Averrhoa carambola L., Cyphomandra betacea, Myrciaria dubia as a Source of Bioactive Compounds of Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Antioxidant Capacity
2.2.1. DPPH Assay
2.2.2. ABTS Assay
2.3. Phenolic Compounds
2.3.1. Total Polyphenol Content
2.3.2. Fast Blue BB Assay
2.4. Total Flavonoid Content
2.5. Total Anthocyanins
2.6. HPLC Analysis of Phenolic Acids and Flavonoids
2.7. HPLC Analysis of Ascorbic Acid and β-Caroten
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luan, F.; Peng, L.; Lei, Z.; Jia, X.; Zou, J.; Yang, Y.; He, X.; Zeng, N. Traditional uses, phytochemical constituents and pharmacological properties of Averrhoa carambola L.: A review. Front. Pharmacol. 2021, 12, 699899. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.S.; Sun, W.; Xu, Z.C.; Zhai, J.W.; Li, X.P.; Li, C.R.; Zhang, D.; Wu, X.; Shen, L.; Chen, J.; et al. The genome sequence of Star Fruit (Averrhoa carambola). Hortic. Res. 2020, 7, 95. [Google Scholar] [CrossRef]
- Dasgupta, P.; Chakraborty, P.; Bala, N.N. Averrhoa carambola: An updated review. Int. J. Pharm. Sci. Rev. Res. 2013, 2, 54–63. [Google Scholar]
- Ferrara, L. Averrhoa carambola Linn: Is it really a toxic fruit? Int. J. Med. Rev. 2018, 5, 2–5. [Google Scholar] [CrossRef]
- Lakmal, K.; Yasawardene, P.; Jayarajah, U.; Seneviratne, S.L. Nutritional and medicinal properties of Star fruit (Averrhoa carambola): A review. Food Sci. Nutr. 2021, 9, 1810–1823. [Google Scholar] [CrossRef] [PubMed]
- Muthu, N.; Lee, S.; Phua, K.; Bhorel, S. Nutritional, medicinal and toxicological attributes of star-fruits (Averrhoa carambola L.): A review. J. Bioinform. 2016, 12, 420–424. [Google Scholar] [CrossRef]
- Mwithiga, G.; Mukolwe, M.I.; Shitanda, D.; Karanja, P.N. Evaluation of the effect of ripening on the sensory quality and properties of tamarillo (Cyphomandra betaceae) fruits. J. Food Eng. 2007, 79, 117–123. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F. Tamarillo (Solanum betaceum): Chemical composition, biological properties, and product innovation. Trends Food Sci. Technol. 2020, 95, 45–58. [Google Scholar] [CrossRef]
- Ghosal, M.; Chhetri, P.K.; Ghosh, M.K.; Mandal, P. Changes in antioxidant activity of Cyphomandra betacea (Cav.) Sendtn. Fruits during maturation and senescence. Int. J. Food Prop. 2013, 16, 1552–1564. [Google Scholar] [CrossRef]
- Acosta-Quezada, P.G.; Raigon, M.D.; Riofrío-Cuenca, T.; García-Martínez, M.D.; Plazas, M.; Burneo, J.I.; Figueroa, J.G.; Vilanova, S.; Prohens, J. Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem. 2015, 169, 327–335. [Google Scholar]
- Langley, P.C.; Pergolizzi, J.V.; Taylor, R.; Ridgway, C. Antioxidant and associated capacities of Camu camu (Myrciaria dubia): A systematic review. J. Altern. Complement. Med. 2015, 21, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, J.P.L.; Souza, F.C.A. Camu-Camu super fruit (Myrciaria dubia (H.B.K) Mc Vaugh) at different maturity stages. Afr. J. Agric. Res. 2016, 11, 2519–2523. [Google Scholar] [CrossRef]
- Aguiar, J.P.L.; Souza, F.C.A. Camu-Camu (Myrciaria dubia) from the Amazon. Int. J. Adv. Eng. Res. Sci. 2021, 8, 345–346. [Google Scholar] [CrossRef]
- Akter, M.S.; Oh, S.; Eun, J.B.; Ahmed, M. Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food Res. Int. 2011, 44, 1728–1732. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as plant-based nutraceuticals: Health effects, encapsulation, nano-delivery, and application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef] [PubMed]
