Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products
Abstract
:1. Introduction
2. Antioxidant Packaging
3. Antimicrobial Packaging
4. pH-Sensitive Film
5. Application of Packaging Incorporated with FWBP on Food Products
5.1. Seafood
5.2. Meat
6. Consumer Acceptance of Meat and Seafood Products Packaged in Active and Intelligent Packaging
7. Challenges and Recommendations to Improve the Commercialization of FWBP in the Packaging Industry
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bartocci, P.; Zampilli, M.; Liberti, F.; Pistolesi, V.; Massoli, S.; Bidini, G.; Fantozzi, F. LCA Analysis of Food Waste Co-Digestion. Sci. Total Environ. 2020, 709, 136187. [Google Scholar] [CrossRef] [PubMed]
- Read, Q.D.; Brown, S.; Cuéllar, A.D.; Finn, S.M.; Gephart, J.A.; Marston, L.T.; Meyer, E.; Weitz, K.A.; Muth, M.K. Assessing the Environmental Impacts of Halving Food Loss and Waste along the Food Supply Chain. Sci. Total Environ. 2020, 712, 136255. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Towards Transparent Valorization of Food Surplus, Waste and Loss: Clarifying Definitions, Food Waste Hierarchy, and Role in the Circular Economy. Sci. Total Environ. 2020, 706, 136033. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Abdelkader, A.; Farrell, C.; Rooney, D.; Morgan, K. Reusing, Recycling and Up-Cycling of Biomass: A Review of Practical and Kinetic Modelling Approaches. Fuel Process. Technol. 2019, 192, 179–202. [Google Scholar] [CrossRef]
- Del Rio Osorio, L.L.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Fernandez, M.V.; Bengardino, M.; Jagus, R.J.; Agüero, M.V. Enrichment and Preservation of a Vegetable Smoothie with an Antioxidant and Antimicrobial Extract Obtained from Beet By-Products. Lwt 2020, 117, 108622. [Google Scholar] [CrossRef]
- Abedini, A.; Amiri, H.; Karimi, K. Efficient Biobutanol Production from Potato Peel Wastes by Separate and Simultaneous Inhibitors Removal and Pretreatment. Renew. Energy 2020, 160, 269–277. [Google Scholar] [CrossRef]
- Oliver-Simancas, R.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alañón, M.E. Viability of Pre-Treatment Drying Methods on Mango Peel by-Products to Preserve Flavouring Active Compounds for Its Revalorisation. J. Food Eng. 2020, 279, 109953. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-Industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Saini, R.K.; Moon, S.H.; Keum, Y.S. An Updated Review on Use of Tomato Pomace and Crustacean Processing Waste to Recover Commercially Vital Carotenoids. Food Res. Int. 2018, 108, 516–529. [Google Scholar] [CrossRef]
- Poojary, M.M.; Passamonti, P. Extraction of Lycopene from Tomato Processing Waste: Kinetics and Modelling. Food Chem. 2015, 173, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wu, T.; Chu, X.; Tang, S.; Cao, W.; Liang, F.; Fang, Y.; Pan, S.; Xu, X. Fermented Blueberry Pomace with Antioxidant Properties Improves Fecal Microbiota Community Structure and Short Chain Fatty Acids Production in an in Vitro Mode. Lwt 2020, 125, 109260. [Google Scholar] [CrossRef]
- Bener, M.; Shen, Y.; Apak, R.; Finley, J.W.; Xu, Z. Release and Degradation of Anthocyanins and Phenolics from Blueberry Pomace during Thermal Acid Hydrolysis and Dry Heating. J. Agric. Food Chem. 2013, 61, 6643–6649. [Google Scholar] [CrossRef]
- Demiray, E.; Kut, A.; Ertuğrul Karatay, S.; Dönmez, G. Usage of Soluble Soy Protein on Enzymatically Hydrolysis of Apple Pomace for Cost-Efficient Bioethanol Production. Fuel 2021, 289, 119785. [Google Scholar] [CrossRef]
