Frozen Ready-to-(h)eat Meals: Evolution of Their Quality during a Real-Time Short Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Products
2.2. Real-Time Short Shelf Life Test
2.3. Texture Profile Analysis of the Tortellini
2.4. Evaluation of the Consistency of the Soup
2.5. Determination of the Acidity and the Peroxide Value of the Oil Extracted from Soup and Tortellini
2.6. Extraction and Evaluation of Phenols and Carotenoids in the Soup
2.7. Evaluation of Volatile Compounds in Soup and Tortellini
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results
3.1. Evolution of the Texture of the Tortellini
3.2. Evolution of the Consistency of the Soup
3.3. Evolution of Acidity and Peroxide Values of the Oil Extracted from Soup and Tortellini
3.4. Evolution of Phenolic Compounds and Carotenoids in the Soup
3.5. Evolution of Volatile Compounds in Soup and Tortellini
3.6. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballarini, G. Mangiar facile e comodo, i convenience food. Eurocarni 2011, 25, 71. [Google Scholar]
- Olivera, D.F.; Salvadori, V.O. Instrumental and sensory evaluation of cooked pasta during frozen storage. Int. J. Food Sci. Technol. 2011, 46, 1445–1454. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Altunakar, B.; Mejía-Lorio, D.J. Freezing of Fruits and Vegetables: An Agri-Business Alternative for Rural and Semi-Rural Areas; Food & Agriculture Organization: Rome, Italy, 2005. [Google Scholar]
- Bumbudsanpharoke, N.; Ko, S. Packaging technology for home meal replacement: Innovations and future prospective. Food Control 2022, 132, 108470. [Google Scholar] [CrossRef]
- Marangon, M.; Saccà, E.; Valusso, R. Caratteristiche reologiche del formaggio Nostrano di Primiero prodotto in alpeggio. In Proceedings of the Conference: Il Sistema Delle Malghe Alpine: Aspetti Agro-Zootecnici, Paesaggistici, Turistici, Piancavallo (PN), Italy, 5–6 September 2003. [Google Scholar]
- Commission Implementing Regulation (EU) 2019/1604, of 27 September 2019, Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis; Official Journal of the European Union: Brussels, Belgium, 2019.
- Motilva, M.J.; Macià, A.; Romero, M.P.; Labrador, A.; Domínguez, A.; Peiró, L. Optimisation and validation of analytical methods for the simultaneous extraction of antioxidants: Application to the analysis of tomato sauces. Food Chem. 2014, 163, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Taticchi, A.; Esposto, S.; Urbani, S.; Veneziani, G.; Selvaggini, R.; Sordini, B.; Servili, M. Effect of an olive phenolic extract added to the oily phase of a tomato sauce, on the preservation of phenols and carotenoids during domestic cooking. LWT 2017, 84, 572–578. [Google Scholar] [CrossRef]
- Xiao, L.; Lee, J.; Gong, Z.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A.E. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem. 2014, 151, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 4120:2021 Sensory Analysis—Methodology—Triangle Test. Available online: https://www.iso.org/standard/76666.html (accessed on 3 March 2021).
- Pagliarini, E. Valutazione Sensoriale. Aspetti Teorici, Pratici e Metodologici, 2nd ed.; HOEPLI: Milan, Italy, 2021. [Google Scholar]
- ISO 13299:2016 Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. Available online: https://www.iso.org/standard/58042.html (accessed on 16 March 2016).