- Cebulak, T.; Krochmal-Marczak, B.; Stryjecka, M.; Krzysztofik, B.; Sawicka, B.; Danilcenko, H.; Jarienè, E. Phenolic acid content and antioxidant properties of edible potato (Solanum tuberosum L.) with various tuber flesh colours. Foods 2023, 12, 100. [Google Scholar] [CrossRef]
- Du, H.; Wu, J.; Li, H.; Zhong, P.-X.; Xu, Y.-J.; Li, C.-H.; Wang, L.-S. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chem. 2013, 141, 4260–4268. [Google Scholar] [CrossRef]
- Kranz, S.; Guellmar, A.; Olschowsky, P.; Tonndorf-Martini, S.; Heyder, M.; Pfister, W.; Reise, M.; Sigusch, B. Antimicrobial effect of natural berry juices on common oral pathogenic bacteria. Antibiotics 2020, 9, 533. [Google Scholar] [CrossRef]
- Yen, G.; Chen, H.Y. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin—Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Medina, M.B. Determination of the total phenolics in juices and superfruits by a novel chemical method. J. Funct. Foods 2011, 3, 79–87. [Google Scholar] [CrossRef]
- Kapci, B.; Neradova, E.; Cizkova, H.; Voldrich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant capacity of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Krygier, K.; Sosulski, F.; Hogge, L. Free esterified and insoluble bound phenolic acids. I. Extractions and purification procedure. J. Agric. Food Chem. 1982, 30, 330–334. [Google Scholar] [CrossRef]
- Hertog, M.G.L.; Hollman, P.C.H.; Venema, D.P. Optimization of quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food Chem. 1992, 40, 1591–1598. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E. Comparative analysis of the antioxidant capacity of selected fruit juices and nectars: Chokeberry juice as a rich source of polyphenols. Int. J. Food Prop. 2016, 19, 1317–1324. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Przygoński, K.; Wojtowicz, E. The antioxidant properties of exotic fruit juices from acai, maqui berry and noni berries. Eur. Food Res. Technol. 2018, 244, 1897–1905. [Google Scholar] [CrossRef]
- Schimpf, K.; Thompson, L.; Baugh, S. Vitamin C in infant formula and adult/pediatric nutritional formula by HPLC with UV detection: First Action 2012.21. J. AOAC Int. 2013, 96, 802–807. [Google Scholar] [CrossRef]
- EN-12823-2:2000; Foodstuffs—Determination of vitamin A by high performance liquid chromatography—Part 2: Measurment of β-carotene. Standards Content: Geneva, Switzerland, 2000.
- Ruiz-Torralba, A.; Guerra-Hernández, E.; García-Villanova, B. Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTA J. Food 2018, 16, 1131–1138. [Google Scholar] [CrossRef]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Kang, J.; Thakali, K.M.; Xie, C.; Kondo, M.; Tong, Y.; Ou, B.; Jensen, G.; Medina, M.B.; Schauss, A.G.; Wu, X. Bioactivities of açaí (Euterpe precatoria Mart.) fruit pulp, superior antioxidant and anti-inflammatory properties to Euterpe oleracea Mart. Food Chem. 2012, 133, 671–677. [Google Scholar] [CrossRef]
- Roslan, A.; Ando, Y.; Azlan, A.; Ismail, A. Effect of glucose and ascorbic acid on total phenolic content estimation of green tea and commercial fruit juices by using Folin-Ciocalteu and Fast Blue BB assays. Pertanika J. Trop. Agric. Sci. 2019, 42, 545–556. [Google Scholar]
