Online Machine Vision-Based Modeling during Cantaloupe Microwave Drying Utilizing Extreme Learning Machine and Artificial Neural Network
Abstract
:1. Introduction
- (1)
- to establish a microwave drying system based on online machine vision that includes a real-time machine vision unit, a real-time weight detection unit, and a microwave power automatic adjustment unit based on a real-time temperature monitoring unit;
- (2)
- to develop an image-processing algorithm to extract material shrinkage features;
- (3)
- to use ANN and ELM respectively, combined with online image-processing technology, to establish a model for the relationship between area shrinkage and moisture ratio of cantaloupes, and to verify the prediction effect of the model.
2. Materials and Methods
2.1. Materials
2.2. Experimental System
2.2.1. Online Machine Vision Unit
- Light Source
- Camera
- Data Transmission
2.2.2. Variable-Power Microwave Drying Unit
2.2.3. Real-Time Weighing Unit
2.3. Experimental Procedure
2.4. Image-Analysis Algorithm
2.4.1. Image Acquisition and Grayscale Processing
2.4.2. Image Binarization
2.4.3. Particle Recognition and Hole Filling
2.4.4. Particle Filtering
2.4.5. Image Feature Extraction and Shrinkage Quantification
2.4.6. Consecutive Collection, Processing, and Recording
2.5. Modeling and Prediction
2.5.1. Artificial Neural Network
2.5.2. Extreme Learning Machine
- (1)
- Input data and labels. ELM accepts input data and corresponding labels, where the input data can be vectors of any dimensionality and the labels can be discrete or continuous output values.
- (2)
- Random initialization of weights and biases. ELM uses random initialization to set the weights and biases between the input and hidden layer, which are randomly generated and can be regularized to avoid overfitting.
- (3)
- Calculation of the hidden layer output. ELM uses an activation function (such as sigmoid function, ReLU function, etc.) to calculate the output between the input and hidden layer. The number of nodes in the hidden layer is usually set by oneself, but it is necessary to ensure enough nodes to ensure the complexity and expressive power of the model.
- (4)
- Analysis of the weight matrix. In ELM, the weight matrix is usually a randomly generated matrix, and its analysis method can be obtained by calculating the generalized inverse or pseudoinverse of the matrix. Through the analysis of the weight matrix, ELM can obtain the optimal output weight.
- (5)
- Calculation of the output layer weight. By calculating the pseudoinverse matrix, the optimal weight of the output layer can be obtained, which is calculated by linear regression.
- (6)
- Calculation of the final output. By using the optimal output weight and activation function of the output layer, the final output result can be calculated.
2.5.3. Performance Indicators
2.5.4. Software
3. Results and Discussion
3.1. Modeling
3.2. Prediction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Li, Y.; Yu, R.; Huang, D.; Chen, S.; Zhu, S. Effects of Different Drying Methods on the Selenium Bioaccessibility and Antioxidant Activity of Cardamine violifolia. Foods 2023, 12, 758. [Google Scholar] [CrossRef] [PubMed]
- Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A.S. Application of artificial neural networks (ANNs) in drying technology: A comprehensive review. Dry. Technol. 2015, 33, 1397–1462. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Mujumdar, A.S. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Keser, D.; Guclu, G.; Kelebek, H.; Keskin, M.; Soysal, Y.; Sekerli, Y.E.; Arslan, A.; Selli, S. Characterization of aroma and phenolic composition of carrot (Daucus carota ‘Nantes’) powders obtained from intermittent microwave drying using GC–MS and LC–MS/MS. Food Bioprod. Process. 2020, 119, 350–359. [Google Scholar] [CrossRef]
- Qu, F.; Zhu, X.; Ai, Z.; Ai, Y.; Qiu, F.; Ni, D. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT 2019, 99, 112–118. [Google Scholar] [CrossRef]
- Xu, W.; Pei, Y.; Zhu, G.; Han, C.; Wu, M.; Wang, T.; Cao, X.; Jiang, Y.; Li, G.; Sun, J.; et al. Effect of far infrared and far infrared combined with hot air drying on the drying kinetics, bioactives, aromas, physicochemical qualities of Anoectochilus roxburghii (Wall.) Lindl. LWT 2022, 162, 113452. [Google Scholar] [CrossRef]
- Cheng, S.; Su, W.; Yuan, L.; Tan, M. Recent developments of drying techniques for aquatic products: With emphasis on drying process monitoring with innovative methods. Dry. Technol. 2021, 39, 1577–1594. [Google Scholar] [CrossRef]
