Utilization of Hyperspectral Imaging with Chemometrics to Assess Beef Maturity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Scope of Methods
2.2.1. Trial 1 (Proof of Principle)
2.2.2. Trial 2 (Bespoke Sampling Trial)
2.3. Acquisition of Hyperspectral Images and Chemometric Analysis (Including Validation Methods)
3. Results and Discussion
3.1. Trial 1
3.1.1. Spectra Collection
3.1.2. Chemometric Modeling
3.1.3. Internal Validation of Chemometric Models
3.1.4. External Validation of Calibration Models
3.2. Trial 2
3.2.1. Internal Validation of Calibration Models
3.2.2. External Validation of Calibration Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Collaboration Statement
References
- Statista. Average Retail Price of Beef in the United Kingdom (UK) as of February 2023 by Type. 2023. Available online: https://www.statista.com/statistics/295332/average-beef-prices-in-united-kingdom-uk/ (accessed on 6 September 2023).
- Achata, E.M.; Esquerre, C.; Ojha, K.S.; Tiwari, B.K.; O’Donnell, C.P. Development of NIR-HSI and chemometrics process analytical technology for drying of beef jerky. Innov. Food Sci. Emerg. Technol. 2021, 69, 102611. [Google Scholar] [CrossRef]
- Achata, E.M.; Oliveira, M.; Esquerre, C.A.; Tiwari, B.K.; O’Donnell, C.P. Visible and NIR hyperspectral imaging and chemometrics for prediction of microbial quality of beef Longissimus dorsi muscle under simulated normal and abuse storage conditions. LWT-Food Sci. Technol. 2020, 128, 109463. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; Reis, M.M.; Yan, W.Q.; Klette, R. Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat. Food Control 2020, 117, 107332. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Anal. Chim. Acta 2012, 714, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chu, Z.; Weng, S.; Zhu, G.; Han, K.; Zhang, Z.; Huang, L.; Zhu, Z.; Zheng, S. Fusion of electronic nose and hyperspectral imaging for mutton freshness detection using input-modified convolution neural network. Food Chem. 2022, 385, 132651. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.F.; Peng, Y.K. A method for non-destructive prediction of pork meat quality and safety attributes by hyperspectral imaging technique. J. Food Eng. 2014, 126, 98–106. [Google Scholar] [CrossRef]
- Zhuang, Q.B.; Peng, Y.K.; Yang, D.Y.; Wang, Y.L.; Zhao, R.H.; Chao, K.L.; Guo, Q.H. Detection of frozen pork freshness by fluorescence hyperspectral image. J. Food Eng. 2022, 316, 110840. [Google Scholar] [CrossRef]
- Xiong, Z.J.; Sun, D.W.; Zeng, X.A.; Xie, A.G. Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: A review. J. Food Eng. 2014, 132, 1–13. [Google Scholar] [CrossRef]
- Jia, W.; van Ruth, S.; Scollan, N.; Koidis, A. Hyperspectral Imaging (HSI) for meat quality evaluation across the supply chain: Current and future trends. Curr. Res. Food Sci. 2022, 5, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Kucharska-Ambrozej, K.; Karpinska, J. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem. J. 2020, 153, 104278. [Google Scholar] [CrossRef]
- Shannon, M.; Lafeuille, J.L.; Fregiere-Salmomon, A.; Lefevre, S.; Galvin-King, P.; Haughey, S.A.; Burns, D.T.; Shen, X.Q.; Kapil, A.; McGrath, T.F.; et al. The detection and determination of adulterants in turmeric using fourier-transform infrared (FTIR) spectroscopy coupled to chemometric analysis and micro-FTIR imaging. Food Control 2022, 139, 109093. [Google Scholar] [CrossRef]
- DAERA. Beef Carcase Classification. Department of Agriculture, Environment and Rural Affairs. 2023. Available online: https://www.daera-ni.gov.uk/articles/beef-carcase-classification (accessed on 6 September 2023).