- Tiwari, S.; Upadhyay, N.; Malhotra, R. Three Way ANOVA for Emulsion of Carotenoids Extracted in Flaxseed Oil from Carrot Bio-Waste. Waste Manag. 2021, 121, 67–76. [Google Scholar] [CrossRef]
- Wilson, C.T.; Harte, J.; Almenar, E. Effects of Sachet Presence on Consumer Product Perception and Active Packaging Acceptability—A Study of Fresh-Cut Cantaloupe. Lwt 2018, 92, 531–539. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Rajendran, S.; Gamage, A.; Madhujith, T.; Mani, S. Antioxidant and Antimicrobial Applications of Biopolymers: A Review. Food Res. Int. 2020, 136, 109327. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Ge, Y.; Li, Y.; Bai, Y.; Yuan, C.; Wu, C.; Hu, Y. Intelligent Gelatin/Oxidized Chitin Nanocrystals Nanocomposite Films Containing Black Rice Bran Anthocyanins for Fish Freshness Monitorings. Int. J. Biol. Macromol. 2020, 155, 1296–1306. [Google Scholar] [CrossRef]
- Rather, J.A.; Akhter, N.; Ashraf, Q.S.; Mir, S.A.; Makroo, H.A.; Majid, D.; Barba, F.J.; Khaneghah, A.M.; Dar, B.N. A Comprehensive Review on Gelatin: Understanding Impact of the Sources, Extraction Methods, and Modifications on Potential Packaging Applications. Food Packag. Shelf Life 2022, 34, 100945. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gharedaghi, J.; Aliakbarlu, J.; Tajik, H. Antioxidant Potential of Apple Pomace Extract and Its Efficacy in Alginate Coating on Chemical Stability of Rainbow Trout Fillet. J. Food Meas. Charact. 2020, 14, 135–141. [Google Scholar] [CrossRef]
- Kurek, M.; Hlupić, L.; Elez Garofulić, I.; Descours, E.; Ščetar, M.; Galić, K. Comparison of Protective Supports and Antioxidative Capacity of Two Bio-Based Films with Revalorised Fruit Pomaces Extracted from Blueberry and Red Grape Skin. Food Packag. Shelf Life 2019, 20, 100315. [Google Scholar] [CrossRef]
- Kaanin-Boudraa, G.; Brahmi, F.; Wrona, M.; Nerín, C.; Moudache, M.; Mouhoubi, K.; Madani, K.; Boulekbache-Makhlouf, L. Response Surface Methodology and UPLC-QTOF-MSE Analysis of Phenolic Compounds from Grapefruit (Citrus × paradisi) by-Products as Novel Ingredients for New Antioxidant Packaging. Lwt 2021, 151, 112158. [Google Scholar] [CrossRef]
- Meng, W.; Shi, J.; Zhang, X.; Lian, H.; Wang, Q.; Peng, Y. Effects of Peanut Shell and Skin Extracts on the Antioxidant Ability, Physical and Structure Properties of Starch-Chitosan Active Packaging Films. Int. J. Biol. Macromol. 2020, 152, 137–146. [Google Scholar] [CrossRef]
- Yuan, G.; Jia, Y.; Pan, Y.; Li, W.; Wang, C.; Xu, L.; Wang, C.; Chen, H. Preparation and Characterization of Shrimp Shell Waste Protein-Based Films Modified with Oolong Tea, Corn Silk and Black Soybean Seed Coat Extracts. Polym. Test. 2020, 81, 106235. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Preserving Apple (Malus domestica Var. Anna) Fruit Bioactive Substances Using Olive Wastes Extract-Chitosan Film Coating. Inf. Process. Agric. 2017, 4, 90–99. [Google Scholar] [CrossRef]
- Aloui, H.; Baraket, K.; Sendon, R.; Silva, A.S.; Khwaldia, K. Development and Characterization of Novel Composite Glycerol-Plasticized Films Based on Sodiumcaseinate and Lipid Fraction of Tomato Pomace by-Product. Int. J. Biol. Macromol. 2019, 139, 128–138. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Jiang, W. Development of Antioxidant Chitosan Film with Banana Peels Extract and Its Application as Coating in Maintaining the Storage Quality of Apple. Int. J. Biol. Macromol. 2020, 154, 1205–1214. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Lime Peel Pectin Integrated with Coconut Water and Lime Peel Extract as a New Bioactive Film Sachet to Retard Soybean Oil Oxidation. Food Hydrocoll. 2019, 97, 105173. [Google Scholar] [CrossRef]
