering-Phylogenetic Clustering Website. 2010. Available online: https://CRAN.R-project.org/package=phyclust (accessed on 18 March 2023).
- Sokal, R.R.; Michener, C.D. A Statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958, 28, 1409–1438. [Google Scholar]
- Schierenbeck, M.; Alqudah, A.M.; Ulrike Lohwasser, U.; Tarawneh, R.A.; Simón, M.R.; Börner, A. Genetic dissection of grain architecture related traits in a winter wheat population. BMC Plant Biol. 2021, 21, 417. [Google Scholar] [CrossRef]
- Alaux, M.; Rogers, G.; Letellier, T.; Flores, R.; Alfama, F.; Pommier, C.; Mohellibi, N.; Durand, S.; Kimmel, E.; Michotey, C.; et al. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 2018, 19, 111. [Google Scholar] [CrossRef] [PubMed]
- Roberts, I.N.; Caputo, C.; Kade, M.; Victoria Criado, M.; Barneix, A.J. Subtilisin-like serine proteases involved in N remobilization during grain filling in wheat. Acta Physiol. Plant. 2011, 33, 1997–2001. [Google Scholar] [CrossRef]
- Jones, C.; Olson-Rutz, K. Practices to Increase Wheat Grain Protein; Montana State University Extension: Bozeman, MT, USA, 2020; bulletin EB0206. [Google Scholar]
- Arora, S.; Cheema, J.; Poland, J.; Uauy, C.; Chhuneja, P. Genome-wide association mapping of grain micronutrients concentration in Aegilops tauschii. Front. Plant Sci. 2019, 10, 54. [Google Scholar] [CrossRef]
- Wan, C.; Dang, P.; Gao, L.; Wang, J.; Tao, J.; Qin, X.; Feng, B.; Gao, J. How does the environment affect wheat yield and protein content response to drought? A meta-analysis. Front. Plant Sci. 2022, 13, 896985. [Google Scholar] [CrossRef]
- Litvinenko, N.A. Grain quality indices in the program of winter bread wheat breeding for the steppe region of Ukraine. In Wheat in a Global Environment; Bedö, Z., Lang, L., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 273–278. [Google Scholar]
- Hristov, N.; Mladenov, N.; Djuric, V.; Kondic-Spika, A.; Marjanovic-Jeromela, A. Improvement of wheat quality in cultivars released in Serbia during the 20th century. Cereal Res. Comm. 2010, 38, 111–121. [Google Scholar] [CrossRef]
- Mladenov, V.; Banjac, B.; Krishna, A.; Milošević, M. Relation of grain protein content and some agronomic traits in European cultivars of winter wheat. Cereal Res. Comm. 2011, 40, 532–541. [Google Scholar] [CrossRef]
- Khlestkina, E.K.; Pshenichnikova, T.A.; Usenko, N.I.; Otmakhova, Y.S. Prospective applications of molecular genetic approaches to control technological properties of wheat grain in the context of the “grain–flour–bread” chain. Vavilov J. Genet. Breed. 2016, 20, 511–527, (In Russian, English Summary). [Google Scholar] [CrossRef] [Green Version]
- Abugalieva, A.; Peña, R.J. Grain quality of spring and winter wheat in Kazakhstan. Asian Australas. J. Plant Sci. Biotechnol. 2010, 4, 87–90. [Google Scholar]
- Nazarenko, M.; Mykolenko, S.; Okhmat, P. Variation in grain productivity and quality of modern winter wheat varieties in northern Ukrainian Steppe. Ukr. J. Ecol. 2020, 10, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Riaz, Q. Changes in Australian Wheat Quality over the Last 150 Years. Ph.D. Thesis, Charles Sturt University, Bathurst, Australia, 2020. [Google Scholar]
- Ganeva, G.; Korzun, V.; Landjeva, S.; Tsenov, N.; Atanasova, M. Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian bread wheat cultivars. Euphytica 2005, 145, 305–315. [Google Scholar] [CrossRef]
- Bordes, J.; Ravel, C.; Le Gouis, J.; Lapierre, A.; Charmet, G.; Balfourier, F. Use of a global wheat core collection for association analysis of flour and dough quality traits. J. Cereal Sci. 2011, 54, 137–147. [Google Scholar] [CrossRef]