- Nisbet, H.; Lambe, N.; Miller, G.; Doeschl-Wilson, A.; Barclay, D.; Wheaton, A.; Duthie, C.-A. Using in-abattoir 3-dimensional measurements from images of beef carcasses for the prediction of EUROP classification grade and carcass weight. Meat Sci. 2023, 109391, 0309–1740. [Google Scholar] [CrossRef] [PubMed]
- US Pharmacopoeia. Guidance on Developing and Validating Non-Targeted Methods for Adulteration Detection; Food Chemicals Codex (2019). Appendix XVIII, 3S FCC 11; US Pharmacopoeia: Rockville, MD, USA, 2019. [Google Scholar]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- Crichton, S.O.J.; Kirchner, S.M.; Porley, V.; Retz, S.; von Gersdorff, G.; Hensel, O.; Weygandt, M.; Sturm, B. Classification of organic beef freshness using VNIR hyperspectral imaging. Meat Sci. 2017, 129, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Galvin-King, P.; Haughey, S.A.; Elliott, C.T. Garlic adulteration detection using NIR and FTIR spectroscopy and chemometrics. J. Food Compos. Anal. 2021, 96, 103757. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of metabolomic data using support vector machines. Anal. Chem. 2008, 80, 7562–7570. [Google Scholar] [CrossRef] [PubMed]
Model Number | Type (with Details of Pre-Processing Applied) | R2 | Q2 |
---|---|---|---|
M3 | PLS-DA (with SNV; par scaling) | 0.926 | 0.914 |
M4 | PLS-DA (with SNV, 1st D, SG, and par scaling) | 0.832 | 0.882 |
M5 | PLS-DA (with SNV, 2nd D, SG, and par scaling) | 0.796 | 0.888 |
M6 | PLS-DA (with 1st D, SG, SNV, and par scaling) | 0.805 | 0.88 |
M7 | PLS-DA (with 2nd D, SG, SNV, and par scaling) | 0.776 | 0.874 |
M14 | PLS-DA (no processing; par scaling) | 0.991 | 0.877 |
M8 | OPLS-DA (with SNV; par scaling) | 0.926 | 0.915 |
M9 | OPLS-DA (with SNV, 1st D, SG, and par scaling) | 0.736 | 0.865 |
M10 | OPLS-DA (with SNV, 2nd D, SG, and par scaling) | 0.779 | 0.883 |
M11 | OPLS-DA (1st D, SG, SNV, and par scaling) | 0.806 | 0.882 |
M12 | OPLS-DA (2nd D, SG, SNV, and par scaling) | 0.757 | 0.882 |
M13 | OPLS-DA (no processing; par scaling) | 0.982 | 0.8 |
Model Number | Model | % of Correct Classification | |||
---|---|---|---|---|---|
For 10 Days | For 20 Days | For 30 Days | For 40 Days | ||
M6 | PLS-DA (with 1st D, SG, and SNV) | 100.0 | 100.0 | 100.0 | 100.0 |
M7 | PLS-DA (with 2nd D, SG, and SNV) | 100.0 | 100.0 | 100.0 | 100.0 |
M4 | PLS-DA (with SNV, 1st D, and SG) | 100.0 | 100.0 | 100.0 | 91.7 |
M5 | PLS-DA (with SNV, 2nd D, and SG) | 100.0 | 91.7 | 100.0 | 100.0 |
M3 | PLS-DA (with SNV) | 100.0 | 83.3 | 100.0 | 100.0 |
M14 | PLS-DA (no processing) | 100.0 | 83.3 | 100.0 | 100.0 |
M9 | OPLS-DA (with SNV, 1st D, and SG) | 100.0 | 100.0 | 100.0 | 100.0 |
M10 | OPLS-DA (with SNV, 2nd D, and SG) | 100.0 | 100.0 | 100.0 | 100.0 |
M11 | OPLS-DA (1st D, SG, and SNV) | 100.0 | 100.0 | 100.0 | 100.0 |
M12 | OPLS-DA (2nd D, SG, and SNV) | 100.0 | 100.0 | 91.7 | 100.0 |
M8 | OPLS-DA (with SNV) | 100.0 | 83.3 | 100.0 | 100.0 |
M13 | OPLS-DA (no processing) | 91.7 | 66.7 | 83.3 | 91.7 |
Predicted Class | False Negatives | |||||
---|---|---|---|---|---|---|
Day 10 | Day 20 | Day 30 | Day 40 | |||