- Han, H.S.; Song, K. Bin Antioxidant Properties of Watermelon (Citrullus lanatus) Rind Pectin Films Containing Kiwifruit (Actinidia chinensis) Peel Extract and Their Application as Chicken Thigh Packaging. Food Packag. Shelf Life 2021, 28, 100636. [Google Scholar] [CrossRef]
- Nor Adilah, A.; Noranizan, M.A.; Jamilah, B.; Nur Hanani, Z.A. Development of Polyethylene Films Coated with Gelatin and Mango Peel Extract and the Effect on the Quality of Margarine. Food Packag. Shelf Life 2020, 26, 100577. [Google Scholar] [CrossRef]
- Liu, Z.; Du, M.; Liu, H.; Zhang, K.; Xu, X.; Liu, K.; Tu, J.; Liu, Q. Chitosan Films Incorporating Litchi Peel Extract and Titanium Dioxide Nanoparticles and Their Application as Coatings on Watercored Apples. Prog. Org. Coatings 2021, 151, 106103. [Google Scholar] [CrossRef]
- Tanwar, R.; Gupta, V.; Kumar, P.; Kumar, A.; Singh, S.; Gaikwad, K.K. Development and Characterization of PVA-Starch Incorporated with Coconut Shell Extract and Sepiolite Clay as an Antioxidant Film for Active Food Packaging Applications. Int. J. Biol. Macromol. 2021, 185, 451–461. [Google Scholar] [CrossRef]
- Tong, C.; Wu, Z.; Sun, J.; Lin, L.; Wang, L.; Guo, Y.; Huang, Z.; Wu, C.; Pang, J. Effect of Carboxylation Cellulose Nanocrystal and Grape Peel Extracts on the Physical, Mechanical and Antioxidant Properties of Konjac Glucomannan Films. Int. J. Biol. Macromol. 2020, 156, 874–884. [Google Scholar] [CrossRef]
- Matta, E.; Tavera-Quiroz, M.J.; Bertola, N. Active Edible Films of Methylcellulose with Extracts of Green Apple (Granny Smith) Skin. Int. J. Biol. Macromol. 2019, 124, 1292–1298. [Google Scholar] [CrossRef]
- Adilah, A.N.; Jamilah, B.; Noranizan, M.A.; Hanani, Z.A.N. Utilization of Mango Peel Extracts on the Biodegradable Films for Active Packaging. Food Packag. Shelf Life 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Kumar, P.; Tanwar, R.; Gupta, V.; Upadhyay, A.; Kumar, A.; Gaikwad, K.K. Pineapple Peel Extract Incorporated Poly(Vinyl Alcohol)-Corn Starch Film for Active Food Packaging: Preparation, Characterization and Antioxidant Activity. Int. J. Biol. Macromol. 2021, 187, 223–231. [Google Scholar] [CrossRef]
- Melo, P.E.F.; Silva, A.P.M.; Marques, F.P.; Ribeiro, P.R.V.; Souza Filho, M.d.s.M.; Brito, E.S.; Lima, J.R.; Azeredo, H.M.C. Antioxidant Films from Mango Kernel Components. Food Hydrocoll. 2019, 95, 487–495. [Google Scholar] [CrossRef]
- Menzel, C.; González-Martínez, C.; Vilaplana, F.; Diretto, G.; Chiralt, A. Incorporation of Natural Antioxidants from Rice Straw into Renewable Starch Films. Int. J. Biol. Macromol. 2020, 146, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Licciardello, F.; Kharchoufi, S.; Muratore, G.; Restuccia, C. Effect of Edible Coating Combined with Pomegranate Peel Extract on the Quality Maintenance of White Shrimps (Parapenaeus longirostris) during Refrigerated Storage. Food Packag. Shelf Life 2018, 17, 114–119. [Google Scholar] [CrossRef]
- Shams, B.; Ebrahimi, N.G.; Khodaiyan, F. Development of Antibacterial Nanocomposite: Whey Protein-Gelatin-Nanoclay Films with Orange Peel Extract and Tripolyphosphate as Potential Food Packaging. Adv. Polym. Technol. 2019, 2019, 1973184. [Google Scholar] [CrossRef][Green Version]