- Battenfield, S.D. Genomic Selection and Association Mapping for Wheat Processing and End-Use Quality. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2015. [Google Scholar]
- Mir Dirkvand, R.; Najafan, G.; Bihamta, M.R.; Ebrahimi, A. Mapping some seed quality traits in bread wheat (Triticum aestivum L.) by association mapping using SSR markers. J. Appl. Biotechnol. Rep. 2018, 5, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Muqaddasi, Q.H.; Brassac, J.; Ebmeyer, E.; Kollers, S.; Korzun, V.; Argillier, O.; Stiewe, G.; Plieske, J.; Ganal, M.W.; Röder, M.S. Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Sci. Rep. 2020, 10, 12541. [Google Scholar] [CrossRef]
- Lou, H.; Zhang, R.; Liu, Y.; Guo, D.; Zhai, S.; Chen, A.; Zhang, Y.; Xie, C.; You, M.; Peng, H.; et al. Genome-wide association study of six quality-related traits in common wheat (Triticum aestivum L.) under two sowing conditions. Theor. Appl. Genet. 2021, 134, 399–418. [Google Scholar] [CrossRef]
- White, J.; Sharma, R.; Balding, D.; Cockram, J.; Mackay, I.J. Genome-wide association mapping of Hagberg falling number, protein content, test weight, and grain yield in U.K. wheat. Crop Sci. 2022, 62, 965–981. [Google Scholar] [CrossRef]
- Govta, N.; Polda, I.; Sela, H.; Cohen, Y.; Beckles, D.M.; Korol, A.B.; Fahima, T.; Saranga, Y.; Krugman, T. Genome-Wide Association Study in bread wheat identifies genomic regions associated with grain yield and quality under contrasting water availability. Int. J. Mol. Sci. 2022, 23, 10575. [Google Scholar] [CrossRef]
- Krishnappa, G.; Khan, H.; Krishna, H.; Devate, N.B.; Kumar, S.; Mishra, C.N.; Parkash, O.; Kumar, S.; Kumar, M.; Mamrutha, H.M.; et al. Genome-Wide Association Study for grain protein, thousand kernel weight, and normalized difference vegetation index in bread wheat (Triticum aestivum L.). Genes 2023, 14, 637. [Google Scholar] [CrossRef]
- Yannam, V.R.R.; Lopes, M.; Guzman, C.; Soriano, J.M. Uncovering the genetic basis for quality traits in the Mediterranean old wheat germplasm and phenotypic and genomic prediction assessment by cross-validation test. Front. Plant Sci. 2023, 4, 1127357. [Google Scholar] [CrossRef] [PubMed]
- Saini, P.; Sheikh, I.; Saini, D.K.; Mir, R.R.; Dhaliwal, H.S.; Tyagi, V. Consensus genomic regions associated with grain protein content in hexaploid and tetraploid wheat. Front. Genet. 2022, 13, 1021180. [Google Scholar] [CrossRef]
- Jiang, G.-L. Molecular markers and marker-assisted breeding in plants. In Plant Breeding from Laboratories to Fields; Andersen, S.B., Ed.; InTech: London, UK, 2013; Volume 3, pp. 45–83. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Wang, Y.; Shi, Z.; Rentsch, D.; Ward, J.L.; Hassall, K.; Sparks, C.A.; Huttly, A.K.; Buchner, P.; Powers, S.; et al. Wheat amino acid transporters highly expressed in grain cells regulate amino acid accumulation in grain. PLoS ONE 2021, 16, e0246763. [Google Scholar] [CrossRef]
- Jin, X.; Feng, B.; Xu, Z.; Fan, X.; Lin, J.; Liu, Q.; Zhu, P.; Wang, T. TaAAP6-3B, a regulator of grain protein content selected during wheat improvement. BMC Plant Biol. 2018, 18, 71. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Gao, H.; Du, C.; Li, L.; Sun, W.; Liu, S.; Wang, C.; Xie, Y.; Kang, G. Transcriptomic and Metabolomics Analysis of Different Endosperm Region under Nitrogen Treatments. Int. J. Mol. Sci. 2019, 20, 4212. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Wang, Z.; Liu, S.; Kong, X.; Wang, F.; Sun, G.; Geng, S.; Mao, L.; Zhou, P.; Li, A. Transcriptome analysis of developing wheat grains at rapid expanding phase reveals dynamic gene expression patterns. Biology 2022, 11, 281. [Google Scholar] [CrossRef]
