Post-Cooking Growth and Survival of Bacillus cereus Spores in Rice and Their Enzymatic Activities Leading to Food Spoilage Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Survival and Outgrowth of Bacillus cereus Spores in Rice after Cooking
2.2.1. Raw Rice Samples
2.2.2. Preparation of Spore Suspension
2.2.3. Post-Cooking Survival and Growth of Bacillus cereus in Rice
2.2.4. Determination of Extracellular Enzymatic Activities of Bacillus cereus
3. Results
3.1. Survival and Outgrowth of Bacillus cereus Spores in Rice after Cooking
3.2. Determination of Extracellular Enzymatic Activities of Bacillus cereus
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Setlow, P. Spore resistance properties. Microbiol. Spectr. 2014, 2, 563. [Google Scholar] [CrossRef]
- Tewari, A.; Singh, S.P.; Singh, R. Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. J. Food Sci. Technol. 2015, 52, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Warda, A.K.; den Besten, H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Int. J. Food Microbiol. 2015, 201, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Vidic, J.; Chaix, C.; Manzano, M.; Heyndrickx, M. Food sensing: Detection of Bacillus cereus spores in dairy products. Biosensors 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Adame-Gómez, R.; Itzel-Maralhi, C.F.; Lilia-Lizette, G.D.; Yesenia, R.S.; Abigail, P.V.; Carlos, O.P.; Maria-Cristina, S.D.; Arturo, R.P. Biofilm production by enterotoxigenic strains of Bacillus cereus in different materials and under different environmental conditions. Microorganisms 2020, 8, 1071. [Google Scholar] [CrossRef] [PubMed]
- Warda, A.K.; Tempelaars, M.H.; Abee, T.; Nierop Groot, M.N. Recovery of heat treated Bacillus cereus spores is affected by matrix composition and factors with putative functions in damage repair. Front. Microbiol. 2016, 7, 1096. [Google Scholar] [CrossRef]
- Warda, A.K.; Xiao, Y.; Boekhorst, J.; Marjon, M.H.; Groot, M.N.N.; Abee, T. Analysis of germination capacity and germinant receptor (sub)clusters of genomesequenced Bacillus cereus environmental isolates and model strains. Appl. Environ. Microbiol. 2017, 83, e02490-16. [Google Scholar] [CrossRef]
- Kumari, S.; Sarkar, P.K. Prevalence and characterization of Bacillus cereus group from various marketed dairy products in India. Dairy Sci. Technol. 2014, 94, 483–497. [Google Scholar] [CrossRef]
- Setlow, P. Germination of spores of Bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [Google Scholar] [CrossRef]
- Tirloni, E.; Stella, S.; Bernardi, C.; Mazzantini, D.; Celandroni, F.; Ghelardi, E. Identification and pathogenic potential of Bacillus cereus strains isolated from a dairy processing plant producing pdo taleggio cheese. Microorganisms 2020, 8, 949. [Google Scholar] [CrossRef]
- Desai, S.V.; Varadaraj, M.C. Behavioural pattern of vegetative cells and spores of Bacillus cereus as affected by time-temperature combinations used in processing of Indian traditional foods. J. Food Sci. Technol. 2010, 47, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Lee, C.L.; Yoon, K.S. Risk comparison of the diarrheal and emetic type of Bacillus cereus in Tofu. Microorganisms 2019, 7, 536. [Google Scholar] [CrossRef]
- Sinnelä, M.T.; Park, Y.K.; Lee, J.H.; Jeong, K.C.C.; Kim, Y.W.; Hwang, H.J.; Mah, J.H. Effects of calcium and manganese on sporulation of Bacillus species involved in food poisoning and spoilage. Foods 2019, 8, 119. [Google Scholar] [CrossRef]