- Kakaei, S.; Shahbazi, Y. Effect of Chitosan-Gelatin Film Incorporated with Ethanolic Red Grape Seed Extract and Ziziphora clinopodioides Essential Oil on Survival of Listeria monocytogenes and Chemical, Microbial and Sensory Properties of Minced Trout Fillet. LWT—Food Sci. Technol. 2016, 72, 432–438. [Google Scholar] [CrossRef]
- Wang, K.; Lim, P.N.; Tong, S.Y.; Thian, E.S. Development of Grapefruit Seed Extract-Loaded Poly(ε-Caprolactone)/Chitosan Films for Antimicrobial Food Packaging. Food Packag. Shelf Life 2019, 22, 100396. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Uthaya Kumar, U.S.; Khalil, H.P.S.A. Biodegradable Green Packaging with Antimicrobial Functions Based on the Bioactive Compounds from Tropical Plants and Their By-Products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- Sifuentes-Nieves, I.; Hernández-Hernández, E.; Neira-Velázquez, G.; Morales-Sánchez, E.; Mendez-Montealvo, G.; Velazquez, G. Hexamethyldisiloxane Cold Plasma Treatment and Amylose Content Determine the Structural, Barrier and Mechanical Properties of Starch-Based Films. Int. J. Biol. Macromol. 2019, 124, 651–658. [Google Scholar] [CrossRef]
- Torres-León, C.; Vicente, A.A.; Flores-López, M.L.; Rojas, R.; Serna-Cock, L.; Alvarez-Pérez, O.B.; Aguilar, C.N. Edible Films and Coatings Based on Mango (Var. Ataulfo) by-Products to Improve Gas Transfer Rate of Peach. Lwt 2018, 97, 624–631. [Google Scholar] [CrossRef][Green Version]
- Oliveira, G.; Gonçalves, I.; Barra, A.; Nunes, C.; Ferreira, P.; Coimbra, M.A. Coffee Silverskin and Starch-Rich Potato Washing Slurries as Raw Materials for Elastic, Antioxidant, and UV-Protective Biobased Films. Food Res. Int. 2020, 138, 109733. [Google Scholar] [CrossRef]
- De Moraes Crizel, T.; Haas Costa, T.M.; de Oliveira Rios, A.; Hickmann Flôres, S. Valorization of Food-Grade Industrial Waste in the Obtaining Active Biodegradable Films for Packaging. Ind. Crops Prod. 2016, 87, 218–228. [Google Scholar] [CrossRef]
- Maryam Adilah, Z.A.; Jamilah, B.; Nur Hanani, Z.A. Functional and Antioxidant Properties of Protein-Based Films Incorporated with Mango Kernel Extract for Active Packaging. Food Hydrocoll. 2018, 74, 207–218. [Google Scholar] [CrossRef]
- Kuai, L.; Liu, F.; Chiou, B.S.; Avena-Bustillos, R.J.; McHugh, T.H.; Zhong, F. Controlled Release of Antioxidants from Active Food Packaging: A Review. Food Hydrocoll. 2021, 120, 106992. [Google Scholar] [CrossRef]
- Tyuftin, A.A.; Kerry, J.P. Review of Surface Treatment Methods for Polyamide Films for Potential Application as Smart Packaging Materials: Surface Structure, Antimicrobial and Spectral Properties. Food Packag. Shelf Life 2020, 24, 100475. [Google Scholar] [CrossRef]
- Mousavi Khaneghah, A.; Hashemi, S.M.B.; Limbo, S. Antimicrobial Agents and Packaging Systems in Antimicrobial Active Food Packaging: An Overview of Approaches and Interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Appendini, P.; Hotchkiss, J.H. Review of Antimicrobial Food Packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. [Google Scholar] [CrossRef]
- Chollakup, R.; Pongburoos, S.; Boonsong, W.; Khanoonkon, N.; Kongsin, K.; Sothornvit, R.; Sukyai, P.; Sukatta, U.; Harnkarnsujarit, N. Antioxidant and Antibacterial Activities of Cassava Starch and Whey Protein Blend Films Containing Rambutan Peel Extract and Cinnamon Oil for Active Packaging. Lwt 2020, 130, 109573. [Google Scholar] [CrossRef]