- Zhang, Y.; Li, Y.; Liu, Y.; Zhang, H. Effects of multiple freeze–thaw cycles on the quality of frozen dough. Cereal Chem. 2018, 95, 499–507. [Google Scholar] [CrossRef]
- Liang, Y.; Qu, Z.; Liu, M.; Zhu, M.; Zhang, X.; Wang, L.; Jia, F.; Zhan, X.; Wang, J. Further interpretation of the strengthening effect of curdlan on frozen cooked noodles quality during frozen storage: Studies on water state and properties. Food Chem. 2021, 346, 128908. [Google Scholar] [CrossRef]
- Araújo-Rodrigues, H.; Santos, D.; Campos, D.A.; Ratinho, M.; Rodrigues, I.M.; Pintado, M.E. Development of Frozen Pulps and Powders from Carrot and Tomato by-Products: Impact of Processing and Storage Time on Bioactive and Biological Properties. Horticulturae 2021, 7, 185. [Google Scholar] [CrossRef]
- Im, J.H.; Nam, J.H.; Ko, A.R.; Jin, H.J.; Kim, D.; Kim, C.S.; Chun, J.Y. Different Blanching and Thawing Methods Affect the Qualities of Potatoes and Carrots: A Study Done at Jeju Island. J. Korean Soc. Food Sci. Nutr. 2022, 51, 600–610. [Google Scholar] [CrossRef]
- Cramer, A.-C.J.; Mattinson, D.S.; Fellman, J.K.; Baik, B.-K. Analysis of Volatile Compounds from Various Types of Barley Cultivars. J. Agric. Food Chem. 2005, 53, 7526–7531. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, F.; Christensen, L.P.; Edelenbos, M. Changes in Volatile Compounds of Carrots (Daucus carota L.) During Refrigerated and Frozen Storage. J. Agric. Food Chem. 2003, 51, 5400–5407. [Google Scholar] [CrossRef]
- Aguiar, J.; Gonçalves, J.L.; Alves, V.L.; Câmara, J.S. Relationship between Volatile Composition and Bioactive Potential of Vegetables and Fruits of Regular Consumption—An Integrative Approach. Molecules 2021, 26, 3653. [Google Scholar] [CrossRef]
- Farhadi, F.; Iranshahi, M.; Taghizadeh, S.F.; Asili, J. Volatile sulfur compounds: The possible metabolite pattern to identify the sources and types of asafoetida by headspace GC/MS analysis. Ind. Crops Prod. 2020, 155, 112827. [Google Scholar] [CrossRef]
Fresh | Frozen | |||
---|---|---|---|---|
T0 | T1 | T2 | ||
Peak Force A (g) | 1000.3 ± 301.5 a | 573.3 ± 231.2 b | 611.5 ± 249.1 b | 686.2 ± 254.0 b |
Springiness | 0.8 ± 0.1 a | 0.5 ± 0.2 b | 0.6 ± 0.1 ab | 0.5 ± 0.1 b |
Adhesiveness | 0.3 ± 0.4 a | 41.8 ± 34.7 b | 4.6 ± 6.7 a | 46.6 ± 29.8 b |
Cohesiveness | 0.5 ± 0.1 ab | 0.5 ± 0.1 a | 0.6 ± 0.1 b | 0.5 ± 0.1 ab |
Chewiness | 408.9 ± 147.9 a | 158.6 ± 136.3 b | 236.0 ± 133.9 b | 178.1 ± 99.0 b |
Gumminess | 533.9 ± 172.3 a | 277.0 ± 150.0 b | 356.7 ± 162.7 ab | 350.4 ± 127.3 ab |
Fresh | Frozen | |||
---|---|---|---|---|
T0 | T1 | T2 | ||
β-carotene | 274.9 ± 5.3 a | 270.7 ± 3.6 a | 267.6 ± 4.7 a | 266.3 ± 7.0 a |
Lutein | 41.5 ± 0.6 a | 42.0 ± 1.3 a | 40.3 ± 2.5 a | 39.7 ± 1.6 a |
α-Tocopherol | 12.8 ± 0.1 a | 12.9 ± 0.3 a | 12.6 ± 0.5 a | 12.4 ± 0.6 a |
Quercetin-3-O-rutinoside | 50.7 ± 1.4 a | 52.5 ± 3.9 a | 51.2 ± 1.8 a | 49.9 ± 2.4 a |
Quercetin | 11.3 ± 0.8 a | 10.4 ± 1.5 a | 10.5 ± 0.4 | 10.0 ± 1.3 a |
Fresh | Frozen | |||
---|---|---|---|---|
T0 | T1 | T2 | ||
Aldehydes | ||||