- Soni, A.; Oey, I.; Silcock, P.; Bremer, P. Bacillus spores in the food industry: A review on resistance and response to novel inactivation technologies. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.K.; Golden, C.E.; Mishra, A.; Harrison, M.A.; Mohr, T.; Silverman, M. Predictive model for growth of Bacillus cereus during cooling of cooked rice. Int. J. Food Microbiol. 2019, 290, 49–58. [Google Scholar] [CrossRef]
- Kim, S.A.; Park, H.J.; Cho, T.J.; Rhee, M.S. Toxic potential of Bacillus cereus isolated from fermented alcoholic beverages. Food Res. Int. 2020, 137, 109361. [Google Scholar] [CrossRef] [PubMed]
- Seung, K.J.; Kang, S.H.; Cho, S.H.; Beom, K.J. Distribution and toxin genes of Bacillus cereus spores isolated from vegetables. Acad. J. Sci. Res. 2017, 5, 330–336. [Google Scholar]
- Martinelli, D.; Fortunato, F.; Tafuri, S.; Cozza, V.; Chironna, M.; Germinario, C.; Pedalino, B.; Prato, R. Lessons learnt from a birthday party: A Bacillus cereus outbreak, Bari, Italy, January 2012. Ann. Inst. Super Sanita 2013, 49, 391–394. [Google Scholar] [CrossRef]
- Naranjo, M.; Denayer, S.; Botteldoorn, N.; Delbrassinne, L.; Veys, J.; Waegenaere, J.; Sirtaine, N.; Driesen, R.B.; Sipido, K.R.; Mahillon, J.; et al. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 2011, 49, 4379–4381. [Google Scholar] [CrossRef]
- Tatsinkou, F.B.; Tatah, K.A.J.F.; Nchanji, G.T.; Wanji, S. Occurrence, heat and antibiotic resistance profile of Bacillus cereus isolated from raw cow and processed milk in Mezam Division, Cameroon. Int. J. Dairy Technol. 2017, 70, 43–51. [Google Scholar] [CrossRef]
- Kumari, S.; Sarkar, P.K. Bacillus cereus hazard and control in industrial dairy processing environment. Food Control 2016, 69, 20–29. [Google Scholar] [CrossRef]
- Yibar, A.; Cetinkaya, F.; Soyutemiz, G.E. Detection of rope-producing Bacillus in bread and identification of isolates to species level by vitek 2 system. J. Biol. Environ. Sci. 2012, 6, 243–248. [Google Scholar]
- Saleh, A.; Wang, P.; Wang, N.; Yang, L.; Xiao, Z. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1070–1096. [Google Scholar] [CrossRef]
- Bennett, S.D.; Walsh, K.A.; Gould, L.H. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus—United States, 1998–2008. Clin. Infect. Dis. 2013, 57, 425–433. [Google Scholar] [CrossRef]
- Delbrassinne, L.; Andjelkovic, M.; Dierick, K.; Denayer, S.; Mahillon, J.; Van Loco, J. Prevalence and levels of Bacillus cereus emetic toxin in rice dishes randomly collected from restaurants and comparison with the levels measured in a recent foodborne outbreak. Foodborne Pathog. Dis. 2012, 9, 809–814. [Google Scholar] [CrossRef]
- Fricker, M.; Messelhäußer, U.; Busch, U.; Scherer, S.; Ehling-Schulz, M. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl. Environ. Microbiol. 2007, 73, 1892–1898. [Google Scholar] [CrossRef]
- Müftügil, N. Chilling rate of cooked rice and risk of Bacillus cereus growth in restaurant operation. Food Health 2016, 2, 184–188. [Google Scholar] [CrossRef]
- Osimani, A.; Aquilanti, L.; Clementi, F. Bacillus cereus foodborne outbreaks in mass catering. Int. J. Hosp. Manag. 2018, 72, 145–153. [Google Scholar] [CrossRef]
- Rodrigo, D.; Rosell, C.M.; Martinez, A. Risk of Bacillus cereus in relation to rice and derivatives. Foods 2021, 10, 302. [Google Scholar] [CrossRef]
- Wang, J.; Ding, T.; Oh, D.H. Effect of temperatures on the growth, toxin production, and heat resistance of Bacillus cereus in cooked rice. Foodborne Pathog. Dis. 2014, 11, 133–137. [Google Scholar] [CrossRef]
- Food Safety Authority of Ireland (FSAI). Bacillus cereus. Microb. Factsheet Ser. 2016, 2, 1–4. [Google Scholar]
- Food and Drug Administration (FDA). Food Code 2017. US Public Health Service. Available online: https://www.fda.gov/media/110822/download (accessed on 30 October 2022).