- Saurabh, C.K.; Gupta, S.; Variyar, P.S. Development of Guar Gum Based Active Packaging Films Using Grape Pomace. J. Food Sci. Technol. 2018, 55, 1982–1992. [Google Scholar] [CrossRef]
- Khalid, S.; Yu, L.; Feng, M.; Meng, L.; Bai, Y.; Ali, A.; Liu, H.; Chen, L. Development and Characterization of Biodegradable Antimicrobial Packaging Films Based on Polycaprolactone, Starch and Pomegranate Rind Hybrids. Food Packag. Shelf Life 2018, 18, 71–79. [Google Scholar] [CrossRef]
- Riaz, A.; Lei, S.; Akhtar, H.M.S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M.M.; Zeng, X. Preparation and Characterization of Chitosan-Based Antimicrobial Active Food Packaging Film Incorporated with Apple Peel Polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. [Google Scholar] [CrossRef]
- Radfar, R.; Hosseini, H.; Farhoodi, M.; Ghasemi, I.; Średnicka-Tober, D.; Shamloo, E.; Mousavi Khaneghah, A. Optimization of Antibacterial and Mechanical Properties of an Active LDPE/Starch/Nanoclay Nanocomposite Film Incorporated with Date Palm Seed Extract Using D-Optimal Mixture Design Approach. Int. J. Biol. Macromol. 2020, 158, 790–799. [Google Scholar] [CrossRef]
- Riahi, Z.; Priyadarshi, R.; Rhim, J.W.; Bagheri, R. Gelatin-Based Functional Films Integrated with Grapefruit Seed Extract and TiO2 for Active Food Packaging Applications. Food Hydrocoll. 2021, 112, 106314. [Google Scholar] [CrossRef]
- Serrano-León, J.S.; Bergamaschi, K.B.; Yoshida, C.M.P.; Saldaña, E.; Selani, M.M.; Rios-Mera, J.D.; Alencar, S.M.; Contreras-Castillo, C.J. Chitosan Active Films Containing Agro-Industrial Residue Extracts for Shelf Life Extension of Chicken Restructured Product. Food Res. Int. 2018, 108, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, R.; Sauraj; Kumar, B.; Deeba, F.; Kulshreshtha, A.; Negi, Y.S. Chitosan Films Incorporated with Apricot (Prunus armeniaca) Kernel Essential Oil as Active Food Packaging Material. Food Hydrocoll. 2018, 85, 158–166. [Google Scholar] [CrossRef]
- Poverenov, E.; Arnon-Rips, H.; Zaitsev, Y.; Bar, V.; Danay, O.; Horev, B.; Bilbao-Sainz, C.; McHugh, T.; Rodov, V. Potential of Chitosan from Mushroom Waste to Enhance Quality and Storability of Fresh-Cut Melons. Food Chem. 2018, 268, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Spiridon, I.; Anghel, N.C.; Darie-Nita, R.N.; Iwańczuk, A.; Ursu, R.G.; Spiridon, I.A. New Composites Based on Starch/Ecoflex®/Biomass Wastes: Mechanical, Thermal, Morphological and Antimicrobial Properties. Int. J. Biol. Macromol. 2020, 156, 1435–1444. [Google Scholar] [CrossRef]
- Vianna, T.C.; Marinho, C.O.; Marangoni Júnior, L.; Ibrahim, S.A.; Vieira, R.P. Essential Oils as Additives in Active Starch-Based Food Packaging Films: A Review. Int. J. Biol. Macromol. 2021, 182, 1803–1819. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of Anthocyanin as a Color Indicator in Gelatin Films. Food Biosci. 2020, 36, 100603. [Google Scholar] [CrossRef]
- Chi, W.; Cao, L.; Sun, G.; Meng, F.; Zhang, C.; Li, J.; Wang, L. Developing a Highly pH-Sensitive ĸ-Carrageenan-Based Intelligent Film Incorporating Grape Skin Powder via a Cleaner Process. J. Clean. Prod. 2020, 244, 118862. [Google Scholar] [CrossRef]
- Chen, S.; Wu, M.; Lu, P.; Gao, L.; Yan, S.; Wang, S. Development of pH Indicator and Antimicrobial Cellulose Nanofibre Packaging Film Based on Purple Sweet Potato Anthocyanin and Oregano Essential Oil. Int. J. Biol. Macromol. 2020, 149, 271–280. [Google Scholar] [CrossRef]