True Class | Day 10 | 12 | 0 | 0 | 0 | 0 |
Day 20 | 1 | 10 | 0 | 1 | 2 | |
Day 30 | 0 | 0 | 12 | 0 | 0 | |
Day 40 | 0 | 0 | 0 | 12 | 0 | |
False Positives | 1 | 0 | 0 | 1 |
Breed | No. of Each Breed | Heifer | Steer |
---|---|---|---|
Aberdeen Angus (AA) | 32 | 14 | 18 |
Charolais (CH) | 30 | 18 | 12 |
Limousin (LIM) | 28 | 14 | 14 |
British Blue (BB) | 20 | 8 | 12 |
Simmental (SIM) | 18 | 8 | 10 |
Holstein (HOL) | 12 | - | 12 |
Shorthorn (SH) | 10 | - | 10 |
Friesian (FR) | 8 | - | 8 |
Total | 186 | 70 | 116 |
Model Number | Type (with Details of Processing Applied) | R2 | Q2 |
---|---|---|---|
M7 | PLS-DA (no processing; par scaling) | 0.989 | 0.749 |
M8 | PLS-DA (SNV; par scaling) | 0.929 | 0.763 |
M9 | PLS-DA (SNV + 1st Der + SG; par scaling) | 0.802 | 0.734 |
M10 | PLS-DA (SNV + 2nd Der + SG; par scaling) | 0.745 | 0.784 |
M11 | PLS-DA (1st Der + SG + SNV; par scaling) | 0.826 | 0.757 |
M12 | PLS-DA (2nd Der + SG + SNV; par scaling) | 0.706 | 0.794 |
M13 | OPLS-DA (no processing; par scaling) | 0.99 | 0.852 |
M14 | OPLS-DA (SNV; par scaling) | 0.912 | 0.802 |
M15 | OPLS-DA (SNV + 1st Der + SG; par scaling) | 0.761 | 0.709 |
M16 | OPLS-DA (SNV + 2nd Der + SG; par scaling) | 0.744 | 0.806 |
M17 | OPLS-DA (1st Der + S-G + SNV; par scaling) | 0.825 | 0.779 |
M18 | OPLS-DA (2nd Der + S-G + SNV; par scaling) | 0.704 | 0.822 |
Model Number | Model | % of Correct Classification | ||
---|---|---|---|---|
For 20 Days | For 30 Days | For 40 Days | ||
M7 | PLS-DA (no processing; par scaling) | 100 | 84 | 89 |
M8 | PLS-DA (SNV; par scaling) | 100 | 74 | 89 |
M9 | PLS-DA (SNV + 1st Der + SG; par scaling) | 100 | 79 | 95 |
M10 | PLS-DA (SNV + 2nd Der + SG; par scaling) | 79 | 74 | 74 |
M11 | PLS-DA (1st Der + SG + SNV; par scaling) | 95 | 79 | 84 |
M12 | PLS-DA (2nd Der + SG + SNV; par scaling) | 89 | 84 | 79 |
M13 | OPLS-DA (no processing; par scaling) | 100 | 74 | 89 |
M18 | OPLS-DA (SNV; par scaling) | 100 | 74 | 89 |
M14 | OPLS-DA (SNV + 1st Der + SG; par scaling) | 100 | 84 | 74 |
M15 | OPLS-DA (SNV + 2nd Der + SG; par scaling) | 95 | 79 | 100 |
M16 | OPLS-DA (1st Der + SG + SNV; par scaling) | 95 | 79 | 84 |
M17 | OPLS-DA (2nd Der + SG + SNV; par scaling) | 95 | 84 | 95 |
Predicted Class | False Negatives | ||||
---|---|---|---|---|---|
Day 20 | Day 30 | Day 40 | |||
True Class | Day 20 | 18 | 1 | 0 | 1 |
Day 30 | 1 | 16 | 2 | 3 | |
Day40 | 1 | 0 | 18 | 1 | |
False Positives | 2 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haughey, S.A.; Montgomery, H.; Moser, B.; Logan, N.; Elliott, C.T. Utilization of Hyperspectral Imaging with Chemometrics to Assess Beef Maturity. Foods 2023, 12, 4500. https://doi.org/10.3390/foods12244500
Haughey SA, Montgomery H, Moser B, Logan N, Elliott CT. Utilization of Hyperspectral Imaging with Chemometrics to Assess Beef Maturity. Foods. 2023; 12(24):4500. https://doi.org/10.3390/foods12244500
Chicago/Turabian StyleHaughey, Simon A., Holly Montgomery, Bernadette Moser, Natasha Logan, and Christopher T. Elliott. 2023. "Utilization of Hyperspectral Imaging with Chemometrics to Assess Beef Maturity" Foods 12, no. 24: 4500. https://doi.org/10.3390/foods12244500