- Andleeb, T.; Borrill, P. Wheat NAM genes regulate the majority of early monocarpic senescence transcriptional changes including nitrogen remobilisation genes. G3 Genes Genomes Genet. 2023, 13, jkac275. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; An, K.; Guo, W.; Chen, Y.; Zhang, R.; Zhang, X.; Chang, S.; Rossi, V.; Jin, F.; Cao, X.; et al. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell 2021, 33, 603–622. [Google Scholar] [CrossRef]
- Hong, M.J.; Kim, J.-B.; Seo, Y.W.; Kim, D.Y. F-Box genes in the wheat genome and expression profiling in wheat at different developmental stages. Genes 2020, 11, 1154. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Acket, S.; Troncoso-Ponce, M.A.; Garcés, R.; Thomasset, B.; Venegas-Calerón, M.; Salas Joaquín, J.; Martínez-Force, E.; Moreno-Pérez, A.J. Characterization of Helianthus annuus lipoic acid biosynthesis: The mitochondrial octanoyltransferase and lipoyl synthase enzyme system. Front. Plant Sci. 2021, 12, 781917. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, D.; Röder, M.S.; Ganal, M.W.; Schnurbusch, T. Genetic dissection of pre-anthesis sub-phase durations during the reproductive spike development of wheat. Plant J. 2018, 95, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Han, S.; Chen, L.; Mu, J.; Duan, L.; Li, Y.; Yan, Y.; Li, X. Expression and regulation of genes involved in the reserve starch biosynthesis pathway in hexaploid wheat (Triticum aestivum L.). Crop J. 2021, 9, 440–455. [Google Scholar] [CrossRef]
- Sharma, V.; Fandade, V.; Kumar, P.; Parveen, A.; Madhawan, A.; Bathla, M.; Mishra, A.; Sharma, H.; Rishi, V.; Satbhai, S.B.; et al. Protein targeting to starch 1, a functional protein of starch biosynthesis in wheat (Triticum aestivum L.). Plant Mol. Biol. 2022, 109, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Caño-Delgado, A.; Penfield, S.; Smith, C.; Catley, M.; Bevan, M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 2003, 34, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Dhugga, K.S.; Beech, R.; Singh, J. Genome-wide analysis of the cellulose synthase-like (Csl) gene family in bread wheat (Triticum aestivum L.). BMC Plant Biol. 2017, 17, 193. [Google Scholar] [CrossRef] [Green Version]
- Gornicki, P.; Haselkorn, R. Wheat acetyl-CoA carboxylase. Plant Mol. Biol. 1993, 22, 547–552. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, D.; Ma, C.; Cao, H.; Wang, Y.; Xu, Y.; Zhang, W.; Yan, Y. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development. Crop J. 2016, 4, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Leubner-Metzger, G. Functions and regulation of -1,3-glucanases during seed germination, dormancy release and after-ripening. Seed Sci. Res. 2003, 13, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Vaish, S.; Gupta, D.; Mehrotra, R.; Mehrotra, S.; Kumar Basantani, M. Glutathione S-transferase: A versatile protein family. 3 Biotech 2020, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- Shumayla; Sharma, S.; Pandey, A.K.; Singh, K.; Upadhyay, S.K. Molecular characterization and global expression analysis of lectin receptor kinases in bread wheat (Triticum aestivum). PLoS ONE 2016, 11, e0153925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, A.; Monteiro, F.; Sebastiana, M. Subtilisin-like proteases in plant–pathogen recognition and immune priming: A perspective. Front. Plant Sci. 2014, 5, 793. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Mendoza, M.; Diaz, I.; Martinez, M. Insights on the proteases involved in barley and wheat grain germination. Int. J. Mol. Sci. 2019, 20, 2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daba, S.D.; Liu, X.; Aryal, U.; Mohammadi, M. A proteomic analysis of grain yield-related traits in wheat. AoB PLANTS 2020, 12, plaa042. [Google Scholar] [CrossRef]