- Eze, F.N.; Jayeoye, T.J.; Singh, S. Fabrication of Intelligent pH-Sensing Films with Antioxidant Potential for Monitoring Shrimp Freshness via the Fortification of Chitosan Matrix with Broken Riceberry Phenolic Extract. Food Chem. 2022, 366, 130574. [Google Scholar] [CrossRef]
- Kuswandi, B.; Nurfawaidi, A. On-Package Dual Sensors Label Based on pH Indicators for Real-Time Monitoring of Beef Freshness. Food Control 2017, 82, 91–100. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and Intelligent Biodegradable Packaging Films Using Food and Food Waste-Derived Bioactive Compounds: A Review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Lan, W.; Wang, S.; Zhang, Z.; Liang, X.; Liu, X.; Zhang, J. Development of Red Apple Pomace Extract/Chitosan-Based Films Reinforced by TiO2 Nanoparticles as a Multifunctional Packaging Material. Int. J. Biol. Macromol. 2021, 168, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Fan, Y.; Cui, J.; Yang, L.; Su, H.; Yang, P.; Pan, J. Colorimetric Films Based on Pectin/Sodium Alginate/Xanthan Gum Incorporated with Raspberry Pomace Extract for Monitoring Protein-Rich Food Freshness. Int. J. Biol. Macromol. 2021, 185, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, J.; Zheng, P.; Kang, X.; Chen, M.; Li, Y.; Ge, Y.; Hu, Y.; Pang, J. Preparation of an Intelligent Film Based on Chitosan/Oxidized Chitin Nanocrystals Incorporating Black Rice Bran Anthocyanins for Seafood Spoilage Monitoring. Carbohydr. Polym. 2019, 222, 115006. [Google Scholar] [CrossRef] [PubMed]
- Luchese, C.L.; Abdalla, V.F.; Spada, J.C.; Tessaro, I.C. Evaluation of Blueberry Residue Incorporated Cassava Starch Film as pH Indicator in Different Simulants and Foodstuffs. Food Hydrocoll. 2018, 82, 209–218. [Google Scholar] [CrossRef]
- Ma, Q.; Ren, Y.; Gu, Z.; Wang, L. Developing an Intelligent Film Containing Vitis Amurensis Husk Extracts: The Effects of pH Value of the Film-Forming Solution. J. Clean. Prod. 2017, 166, 851–859. [Google Scholar] [CrossRef]
- Jiang, G.; Hou, X.; Zeng, X.; Zhang, C.; Wu, H.; Shen, G.; Li, S.; Luo, Q.; Li, M.; Liu, X.; et al. Preparation and Characterization of Indicator Films from Carboxymethyl-Cellulose/Starch and Purple Sweet Potato (Ipomoea batatas (L.) Lam) Anthocyanins for Monitoring Fish Freshness. Int. J. Biol. Macromol. 2020, 143, 359–372. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Herniou-Julien, C.; Álvarez, K.; Alvarez, V.A. Structural Properties and in Vitro Digestibility of Edible and pH-Sensitive Films Made from Guinea Arrowroot Starch and Wastes from Wine Manufacture. Carbohydr. Polym. 2018, 184, 135–143. [Google Scholar] [CrossRef]
- Kurek, M.; Garofulić, I.E.; Bakić, M.T.; Ščetar, M.; Uzelac, V.D.; Galić, K. Development and Evaluation of a Novel Antioxidant and pH Indicator Film Based on Chitosan and Food Waste Sources of Antioxidants. Food Hydrocoll. 2018, 84, 238–246. [Google Scholar] [CrossRef]
- Moradi, M.; Kousheh, S.A.; Razavi, R.; Rasouli, Y.; Ghorbani, M.; Divsalar, E.; Tajik, H.; Guimarães, J.T.; Ibrahim, S.A. Review of Microbiological Methods for Testing Protein and Carbohydrate-Based Antimicrobial Food Packaging. Trends Food Sci. Technol. 2021, 111, 595–609. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Anthocyanin Food Colorant and Its Application in pH-Responsive Color Change Indicator Films. Crit. Rev. Food Sci. Nutr. 2020, 61, 2297–2325. [Google Scholar] [CrossRef] [PubMed]
- Khah, M.D.; Ghanbarzadeh, B.; Roufegarinejad Nezhad, L.; Ostadrahimi, A. Effects of Virgin Olive Oil and Grape Seed Oil on Physicochemical and Antimicrobial Properties of Pectin-Gelatin Blend Emulsified Films. Int. J. Biol. Macromol. 2021, 171, 262–274. [Google Scholar] [CrossRef]