- Navaneethan, Y.; Effarizah, M.E. Prevalence, toxigenic profiles, multidrug resistance, and biofilm formation of Bacillus cereus isolated from ready-to eat cooked rice in Penang, Malaysia. Food Control 2021, 121, 107553. [Google Scholar] [CrossRef]
- Ankolekar, C.; Labbé, R.G. Survival during cooking and growth from spores of diarrheal and emetic types of Bacillus cereus in rice. J. Food Prot. 2009, 72, 2386–2389. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Moktan, B.; Sarkar, P.K. Characteristics of Bacillus cereus isolates from legume-based Indian fermented foods. Food Control 2007, 18, 1555–1564. [Google Scholar] [CrossRef]
- Ramnath, L.; Sithole, B.; Govinden, R. Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry. Biotechnol. Rep. 2017, 15, 114–124. [Google Scholar] [CrossRef]
- Carlin, F.; Fricker, M.; Pielaat, A.; Heisterkamp, S.; Shaheen, R.; Salonen, M.S.; Svensson, B.; Nguyen-the, C.; Ehling-Schulz, M. Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int. J. Food Microbiol. 2006, 109, 132–138. [Google Scholar] [CrossRef]
- Bae, Y.M.; Kim, B.R.; Lee, S.Y.; Cha, M.H.; Park, K.H.; Chung, M.S.; Ryu, K. Growth and predictive model of Bacillus cereus on blanched spinach with or without seasoning at various temperatures. Food Sci. Biotechnol. 2012, 21, 503–508. [Google Scholar] [CrossRef]
- Ubong, A.; New, C.Y.; Chai, L.C.; Nur Fatihah, A.; Nur Hasria, K.; Nishibuchi, M.; Son, R. Impact of temperature on Bacillus cereus spore germination in ultra-high temperature chocolate milk. Food Res. 2019, 3, 808–813. [Google Scholar] [CrossRef]
- Zhang, Y.; Mathys, A. Superdormant spores as a hurdle for gentle germination-inactivation based spore control strategies. Front. Microbiol. 2019, 10, 3163. [Google Scholar] [CrossRef]
- Ullah, S.; Ai, C.; Huang, S.; Zhang, J.; Jia, L.; Ma, J.; Zhou, W.; He, P. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil. PLoS ONE 2019, 14, e0223026. [Google Scholar] [CrossRef]
- Cui, Y.F.; Liu, Y.; Liu, X.Y.; Xia, X.; Ding, S.Y.; Zhu, K. Evaluation of the toxicity and toxicokinetics of cereulide from an emetic Bacillus cereus strain of milk origin. Toxins 2016, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Biesta-Peters, E.G.; Dissel, S.; Reij, M.W.; Zwietering, M.H.; In’t Veld, P.H. Characterization and exposure assessment of emetic Bacillus cereus and cereulide production in food products on the Dutch market. J. Food Prot. 2016, 79, 30–38. [Google Scholar] [CrossRef] [PubMed]
Strains | Toxin Genes Profiles |
---|---|
ATCC® 14579TM | hblACD, nheABC, cytK, entFM |
DSMZ 4312 | ces |
USMBC 01 | nheABC, cytK, entFM |
USMBC 02 | nheBC, cytK, entFM |