Acetaldehyde | 40.4 ± 0.6 a | 44.4 ± 3.4 a | 42.9 ± 2.2 a | 44.1 ± 2.2 a |
Pentanal | 229.0 ± 3.7 a | 235.6 ± 6.6 a | 230.7 ± 9.1 a | 230.0 ± 12.7 a |
Hexanal | 200.0 ± 18.0 a | 192.0 ± 6.5 a | 206.2 ± 11.0 a | 222.0 ± 12.7 a |
(E)-2-Heptenal | 36.7 ± 3.2 a | 32.9 ± 2.4 a | 33.4 ± 1.8 a | 36.3 ± 2.9 a |
Nonanal | 87.2 ± 6.3 a | 87.6 ± 4.0 a | 90.3 ± 6.8 a | 89.5 ± 1.4 a |
2,4-Decadienal | 56.2 ± 3.4 a | 61.1 ± 2.1 a | 64.6 ± 1.0 a | 68.4 ± 5.1 a |
Sum of aldehydes | 649.5 ± 19.9 a | 653.6 ± 11.1 a | 668.1 ± 16.1 a | 690.2 ± 19.1 a |
Alcohols | ||||
2-Methyl-1-butanol | 8.0 ± 0.8 a | 8.0 ± 0.3 a | 8.2 ± 0.5 a | 7.0 ± 0.7 a |
1-Pentanol | 116.0 ± 5.2 a | 108.3 ± 4.3 a | 117.1 ± 15.5 a | 126.9 ± 2.1 a |
1-Hexanol | 142.6 ± 3.0 ab | 159.5 ± 13.1 a | 138.2 ± 3.6 ab | 119.9 ± 1.2 b |
Sum of alcohols | 266.5 ± 6.1 a | 275.8 ± 13.8 a | 263.5 ± 16.0 a | 253.8 ± 2.5 a |
Ketones | ||||
Acetoin | 106.6 ± 4.4 a | 111.8 ± 6.4 a | 123.5 ± 18.6 a | 101.6 ± 9.0 a |
Terpenes | ||||
Limonene | 258.5 ± 3.3 a | 254.2 ± 9.4 a | 310.7 ± 15.9 b | 257.8 ± 17.5 a |
α-Pinene | 6424.7 ± 157.7 a | 6413.0 ± 128.5 a | 6439.0 ± 106.9 a | 6449.5 ± 117.6 a |
β-Pinene | 1436.1 ± 50.2 a | 1454.5 ± 46.5 a | 1396.4 ± 121.3 a | 1408.9 ± 237.9 a |
β-Myrcene | 3302.7 ± 33.3 a | 3326.1 ± 54.4 a | 3429.1 ± 8.7 a | 3300.5 ± 46.2 a |
γ-Terpinene | 1243.7 ± 14.2 a | 1228.3 ± 96.6 a | 1227.3 ± 46.9 a | 1205.0 ± 77.8 a |
Caryophyllene | 652.0 ± 11.4 a | 667.1 ± 2.5 a | 646.5 ± 43.7 a | 674.1 ± 23.0 a |
Sum of terpenes | 13,317.7 ± 169.8 a | 13,343.2 ± 176.3 a | 13,449.1 ± 174.9 a | 13,295.9 ± 281.9 a |
Sulphur compounds | ||||
Dimethyl sulfide | 97.4 ± 3.4 a | 102.9 ± 6.7 a | 99.9 ± 2.5 a | 110.1 ± 7.4 a |
Dipropyl disulfide | 40.9 ± 2.5 a | 43.1 ± 3.0 a | 41.2 ± 2.2 a | 50.7 ± 3.9 a |
Sum of sulphur compounds | 138.3 ± 4.2 a | 146.0 ± 7.4 a | 141.0 ± 3.3 a | 160.8 ± 8.3 a |
Furans | ||||
Furfural | 69.5 ± 4.5 a | 70.6 ± 4.0 a | 66.9 ± 0.0 a | 75.8 ± 7.6 a |
2-Pentyl-furan | 304.4 ± 18.8 a | 299.0 ± 12.8 a | 399.3 ± 24.4 b | 360.5 ± 28.6 ab |
Sum of the furans | 373.9 ± 20.3 a | 369.6 ± 17.0 a | 466.1 ± 24.8 a | 436.3 ± 31.9 a |
Fresh | Frozen | |||
---|---|---|---|---|
T0 | T1 | T2 | ||
Aldehydes | ||||
Acetaldehyde | 34.3 ± 3.3 a | 32.2 ± 3.3 a | 29.2 ± 2.3 a | 30.6 ± 3.4 a |
Pentanal | 72.1 ± 6.4 a | 69.5 ± 6.7 a | 77.3 ± 0.8 a | 80.7 ± 7.5 a |
Hexanal | 209.2 ± 4.1 a | 198.8 ± 10.8 a | 219.7 ± 4.4 a | 230.6 ± 10.3 a |
(E)-2-Heptenal | 3.3 ± 0.3 a | 3.9 ± 0.3 a | 4.0 ± 0.7 a | 4.7 ± 0.1 a |
Nonanal | 34.9 ± 0.2 a | 36.4 ± 4.2 a | 38.4 ± 0.5 a | 40.5 ± 3.7 a |
2,4-Decadienal | 2.8 ± 0.3 a | 3.2 ± 0.3 a | 3.4 ± 0.1 a | 3.6 ± 0.2 a |
Sum of aldehydes | 356.6 ± 8.3 ab | 344.0 ± 13.7 b | 372.1 ± 5.1 ab | 390.6 ± 13.7 a |
Alcohols | ||||
1-Pentanol | 45.7 ± 2.0 a | 47.9 ± 2.2 a | 43.5 ± 2.9 a | 40.6 ± 2.9 a |
1-Hexanol | 147.1 ± 6.3 a | 153.0 ± 2.4 a | 155.2 ± 6.4 a | 142.1 ± 1.8 a |
Sum of alcohols | 192.8 ± 6.6 a | 200.9 ± 3.3 a | 198.7 ± 7.0 a | 182.7 ± 3.4 a |
Ketones | ||||
Acetoin | 159.5 ± 15.9 a | 171.7 ± 16.3 a | 186.9 ± 15.5 a | 184.7 ± 7.8 a |