- Ardiyansyah; Apriliyanti, M.W.; Wahyono, A.; Fatoni, M.; Poerwanto, B.; Suryaningsih, W. The Potency of Betacyanins Extract from a Peel of Dragon Fruits as a Source of Colourimetric Indicator to Develop Intelligent Packaging for Fish Freshness Monitoring. IOP Conf. Ser. Earth Environ. Sci. 2018, 207, 012038. [Google Scholar] [CrossRef]
- Shruthy, R.; Jancy, S.; Preetha, R. Cellulose Nanoparticles Synthesised from Potato Peel for the Development of Active Packaging Film for Enhancement of Shelf Life of Raw Prawns (Penaeus monodon) during Frozen Storage. Int. J. Food Sci. Technol. 2021, 56, 3991–3999. [Google Scholar] [CrossRef]
- Mohebi, E.; Shahbazi, Y. Application of Chitosan and Gelatin Based Active Packaging Films for Peeled Shrimp Preservation: A Novel Functional Wrapping Design. LWT—Food Sci. Technol. 2017, 76, 108–116. [Google Scholar] [CrossRef]
- Rezaei, F.; Shahbazi, Y. Shelf-Life Extension and Quality Attributes of Sauced Silver Carp Fillet: A Comparison among Direct Addition, Edible Coating and Biodegradable Film. LWT—Food Sci. Technol. 2018, 87, 122–133. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Debeaufort, F.; Karbowiak, T. Bioactive Edible Films for Food Applications: Mechanisms of Antimicrobial and Antioxidant Activity. Crit. Rev. Food Sci. Nutr. 2019, 59, 3431–3455. [Google Scholar] [CrossRef]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film Formation and Deposition Methods of Edible Coating on Food Products: A Review. Food Res. Int. 2020, 136, 109582. [Google Scholar] [CrossRef] [PubMed]
- Sogut, E.; Seydim, A.C. The Effects of Chitosan and Polycaprolactone-Based Bilayer Films Incorporated with Grape Seed Extract and Nanocellulose on the Quality of Chicken Breast Fillets. Lwt 2019, 101, 799–805. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Kim, S.-M.; Rhim, J.-W. Carboxymethyl Cellulose-Based Multifunctional Film Combined with Zinc Oxide Nanoparticles and Grape Seed Extract for the Preservation of High-Fat Meat Products. Sustain. Mater. Technol. 2021, 29, e00325. [Google Scholar] [CrossRef]
- Rahmasari, Y.; Yemiş, G.P. Characterization of Ginger Starch-Based Edible Films Incorporated with Coconut Shell Liquid Smoke by Ultrasound Treatment and Application for Ground Beef. Meat Sci. 2022, 188, 108799. [Google Scholar] [CrossRef]
- Shin, S.H.; Chang, Y.; Lacroix, M.; Han, J. Control of Microbial Growth and Lipid Oxidation on Beef Product Using an Apple Peel-Based Edible Coating Treatment. Lwt 2017, 84, 183–188. [Google Scholar] [CrossRef]
- Ucak, I.; Abuibaid, A.K.M.; Aldawoud, T.M.S.; Galanakis, C.M.; Montesano, D. Antioxidant and Antimicrobial Effects of Gelatin Films Incorporated with Citrus Seed Extract on the Shelf Life of Sea Bass (Dicentrarchus labrax) Fillets. J. Food Process. Preserv. 2021, 45, e15304. [Google Scholar] [CrossRef]
- Licciardello, F.; Wittenauer, J.; Saengerlaub, S.; Reinelt, M.; Stramm, C. Rapid Assessment of the Effectiveness of Antioxidant Active Packaging—Study with Grape Pomace and Olive Leaf Extracts. Food Packag. Shelf Life 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Jamaluddin, F.; Noranizan, M.A.; Mohamad Azman, E.; Mohamad, A.; Yusof, N.L.; Sulaiman, A. A Review of Clean-Label Approaches to Chilli Paste Processing. Int. J. Food Sci. Technol. 2021, 57, 763–773. [Google Scholar] [CrossRef]