- Wang, H.; Torki, M.; Xiao, H.W.; Orsat, V.; Raghavan, G.; Liu, Z.L.; Peng, W.J.; Fang, X.M. Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen. Renew. Sustain. Energy Rev. 2022, 168, 112822. [Google Scholar] [CrossRef]
- Jiang, D.; Li, C.; Zheng, Z. Study on Drying Control Strategy of White Radish Slice Based on Monitoring Medium Relative Humidity. Foods 2022, 11, 1197. [Google Scholar] [CrossRef]
- Zhang, W.P.; Yang, X.H.; Mujumdar, A.; Ju, H.Y.; Xiao, H.W. The influence mechanism and control strategy of relative humidity on hot air drying of fruits and vegetables: A review. Dry. Technol. 2022, 40, 2217–2234. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Bhandari, B.; Yang, P. Intelligent detection of flavor changes in ginger during microwave vacuum drying based on LF-NMR. Food Res. Int. 2019, 119, 417–425. [Google Scholar] [CrossRef]
- Djebli, A.; Hanini, S.; Badaoui, O.; Haddad, B.; Benhamou, A. Modeling and comparative analysis of solar drying behavior of potatoes. Renew. Energy 2020, 145, 1494–1506. [Google Scholar] [CrossRef]
- Oyinloye, T.M.; Yoon, W.B. Effect of freeze-drying on quality and grinding process of food produce: A review. Processes 2020, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.D.; Karim, M. Investigation of nutritional quality evolution of papaya during intermittent microwave convective drying. Dry. Technol. 2022, 40, 3694–3707. [Google Scholar] [CrossRef]
- Khojastehnazhand, M.; Ramezani, H. Machine vision system for classification of bulk raisins using texture features. J. Food Eng. 2020, 271, 109864. [Google Scholar] [CrossRef]
- Rehman, T.U.; Zaman, Q.U.; Chang, Y.K.; Schumann, A.W.; Corscadden, K.W. Development and field evaluation of a machine vision based in-season weed detection system for wild blueberry. Comput. Electron. Agric. 2019, 162, 1–13. [Google Scholar] [CrossRef]
- Zhu, L.; Spachos, P.; Pensini, E.; Plataniotis, K.N. Deep learning and machine vision for food processing: A survey. Curr. Res. Food Sci. 2021, 4, 233–249. [Google Scholar] [CrossRef]
- Smith, M.L.; Smith, L.N.; Hansen, M.F. The quiet revolution in machine vision-a state-of-the-art survey paper, including historical review, perspectives, and future directions. Comput. Ind. 2021, 130, 103472. [Google Scholar] [CrossRef]
- Colucci, D.; Morra, L.; Zhang, X.; Fissore, D.; Lamberti, F. An automatic computer vision pipeline for the in-line monitoring of freeze-drying processes. Comput. Ind. 2020, 115, 103184. [Google Scholar] [CrossRef]
- Zhu, G.; Raghavan, G.; Li, Z. Predicting the Moisture Ratio of a Hami Melon Drying Process Using Image Processing Technology. Foods 2023, 12, 672. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Combination of computer vision and backscattering imaging for predicting the moisture content and colour changes of sweet potato (Ipomoea batatas L.) during drying. Comput. Electron. Agric. 2018, 150, 178–187. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D.W. Development of a general model for monitoring moisture distribution of four vegetables undergoing microwave-vacuum drying by hyperspectral imaging. Dry. Technol. 2022, 40, 1478–1492. [Google Scholar] [CrossRef]
- Li, T.; Tong, J.; Liu, M.; Yao, M.; Xiao, Z.; Li, C. Online Detection of Impurities in Corn Deep-Bed Drying Process Utilizing Machine Vision. Foods 2022, 11, 4009. [Google Scholar] [CrossRef]
- Seyedabadi, E.; Khojastehpour, M.; Abbaspour-Fard, M.H. Online measuring of quality changes of banana slabs during convective drying. Eng. Agric. Environ. Food 2019, 12, 111–117. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Gao, Z.; Xie, Y.; Wang, H. Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control. J. Food Eng. 2021, 292, 110253. [Google Scholar] [CrossRef]
- Raponi, F.; Moscetti, R.; Chakravartula, S.S.N.; Fidaleo, M.; Massantini, R. Monitoring the hot-air drying process of organically grown apples (cv. Gala) using computer vision. Biosyst. Eng. 2022, 223, 1–13. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Rafiee, S.; Mohtasebi, S.S.; Aghbashlo, M. Application of computer vision technique for on-line monitoring of shrimp color changes during drying. J. Food Eng. 2013, 115, 99–114. [Google Scholar] [CrossRef]
- Xu, W.; Islam, M.N.; Cao, X.; Tian, J.; Zhu, G. Effect of relative humidity on drying characteristics of microwave assisted hot air drying and qualities of dried finger citron slices. LWT 2021, 137, 110413. [Google Scholar] [CrossRef]