- Bonnot, T.; Bancel, E.; Chambon, C.; Boudet, J.; Branlard, G.; Martre, P. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain. Front. Plant Sci. 2015, 6, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizana, X.C.; Riegel, R.; Gomez, L.D.; Herrera, J.; Isla, A.; McQueen-Mason, S.J.; Calderini, D.F. Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). J. Exp. Bot. 2010, 61, 1147–1157. [Google Scholar] [CrossRef]
- Marowa, P.; Ding, A.; Kong, Y. Expansins: Roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 2016, 35, 949–965. [Google Scholar] [CrossRef] [Green Version]
- Tillett, B.J.; Hale, C.O.; Martin, J.M.; Giroux, M.J. Genes impacting grain weight and number in wheat (Triticum aestivum L. ssp. aestivum). Plants 2022, 11, 1772. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhou, Z.; Li, W.; Qin, M.; Yang, P.; Hou, J.; Huang, F.; Lei, Z.; Wu, Z.; Wang, J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2022, 22, 229. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, D.; Ren, Y.; Zhang, X.; Zhao, X. Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol. 2008, 146, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
SNP | Chr. | Position (bp) | Allele | Effect | p-Value | −log10 | |
---|---|---|---|---|---|---|---|
GPC_BLUE | |||||||
1. | Ex_c67198_1838 | 1D | 10,259,568 | T/C | −0.385547705 | 2.42 × 10−6 | 5.616184634 |
2. | Excalibur_c13709_2568 | 3A | 518,897,423 | A/G | 0.543011247 | 4.20 × 10−9 | 8.37675071 |
3. | wsnp_Ku_c7811_13387117 | 3A | 714,304,435 | A/G | −0.391805162 | 2.43 × 10−7 | 6.614393726 |
4. | BS00062734_51 | 3B | 545,069,014 | A/G | −0.323156108 | 1.89 × 10−6 | 5.723538196 |
5. | Kukri_c11944_436 | 3D | 609,621,771 | T/C | −0.318723447 | 6.13 × 10−6 | 5.212539525 |
6. | wsnp_Ra_c1146_2307483 | 4B | 630,470,822 | T/G | −0.304930639 | 3.38 × 10−6 | 5.4710833 |
7. | BobWhite_c6759_365 | 5A | 488,262,559 | T/C | −0.354037284 | 3.39 × 10−7 | 6.469800302 |
GPC_2018 | |||||||
8. | Excalibur_c13709_2568 | 3A | 518,897,423 | A/G | 0.570293042 | 8.48 × 10−6 | 5.071604148 |
9. | BS00062734_51 | 3B | 545,069,014 | A/G | −0.323156108 | 2.33 × 10−6 | 5.632644079 |
10. | Kukri_c37738_417 | 1B | 5,519,895 | T/C | −0.570 | 8.48 × 10−6 | 5.632644 |
11. | Tdurum_contig46583_2146 | 4A | 738,781,353 | T/C | −0.418 | 2.33 × 10−6 | 5.071604 |
12. | wsnp_Ex_c16432_24932860 | 5B | 483,000,817 | T/C | 0.696768643 | 6.76 × 10−7 | 6.170053304 |
13. | Excalibur_c28759_914 | 6B | 716,259,097 | A/G | −0.445651367 | 1.83 × 10−5 | 4.73754891 |
14. | wsnp_Ex_c22547_31738007 | 7A | 694,546,597 | T/C | −0.324192625 | 3.17 × 10−5 | 4.498940738 |
GPC_2017 | |||||||
15. | wsnp_BE490651A_Ta_2_2 | 3A | 565,466,354 | T/C | −0.861806961 | 7.35 × 10−6 | 5.133712661 |
16. | wsnp_Ku_c7811_13387117 | 3A | 714,304,435 | A/G | −0.478132901 | 3.64 × 10−5 | 4.438898616 |
17. | BS00062734_51 | 3B | 545,069,014 | A/G | −0.421626697 | 4.32 × 10−5 | 4.364516253 |
GPC_2016 | |||||||
18. | Excalibur_c12675_1789 | 2B | 788,655,682 | A/G | −0.402444191 | 4.57 × 10−7 | 6.3400838 |
19. | Ku_c56370_1155 | 3A | 521,719,100 | A/G | −0.355731398 | 7.96 × 10−6 | 5.099086932 |
20. | Excalibur_c39248_485 | 3A | 624,946,759 | A/G | 0.377677627 | 3.07 × 10−5 | 4.512861625 |