2-Pentanone | 474.8 ± 41.1 a | 482.4 ± 30.2 a | 474.4 ± 20.0 a | 486.0 ± 22.5 a |
2-Heptanone | 896.1 ± 34.9 a | 864.9 ± 22.0 a | 898.1 ± 7.3 a | 900.0 ± 19.3 a |
2-Nonanone | 241.6 ± 7.5 a | 251.7 ± 11.7 a | 262.6 ± 20.6 a | 260.4 ± 12.5 a |
Sum of ketones | 1772.0 ± 56.7 a | 1770.6 ± 42.4 a | 1822.0 ± 33.4 a | 1831.1 ± 33.1 a |
Terpenes | ||||
Limonene | 2515.1 ± 106.0 a | 2520.9 ± 29.7 a | 2509.5 ± 50.3 a | 2560.1 ± 53.0 a |
α-Pinene | 14,445.0 ± 492.5 a | 14,418.2 ± 555.6 a | 14,428.0 ± 354.5 a | 14,537.1 ± 445.6 a |
β-Pinene | 2985.8 ± 77.5 a | 2956.1 ± 91.3 ab | 2870.2 ± 17.5 ab | 2836.7 ± 12.1 b |
Camphene | 291.1 ± 15.5 a | 303.8 ± 17.6 a | 309.7 ± 20.9 a | 299.5 ± 22.7 a |
β-Myrcene | 1357.7 ± 30.0 a | 1290.5 ± 6.5 a | 1292.3 ± 85.4 a | 1255.1 ± 61.4 a |
α-Phellandrene | 699.8 ± 3.8 a | 705.8 ± 9.7 a | 722.2 ± 66.2 a | 729.0 ± 33.9 a |
β-Phellandrene | 3093.9 ± 175.0 a | 2978.9 ± 61.4 a | 3077.7 ± 67.6 a | 3104.9 ± 38.6 a |
γ-Terpinene | 3467.4 ± 231.0 a | 3451.8 ± 65.1 a | 3360.6 ± 174.2 a | 3253.4 ± 132.9 a |
Linalool | 240.1 ± 8.7 a | 244.1 ± 7.5 a | 236.0 ± 11.2 a | 222.0 ± 14.5 a |
Sum of terpenes | 29,095.9 ± 587.4 a | 28,870.0 ± 571.3 a | 28,806.2 ± 419.1 a | 28,797.8 ± 475.7 a |
Organic acids | ||||
Acetic acid | 46.7 ± 3.9 a | 40.9 ± 2.6 a | 47.7 ± 1.4 a | 45.1 ± 3.4 a |
Butanoic acid | 41.4 ± 3.7 a | 36.7 ± 2.9 a | 43.8 ± 0.4 a | 42.3 ± 4.7 a |
Pentanoic acid | 50.5 ± 3.2 a | 47.9 ± 4.1 a | 50.6 ± 3.3 a | 55.7 ± 4.2 a |
Sum of organic acids | 138.6 ± 6.3 a | 125.5 ± 5.7 a | 142.2 ± 3.6 a | 143.2 ± 7.2 a |
Products | Responses Total Number | Correct Responses | Maximum Number of Responses | α = 0.01 | |
---|---|---|---|---|---|
Soup | Fresh vs. Frozen | 25 | 22 | 17 | significant |
Tortellini | Fresh vs. Frozen | 25 | 22 | 17 | significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dottori, I.; Urbani, S.; Sordini, B.; Servili, M.; Selvaggini, R.; Veneziani, G.; Ranucci, D.; Taticchi, A.; Esposto, S. Frozen Ready-to-(h)eat Meals: Evolution of Their Quality during a Real-Time Short Shelf Life. Foods 2023, 12, 1087. https://doi.org/10.3390/foods12051087
Dottori I, Urbani S, Sordini B, Servili M, Selvaggini R, Veneziani G, Ranucci D, Taticchi A, Esposto S. Frozen Ready-to-(h)eat Meals: Evolution of Their Quality during a Real-Time Short Shelf Life. Foods. 2023; 12(5):1087. https://doi.org/10.3390/foods12051087
Chicago/Turabian StyleDottori, Ilenia, Stefania Urbani, Beatrice Sordini, Maurizio Servili, Roberto Selvaggini, Gianluca Veneziani, David Ranucci, Agnese Taticchi, and Sonia Esposto. 2023. "Frozen Ready-to-(h)eat Meals: Evolution of Their Quality during a Real-Time Short Shelf Life" Foods 12, no. 5: 1087. https://doi.org/10.3390/foods12051087
APA StyleDottori, I., Urbani, S., Sordini, B., Servili, M., Selvaggini, R., Veneziani, G., Ranucci, D., Taticchi, A., & Esposto, S. (2023). Frozen Ready-to-(h)eat Meals: Evolution of Their Quality during a Real-Time Short Shelf Life. Foods, 12(5), 1087. https://doi.org/10.3390/foods12051087