- Wu, J.; Ling, C.; Chen, Y.; Li, Z.; Song, F.; Raghavan, G.V.; Jin, G.; Song, C. Monitoring and control of microwave drying with volatiles detection of celery stalks. Comput. Electron. Agric. 2021, 187, 106256. [Google Scholar] [CrossRef]
- Rahman, S.A.; Nassef, A.M.; Al-Dhaifallah, M.; Abdelkareem, M.A.; Rezk, H. The effect of a new coating on the drying performance of fruit and vegetables products: Experimental investigation and artificial neural network modeling. Foods 2020, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Ming, J.L.K.; Anuar, M.S.; How, M.S.; Noor, S.B.M.; Abdullah, Z.; Taip, F.S. Development of an artificial neural network utilizing particle swarm optimization for modeling the spray drying of coconut milk. Foods 2021, 10, 2708. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Wei, Z.Y.; Vidyarthi, S.K.; Pan, Z.; Zielinska, M.; Deng, L.Z.; Wang, Q.H.; Wei, Q.; Xiao, H.W. Pulsed vacuum drying of kiwifruit slices and drying process optimization based on artificial neural network. Dry. Technol. 2020, 39, 405–417. [Google Scholar] [CrossRef]
- Fabani, M.P.; Capossio, J.P.; Román, M.C.; Zhu, W.; Rodriguez, R.; Mazza, G. Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process. J. Environ. Manag. 2021, 281, 111915. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Bai, J.W.; Wang, S.X.; Meng, J.S.; Wang, H.; Yu, X.L.; Gao, Z.J.; Xiao, H.W. Prediction of energy and exergy of mushroom slices drying in hot air impingement dryer by artificial neural network. Dry. Technol. 2019, 38, 1959–1970. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Meng, Y.; Zhu, J.; Li, J.; Zhang, Y.; Li, C. Multi-Objective Optimization of Sugarcane Milling System Operations Based on a Deep Data-Driven Model. Foods 2022, 11, 3845. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Zhu, R.; He, D.; Wang, S.; Cui, X.; Yao, X. Evaluation of Mutton Adulteration under the Effect of Mutton Flavour Essence Using Hyperspectral Imaging Combined with Machine Learning and Sparrow Search Algorithm. Foods 2022, 11, 2278. [Google Scholar] [CrossRef]
- Xu, W.; Cao, X.; Zhu, G.; Xia, Z.; Wang, D. Effect of temperature difference on the aroma and quality of carrots processed through microwave drying combined with hot air drying. Food Bioprod. Process. 2020, 120, 58–68. [Google Scholar] [CrossRef]
- Luo, G.; Song, C.; Hongjie, P.; Li, Z.; Xu, W.; Raghavan, G.; Chen, H.; Jin, G. Optimization of the microwave drying process for potato chips based on the measurement of dielectric properties. Dry. Technol. 2019, 37, 1329–1339. [Google Scholar] [CrossRef]
- Zhu, G.; Raghavan, G.; Li, Z. Estimating the Moisture Ratio Model of Cantaloupe Slices by Maximum Likelihood Principle-Based Algorithms. Plants 2023, 12, 941. [Google Scholar] [CrossRef]
- Liu, Z.L.; Nan, F.; Zheng, X.; Zielinska, M.; Duan, X.; Deng, L.Z.; Wang, J.; Wu, W.; Gao, Z.J.; Xiao, H.W. Color prediction of mushroom slices during drying using Bayesian extreme learning machine. Dry. Technol. 2020, 38, 1869–1881. [Google Scholar] [CrossRef]
- Zhu, S.; Feng, L.; Zhang, C.; Bao, Y.; He, Y. Identifying freshness of spinach leaves stored at different temperatures using hyperspectral imaging. Foods 2019, 8, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Chen, M.; Wang, X.; Wu, W.; Zheng, Z.; Hu, Z.; Ma, B. Modeling and optimization for konjac vacuum drying based on response surface methodology (RSM) and artificial neural network (ANN). Processes 2020, 8, 1430. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Raghavan, G.S.V.; Xu, W.; Pei, Y.; Li, Z. Online Machine Vision-Based Modeling during Cantaloupe Microwave Drying Utilizing Extreme Learning Machine and Artificial Neural Network. Foods 2023, 12, 1372. https://doi.org/10.3390/foods12071372
Zhu G, Raghavan GSV, Xu W, Pei Y, Li Z. Online Machine Vision-Based Modeling during Cantaloupe Microwave Drying Utilizing Extreme Learning Machine and Artificial Neural Network. Foods. 2023; 12(7):1372. https://doi.org/10.3390/foods12071372
Chicago/Turabian StyleZhu, Guanyu, G. S. V. Raghavan, Wanxiu Xu, Yongsheng Pei, and Zhenfeng Li. 2023. "Online Machine Vision-Based Modeling during Cantaloupe Microwave Drying Utilizing Extreme Learning Machine and Artificial Neural Network" Foods 12, no. 7: 1372. https://doi.org/10.3390/foods12071372
APA StyleZhu, G., Raghavan, G. S. V., Xu, W., Pei, Y., & Li, Z. (2023). Online Machine Vision-Based Modeling during Cantaloupe Microwave Drying Utilizing Extreme Learning Machine and Artificial Neural Network. Foods, 12(7), 1372. https://doi.org/10.3390/foods12071372