USMBC 03 | hblCD, nheABC, cytK, entFM, ces |
USMBC 04 | nheBC, cytK, entFM, ces |
USMBC 05 | hblCD, nheBC, cytK, entFM, ces |
USMBC 06 | ces |
Strain | Temperatures (°C) | Time Interval | Mean log CFU/g ± SD |
---|---|---|---|
DSMZ 4312 | 4 | Up to 7 days | ND |
25 | Up to 36 h | ND | |
48 h | 3.48 ± 0.05 | ||
30 | Up to 12 h | ND | |
18 h | 3.92 ± 0.08 | ||
24 h | 4.41 ± 0.11 | ||
ATCC® 14579TM | 4 | Up to 7 days | ND |
25 | Up to 48 h | ||
30 | Up to 24 h | ||
USMBC 01 | 4 | Up to 7 days | ND |
25 | Up to 48 h | ||
30 | Up to 24 h | ||
USMBC 02 | 4 | Up to 7 days | ND |
25 | 12 h | ND | |
24 h | LOQ | ||
36 h | 4.12 ± 0.12 | ||
48 h | 4.92 ± 0.10 | ||
30 | 6 h | ND | |
12 h | LOQ | ||
18 h | 3.78 ± 0.18 | ||
24 h | 5.22 ± 0.05 | ||
USMBC 03 | 4 | Up to 7 days | ND |
25 | Up to 48 h | ND | |
30 | Up to 24 h | ND | |
USMBC 04 | 4 | Up to 7 days | ND |
25 | Up to 24 h | ND | |
36 h | 3.32 ± 0.20 | ||
48 h | 3.88 ± 0.14 | ||
30 | 6 h | ND | |
12 h | 3.87 ± 0.16 | ||
18 h | 5.44 ± 0.14 | ||
24 h | ND | ||
USMBC 05 | 4 | Up to 7 days | ND |
25 | Up to 48 h | ND | |
30 | Up to 18 h | ND | |
24 h | LOQ | ||
USMBC 06 | 4 | Up to 7 days | ND |
25 | Up to 48 h | ND | |
30 | Up to 24 h | ND |
Strain | 25 °C | 30 °C | ||
---|---|---|---|---|
Generation Time (h) | SGR (h−1) | Generation Time (h) | SGR (h−1) | |
DSMZ 4312 | ND | ND | 3.72 | 0.19 |
USMBC 02 | 4.55 | 0.15 | 1.26 | 0.55 |
USMBC 04 | 6.49 | 0.11 | 1.16 | 0.60 |
Amylase | Protease | Lipase | |
---|---|---|---|
ATCC® 14579TM | + | + | + |
DSMZ 4312 | − | + | + |
USMBC 01 | − | + | + |
USMBC 02 | − | + | + |
USMBC 03 | − | + | − |
USMBC 04 | − | + | − |
USMBC 05 | − | + | − |
USMBC 06 | − | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navaneethan, Y.; Effarizah, M.E. Post-Cooking Growth and Survival of Bacillus cereus Spores in Rice and Their Enzymatic Activities Leading to Food Spoilage Potential. Foods 2023, 12, 626. https://doi.org/10.3390/foods12030626
Navaneethan Y, Effarizah ME. Post-Cooking Growth and Survival of Bacillus cereus Spores in Rice and Their Enzymatic Activities Leading to Food Spoilage Potential. Foods. 2023; 12(3):626. https://doi.org/10.3390/foods12030626
Chicago/Turabian StyleNavaneethan, Yugenraj, and Mohd Esah Effarizah. 2023. "Post-Cooking Growth and Survival of Bacillus cereus Spores in Rice and Their Enzymatic Activities Leading to Food Spoilage Potential" Foods 12, no. 3: 626. https://doi.org/10.3390/foods12030626
APA StyleNavaneethan, Y., & Effarizah, M. E. (2023). Post-Cooking Growth and Survival of Bacillus cereus Spores in Rice and Their Enzymatic Activities Leading to Food Spoilage Potential. Foods, 12(3), 626. https://doi.org/10.3390/foods12030626