- Rufino, M.S.M.; Alves, R.E.; Fernandes, F.A.N.; Brito, E.S. Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Res. Int. 2011, 44, 2072–2075. [Google Scholar] [CrossRef] [Green Version]
- Yuyama, K.; Aguiar, J.P.L.; Yuyama, L.K.O. Camu-camu: Um fruto antástico como fonte de vitamina C. Acta Amaz. 2002, 32, 169–174. [Google Scholar] [CrossRef]
- Muñoz-Jauregui, A.M.; Ramos-Escudero, F.; Alvarado-Ortiz Ureta, C.; Castañeda Castañeda, B.; Lizaraso Caparó, F. Evaluación de compuestos con actividad biológica en cáscara de camu camu (Myrciaria dubia), guinda (Prunus serotina), tomate de árbol (Cyphomandra betacea) y carambola (Averrhoa carambola L.) cultivadas en Perú. Rev. Soc. Chem. Perú 2009, 75, 431–438. [Google Scholar]
- Orqueda, M.E.; Torres, S.; Zampini, I.C.; Cattaneo, F.; Di Pardo, A.F.; Valle, E.M.; Jiménez-Aspee, F.; Schmeda-Hirschmann, G.; Isla, M.I. Integral use of Argentinean Solanum betaceum red fruits as functional food ingredient to prevent metabolic syndrome: Effect of in vitro simulated gastroduodenal digestion. Heliyon 2020, 6, e03387. [Google Scholar] [CrossRef]
- Reyes-Garcia, V.; Ttpsaus, A.; Perez-Chabel, L.; Juarez, Z.N.; Cardoso-Ugarte, G.A.; Perez-Armendariz, B. Exploration of the potential bioactive molecules of tamarillo (Cyphomandra betacea): Antioxidant properties and prebiotic index. Appl. Sci. 2021, 11, 11322. [Google Scholar] [CrossRef]
- Espin, S.; Gonzalez-Manzano, S.; Taco, V.; Poveda, C.; Ayuda-Durán, B.; Gonzalez-Paramas, A.M.; Santos-Buelga, C. Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chem. 2016, 194, 1073–1080. [Google Scholar] [CrossRef]
- Khanam, Z.; Sam, K.H.; Zakaria, N.H.B.M.; Ching, C.H.; Bhat, I.U.H. Determination of polyphenolic content, HPLC analyses and DNA cleavage activity of Malaysian Averrhoa carambola L. fruit extracts. J. King Saud Univ. Sci. 2015, 27, 331–337. [Google Scholar] [CrossRef]
- Gunawardena, D.C.; Jayasinghe, L.; Fujimoto, Y. Phytotoxic constituents of the fruits of Averrhoa carambola. Chem. Nat. Compd. 2015, 51, 532–533. [Google Scholar] [CrossRef]
- Moresco, H.H.; Queiroz, G.S.; Pizzolatti, M.G.; Brighente, I.M.C. Chemical constituents and evaluation of the toxic and antioxidant activities of Averrhoa carambola leaves. Rev. Bras. Farmacogn. 2012, 22, 319–324. [Google Scholar] [CrossRef]
- Chirinos, R.; Galarza, J.; Betalleluz-Pallardel, I.; Pedreschi, R.; Campos, D. Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciara dubia [H.B.K.] McVaugh) fruit at different maturity stages. Food Chem. 2010, 120, 1019–1024. [Google Scholar] [CrossRef]
- Reynertson, K.A.; Yang, H.; Jiang, B.; Basile, M.J.; Kennelly, E.J. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem. 2008, 109, 883–890. [Google Scholar] [CrossRef]
- Fidelis, M.; do Carmo, M.A.V.; da Cruz, T.M.; Azevedo, L.; Myoda, T.; Furtado, M.M.; Marques, M.B.; Sant’Ana, A.S.; Genovese, M.I.; Oh, W.Y.; et al. Camu-camu seed (Myrciaria dúbia)—From side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chem. 2020, 310, 125909. [Google Scholar] [CrossRef]
- Diep, T.T.; Rush, E.C.; Yoo, M.J.Y. Tamarillo (Solanum betaceum Cav.): A review of physicochemical and bioactive properties and potential applications. Food Rev. Int. 2022, 38, 1343–1367. [Google Scholar] [CrossRef]
- Santos, I.L.; Miranda, L.C.F.; da Cruz Rodrigues, A.M.; da Silva, L.H.M.; Amante, E.R. Camu-camu [Myrciaria dubia (HBK) McVaugh]: A review of properties and proposals of products for integral valorization of raw material. Food Chem. 2022, 372, 131290. [Google Scholar] [CrossRef]