21. | Kukri_c8274_502 | 6A | 297,714,501 | A/G | −0.726532079 | 9.30 × 10−7 | 6.031517051 |
22. | Excalibur_rep_c112060_100 | 7B | 646,065,982 | T/C | 0.316001498 | 2.26 × 10−5 | 4.645891561 |
Gene ID | Chr:/Position | GO Ontology | Description |
---|---|---|---|
Transporter proteins | |||
TraesCS3A02G484600 | chr3A:714289919..714291827 (−strand) | BP: amino acid transmembrane transport; MF: amino acid transmembrane transporter activity; CC: membrane | Amino acid permease |
TraesCS3A02G484900 | chr3A:714415263..714423339 (−strand) | ||
Transcription factors | |||
TraesCS3A02G485400 | chr3A:7145774421..714575250 (+strand) | MF: DNA binding; BP: regulation of transcription, DNA-templated | NAC domain-containing protein |
TraesCS3A02G485500 | chr3A:714577793..714578643 (+strand) | ||
TraesCS3A02G486500 | chr3A:714650271..714650843 (−strand) | ||
Proteins, involved in post-translational modifications | |||
TraesCS3A02G290300 | chr3A:519244293..519255598 (−strand) | MF: protein kinase activity; MF: ATP binding; BP: protein phosphorylation | Receptor-like kinase Serine/threonine-protein kinase |
TraesCS3A02G485600 | chr3A:714588344..714590684 (−strand) | ||
TraesCS3A02G486400 | chr3A:714643608..714646388 (+strand) | ||
TraesCS3A02G488100 | chr3A:716067049..716070839 (+strand) | BP: protein glycosylation; MF: acetylglucosaminyltransferase activity | Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase |
TraesCS3A02G481900 | chr3A:712621085..712621999 (+strand) | MF: protein binding | E3 ubiquitin-protein ligase E2 ubiquitin-conjugating enzyme |
TraesCS3A02G487000 | chr3A:714787620..714789640 (+strand) | ||
TraesCS3A02G484000 | chr3A:713962301..713963870 (−strand) | MF: protein binding | F-box family protein |
TraesCS3A02G483900 | chr3A:713945850..713955055 (−strand) | ||
TraesCS3A02G482600 | chr3A:713210615..713212190 (+strand) | ||
TraesCS3A02G485800 | chr3A:714595534..714599278 (+strand) | ||
TraesCS3A02G487100 | chr3A:714939243..714940190 (+strand) | ||
TraesCS3B02G340400 | chr3B:547054749..547060421 (−strand) | ||
* TraesCS3B02G339000 | chr3B:545066258..545069534 (+strand) | MF: catalytic activity; BP: lipoate biosynthetic process; CC: chloroplast; MF: lipoate synthase activity; MF: iron-sulfur cluster binding; MF: 4 iron, 4 sulfur cluster binding | Lipoyl synthase |
Proteins involved in biosynthesisofmacromolecules | |||
TraesCS3A02G289800 | chr3A:518720116..518723505 (+strand) | PROTEIN TARGETING TO STARCH (PTST) | |
* TraesCS3A02G484800 | chr3A:714298564-714310707 (−strand) | MF: catalytic activity; MF: acetyl-CoA carboxylase activity; MF: biotin carboxylase activity; MF: ATP binding; BP: fatty acid biosynthetic process; MF: ligase activity; MF: metal ion binding | Acetyl-CoA carboxylase |
* TraesCS3A02G289900 | chr3A:518895097..518901097 (+strand) | CC: membrane; MF: cellulose synthase activity; BP: cellulose biosynthetic process | Cellulose synthase |
TraesCS3B02G337100 | chr3B:543466729..543471191 (−strand) | ||
Protective proteins | |||
TraesCS3A02G483800 | chr3A:713930115..713932275 (−strand) | MF: hydrolase activity, hydrolyzing O-glycosyl compounds; BP: carbohydrate metabolic process | Beta-1,3-glucanase |
TraesCS3A02G483700 | chr3A:713867934..713870026 (−strand) | ||
TraesCS3A02G483600 | chr3A:713849212..713849871 (−strand) | ||
TraesCS3A02G483100 | chr3A:713622221..713623907 (−strand) | ||
TraesCS3A02G483000 | chr3A:713534311..713536049 (−strand) | ||
TraesCS3A02G482200 | chr3A:712728151..712729578 (−strand) | ||
TraesCS3A02G482000 | chr3A:712698902..712700166 (+strand) | ||
TraesCS3A02G481600 | chr3A:712552546..712554003 (+strand) | ||