- Khan, A.W.; Roobab, U.; Shehzadi, K.; Inam-Ur-Raheem, M.; Aadil, R.M. Clean Label Interventions in Active and Intelligent Food Packaging. In The Age of Clean Label Foods; Galanakis, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 161–208. ISBN 978-3-030-96698-0. [Google Scholar]
Source | Discarded Parts | Percentage of Discarded Parts | References |
---|---|---|---|
Potato | Peels | 5–40% | [7] |
Mango | Kernel and peels | 35–55% | [8,9] |
Tomato | Pomace | 5–30% | [10,11] |
Blueberry | Pomace | 20–30% | [12,13] |
Apple | Pomace | 20–40% | [14] |
Carrot | Pomace | 30–50% | [15] |
Type of Activity | FWBP | Fabrication | Composition | Properties | References |
---|---|---|---|---|---|
Antioxidant | Olive leaf and pomace | Coating |
|
| [28] |
Antioxidant | Blueberry (BPE) and red grape skin pomace (GSP) | Film |
|
| [24] |
Antioxidant | Tomato pomace (TP) | Film |
|
| [29] |
Antioxidant | Banana peels (BP) | Coating |
|
| [30] |
Antioxidant | Lime peels (LP) | Film |
|
| [31] |
Antioxidant | Kiwifruit peels (KPE) | Film |
|
| [32] |
Antioxidant | Mango peels (MPE) | Bilayer films |
|
| [33] |
Antioxidant | Litchi peels (LPE) | Coating |
|
| [34] |
Antioxidant | Coconut shells (CS) | Film |
|
| [35] |
Antioxidant | Grape peels (GPE) | Film |
|
| [36] |
Antioxidant | Green apple skins (GAS) | Film |
|
| [37] |
Antioxidant | Mango peels (MP) | Film |
|
| [38] |
Antioxidant | Pineapple peels (PP) | Film |
|
| [39] |
Antioxidant | Mango kernels | Film |
|
| [40] |
Antioxidant | Corn silk (CSE) and black soybean seeds coat (BCCSE) | Film |
|
| [27] |
Antioxidant | Rice straw | Film |
|
| [41] |
Antimicrobial | Pomegranate peels (POP) | Coating |
|
| [42] |
Antimicrobial | Orange peels (OP) | Film |
|
| [43] |
Antimicrobial | Red grape seeds (RGS) | Film |
|
| [44] |
Antimicrobial | Grapefruit seeds (GFS) | Film |
|
| [45] |
Source | Food Product | Color Changes | References |
---|---|---|---|
Red apple pomace | Salmon | Color variation in pH buffer solution. Color changes of film during storage of salmon. | [73] |
Raspberry pomace | Pork skin | Color variation in pH buffer solution. Color changes of film during storage of pork skin at 0, 6, 12, 24, and 48 h. | [74] |
Grape skins | Pork | Color variation in pH buffer solution. Color changes of film during storage of pork corresponding to TVBN value. | [68] |
Black rice bran | Shrimp and hairtail | Color changes of film during storage of shrimp corresponding to TVBN value. Color changes of film during storage of hairtail corresponding to TVBN value. | [20] |
Black rice bran | Shrimp and pomfret meat | Color changes of film during storage of shrimp and pomfret meat. | [75] |
Blueberry residue | Chicken meat | Color changes of film during storage of chicken. | [76] |
Vitis amurensis husk | Fish | Color variation in pH buffer solution. Color changes of film during storage of fish. | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainal Arifin, M.A.; Mohd Adzahan, N.; Zainal Abedin, N.H.; Lasik-Kurdyś, M. Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods 2023, 12, 456. https://doi.org/10.3390/foods12030456
Zainal Arifin MA, Mohd Adzahan N, Zainal Abedin NH, Lasik-Kurdyś M. Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods. 2023; 12(3):456. https://doi.org/10.3390/foods12030456
Chicago/Turabian StyleZainal Arifin, Maryam Adilah, Noranizan Mohd Adzahan, Nur Hanani Zainal Abedin, and Małgorzata Lasik-Kurdyś. 2023. "Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products" Foods 12, no. 3: 456. https://doi.org/10.3390/foods12030456