Averrhoa carambola L. (Star Fruit) | Cyphomandra betacea (Tamarillo) | Myrciaria dubia (Camu Camu) | |
---|---|---|---|
pH | 3.5 ± 0.1 a | 3.5 ± 0.1 a | 3.0 ± 0.1 b |
DPPH [mg Tx L−1] | 1268 ± 80 b | 858 ± 15 c | 5763 ± 247 a |
ABTS [mg Tx L−1] | 1906 ± 146 b | 1214 ± 27 c | 6981 ± 349 a |
TP [mg GAE L−1] | 2464 ± 153 b | 1957 ± 187 b | 8290 ± 254 a |
FBBB [mg GAE L−1] | 3356 ± 87 b | 2400 ± 63 c | 4799 ± 24 a |
TF [mg CAE L−1] | 1345 ± 17 a | 206 ± 15 b | tr. |
TA (mg CGE L−1) | tr. | 5796 ± 72 a | 252 ± 10 b |
DPPH | ABTS | TP | FBBB | TF | TA | Vit. C | β-Carotene | |
---|---|---|---|---|---|---|---|---|
DPPH | 0.999 | 0.999 | 0.945 | −0.557 | −0.532 | 0.995 | −0.599 | |
ABTS | 0.999 | 0.998 | 0.955 | −0.528 | −0.560 | 0.992 | −0.626 | |
TP | 0.999 | 0.998 | 0.942 | −0.560 | −0.527 | 0.995 | −0.594 | |
FBBB | 0.945 | 0.955 | 0.942 | −0.256 | −0.778 | 0.910 | −0.826 | |
TF | −0.557 | −0.528 | −0.560 | −0.256 | −0.407 | −0.633 | −0.332 | |
TA | −0.532 | −0.560 | −0.527 | −0.778 | −0.407 | −0.449 | 0.996 | |
Vit. C | 0.995 | 0.992 | 0.995 | 0.910 | −0.633 | −0.449 | −0.520 | |
β-carotene | −0.599 | −0.626 | −0.594 | −0.826 | −0.332 | 0.996 | −0.520 |
Compounds | Averrhoa carambola L. (Star Fruit) | Cyphomandra betacea (Tamarillo) | Myrciaria dubia (Camu Camu) |
---|---|---|---|
Free phenolic acids | |||
Gallic acid | nd | nd | nd |
Chlorogenic acid | nd | 24.1 ± 0.2 | nd |
Caffeic acid | nd | 2.6 ± 0.1 | tr. |
Coumaric acid | nd | nd | nd |
Ferulic acid | 0.2 ± 0.1 | nd | nd |
Bound phenolic acids | |||
Gallic acid | nd | 1.5 ± 0.1 a | 0.7 ± 0.1 b |
Caffeic acid | nd | 80.6 ± 0.6 | tr. |
Coumaric acid | 6.0 ± 0.1 a | 3.8 ± 0.1 b | 0.2 ± 0.1 c |
Ferulic acid | 2.7 ± 0.1 b | 11.8 ± 0.1 a | tr. |
Flavanols | |||
Catechin | 1.4 ± 0.1 | tr. | tr. |
Epicatechin | 12.1 ± 0.1 | nd | nd |
Flavonols | |||
Myricetin | 0.4 ± 0.1 | nd | nd |
Quercetin | 2.3 ± 0.2 | tr. | nd |
Kaempferol | tr. | 2.3 ± 0.2 a | 0.4 ± 0.1 b |
Flavones | |||
Luteolin | nd | nd | nd |
Apigenin | 2.6 ± 0.1 a | tr. | 1.8 ± 0.4 b |
Stilbenes | |||
Resveratrol | nd | 24.9 ± 0.4 | nd |
Vitamins | |||
Ascorbic acid | 36.0 ± 1.4 c | 220.7 ± 0.7 b | 8410.8 ± 16.9 a |
β-carotene | 0.13 ± 0.01 b | 2.52 ± 0.03 a | tr. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, D.; Gośliński, M.; Przygoński, K.; Wojtowicz, E. Averrhoa carambola L., Cyphomandra betacea, Myrciaria dubia as a Source of Bioactive Compounds of Antioxidant Properties. Foods 2023, 12, 753. https://doi.org/10.3390/foods12040753
Nowak D, Gośliński M, Przygoński K, Wojtowicz E. Averrhoa carambola L., Cyphomandra betacea, Myrciaria dubia as a Source of Bioactive Compounds of Antioxidant Properties. Foods. 2023; 12(4):753. https://doi.org/10.3390/foods12040753
Chicago/Turabian StyleNowak, Dariusz, Michał Gośliński, Krzysztof Przygoński, and Elżbieta Wojtowicz. 2023. "Averrhoa carambola L., Cyphomandra betacea, Myrciaria dubia as a Source of Bioactive Compounds of Antioxidant Properties" Foods 12, no. 4: 753. https://doi.org/10.3390/foods12040753
APA StyleNowak, D., Gośliński, M., Przygoński, K., & Wojtowicz, E. (2023). Averrhoa carambola L., Cyphomandra betacea, Myrciaria dubia as a Source of Bioactive Compounds of Antioxidant Properties. Foods, 12(4), 753. https://doi.org/10.3390/foods12040753