TraesCS3A02G481500 | chr3A:712545116..712546522 (+strand) | ||
TraesCS3A02G485200 | chr3A:714535163..714536122 (+strand) | ||
TraesCS3A02G486000 | chr3A:714614717..714616126 (+strand) | ||
TraesCS3A02G487700 | chr3A:715593874..715594918 (−strand) | MF: protein binding | Glutathione S-transferase |
TraesCS3A02G488200 | chr3A:716097184..716098213 (−strand) | ||
TraesCS3A02G488300 | chr3A:716105661..716106534 (−strand) | ||
TraesCS3B02G338900 | chr3B:545061480..545063744 (+strand) | MF: protein kinase activity; MF: ATP binding; BP: protein phosphorylation; MF: carbohydrate binding | Lectin receptor kinase, Protein kinase domain; Serine/threonine-protein kinase; Concanavalin A-like lectin/glucanase domain |
TraesCS3B02G338800 | chr3B:545048539..545050613 (+strand) | ||
TraesCS3B02G339400 | chr3B:545385674..545385674 (+strand) | MF: peroxidase activity; BP: response to oxidative stress; MF: heme binding; BP: oxidation-reduction process | Peroxidase |
TraesCS3B02G339500 | chr3B:545432618..545433981 (+strand) | ||
TraesCS3B02G339600 | chr3B:545493643..545495202 (+strand) | ||
TraesCS3B02G339700 | chr3B:545562324..545563678 (+strand) | ||
TraesCS3B02G339800 | chr3B:545667818..545669160 (+strand) | ||
TraesCS3B02G339100 | chr3B:545179979..545187120 (+strand) | MF: serine-type endopeptidase activity; BP: proteolysis | Subtilisin-like protease |
Structural proteins | |||
TraesCS3A02G484500 | chr3A:714223433..714224075 (+strand) | CC: nucleosome; MF: DNA binding; MF: protein heterodimerization activity | Histone H3 |
TraesCS3B02G339900 | chr3B:5457066521..545709391 (+strand) | CC: nucleus; BP: regulation of transcription, DNA-templated | 40S ribosomal protein S25 |
TraesCS3A02G488000 | chr3A:715973684..715975189 (+strand) | CC: extracellular region; BP: sexual reproduction | Expansin protein |
Proteins involved in metal ions transport and homeostasis | |||
TraesCS3A02G484300 | chr3A:714150436..714156128 (+strand) | Voltage-dependent L-type calcium channel subunit | |
TraesCS3A02G488400 | chr3A:716258725..716259719 (+strand) | MF: calcium ion binding | Calcium binding protein |
TraesCS3B02G338600 | chr3B:545008333..545008942 (−strand) | ||
TraesCS3B02G338400 | chr3B:544921860..544922297 (−strand) | ||
TraesCS3B02G338200 | chr3B:544818884..544819617 (−strand) | ||
TraesCS3A02G484700 | chr3A:714292993..714297477 (−strand) | BP: amino acid transmembrane transport; MF: amino acid transmembrane transporter activity; CC: membrane | Metallothionein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kartseva, T.; Alqudah, A.M.; Aleksandrov, V.; Alomari, D.Z.; Doneva, D.; Arif, M.A.R.; Börner, A.; Misheva, S. Nutritional Genomic Approach for Improving Grain Protein Content in Wheat. Foods 2023, 12, 1399. https://doi.org/10.3390/foods12071399
Kartseva T, Alqudah AM, Aleksandrov V, Alomari DZ, Doneva D, Arif MAR, Börner A, Misheva S. Nutritional Genomic Approach for Improving Grain Protein Content in Wheat. Foods. 2023; 12(7):1399. https://doi.org/10.3390/foods12071399
Chicago/Turabian StyleKartseva, Tania, Ahmad M. Alqudah, Vladimir Aleksandrov, Dalia Z. Alomari, Dilyana Doneva, Mian Abdur Rehman Arif, Andreas Börner, and Svetlana Misheva. 2023. "Nutritional Genomic Approach for Improving Grain Protein Content in Wheat" Foods 12, no. 7: 1399. https://doi.org/10.3390/foods12071399
APA StyleKartseva, T., Alqudah, A. M., Aleksandrov, V., Alomari, D. Z., Doneva, D., Arif, M. A. R., Börner, A., & Misheva, S. (2023). Nutritional Genomic Approach for Improving Grain Protein Content in Wheat. Foods, 12(7), 1399. https://doi.org/10.3390/foods12071399