Edible Insects: A New Sustainable Nutritional Resource Worth Promoting
Abstract
:1. Introduction
2. Nutritional Value and Functional Composition of Edible Insects
2.1. Insect Proteins
2.2. Insect Lipids
2.3. Insect Vitamins and Minerals
2.4. Other Compounds
3. Production and Utilization of Edible Insects
3.1. Development of Insect Farming Technology
3.2. Processing Technology of Edible Insects
3.3. Edible Insect Products
3.3.1. Traditional Snacks
3.3.2. Insect-Derived Foods
3.3.3. Insect Feed
3.3.4. Food Additive
3.4. Potential Risks
4. Sustainability of Edible Insects
5. Market Acceptance and Challenges of Insect Foods
5.1. Consumer Acceptance
5.1.1. Social Factors
5.1.2. Personal Emotional Factors
5.1.3. Dietary Factors
5.2. Legal and Regulatory Issues
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nuttall, C.N. Population Decline to Take Emerging Europe Back to the Early 20th Century. Available online: https://www.bne.eu/population-decline-to-take-emerging-europe-back-to-the-early-20th-century-253068/ (accessed on 28 October 2023).
- Lange, K.W.; Nakamura, Y. Edible insects and their potential anti-obesity effects: A review. Food Sci. Anim. Prod. 2023, 1, 9240008. [Google Scholar] [CrossRef]
- Seo, M.; Goo, T.W.; Chung, M.Y.; Baek, M.; Hwang, J.S.; Kim, M.A.; Yun, E.Y. Tenebrio molitor Larvae Inhibit Adipogenesis through AMPK and MAPKs Signaling in 3T3-L1 Adipocytes and Obesity in High-Fat Diet-Induced Obese Mice. Int. J. Mol. Sci. 2017, 18, 518. [Google Scholar] [CrossRef] [PubMed]
- Egan, Á.M.; Sweeney, T.; Hayes, M.; O’Doherty, J.V. Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model. PLoS ONE 2015, 10, e0144127. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.; Nakamura, Y. Edible insects as a source of food bioactives and their potential health effects. J. Food Bioact. 2021, 14, 4–9. [Google Scholar] [CrossRef]
- Nadeau, L.; Nadeau, I.; Franklin, F.; Dunkel, F. The potential for entomophagy to address undernutrition. Ecol. Food Nutr. 2015, 54, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef] [PubMed]
- Broucek, J. Production of Methane Emissions from Ruminant Husbandry: A Review. J. Environ. Prot. 2014, 5, 1482. [Google Scholar] [CrossRef]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 275–295. [Google Scholar] [CrossRef]
- Liceaga, A.M.; Aguilar-Toalá, J.E.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Insects as an Alternative Protein Source. Annu. Rev. Food Sci. Technol. 2022, 13, 19–34. [Google Scholar] [CrossRef]
- Müller, A. Insects as Food in Laos and Thailand. Asian J. Soc. Sci. 2019, 47, 204–223. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Itterbeeck, J.; Heetkamp, M.J.; Van den Brand, H.; Van Loon, J.J.; Van Huis, A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [PubMed]
- Poma, G.; Cuykx, M.; Amato, E.; Calaprice, C.; Focant, J.F.; Covaci, A. Evaluation of hazardous chemicals in edible insects and insect-based food intended for human consumption. Food Chem. Toxicol. 2017, 100, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Ros-Baró, M.; Casas-Agustench, P.; Díaz-Rizzolo, D.A.; Batlle-Bayer, L.; Adrià-Acosta, F.; Aguilar-Martínez, A.; Medina, F.X.; Pujolà, M.; Bach-Faig, A. Edible Insect Consumption for Human and Planetary Health: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 11653. [Google Scholar] [CrossRef] [PubMed]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef] [PubMed]
- Numbi Muya, G.M.; Mutiaka, B.K.; Bindelle, J.; Francis, F.; Caparros Megido, R. Human Consumption of Insects in Sub-Saharan Africa: Lepidoptera and Potential Species for Breeding. Insects 2022, 13, 886. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.L.; Scarborough, P.; Rayner, M.; Nonaka, K. Are edible insects more or less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur. J. Clin. Nutr. 2016, 70, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez-Araque, R.; Quishpillo-Miranda, N.; Ramos-Guerrero, L. Edible Insects for Humans and Animals: Nutritional Composition and an Option for Mitigating Environmental Damage. Insects 2022, 13, 944. [Google Scholar] [CrossRef]
- Søndergaard, N.; Adrien Fernandes, J.F.; Potent, J.; Karl, K.; Furtado, M.; Baethgen, W. A governance framework to manage the food-environment-livelihood trilemma of alternative proteins. One Earth 2023, 6, 843–853. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Halloran, A.; Muenke, C.; Huis, A.V.; Vantomme, P. Insects in the human food chain: Global status and opportunities. Food Chain 2014, 4, 103–118. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, S.; Kuang, H.; Tang, C.; Song, J. Edible insects as ingredients in food products: Nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Crit. Rev. Food Sci. Nutr. 2023, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Mondor, M.; Goycoolea Valencia, F.; Hernández-Álvarez, A.J. Current state of insect proteins: Extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food Funct. 2023, 14, 8129–8156. [Google Scholar] [CrossRef] [PubMed]
- Rumpold, B.A.; Schlüter, O. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Anim. Front. 2015, 5, 20–24. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Pinckaers, P.J.M.; van Loon, J.J.A.; van Loon, L.J.C. Consideration of insects as a source of dietary protein for human consumption. Nutr. Rev. 2017, 75, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Raheem, D.; Raposo, A.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Carrascosa, C. Entomophagy: Nutritional, ecological, safety and legislation aspects. Food Res. Int. 2019, 126, 108672. [Google Scholar] [CrossRef]
- Ojha, S.; Bekhit, A.E.-D.; Grune, T.; Schlüter, O.K. Bioavailability of nutrients from edible insects. Curr. Opin. Food Sci. 2021, 41, 240–248. [Google Scholar] [CrossRef]
- Zhao, X.; Vázquez-Gutiérrez, J.L.; Johansson, D.P.; Landberg, R.; Langton, M. Yellow Mealworm Protein for Food Purposes—Extraction and Functional Properties. PLoS ONE 2016, 11, e0147791. [Google Scholar] [CrossRef] [PubMed]
- Bußler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2016, 2, e00218. [Google Scholar] [CrossRef]
- Brogan, E.N.; Park, Y.-L.; Matak, K.E.; Jaczynski, J. Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders. LWT 2021, 152, 112314. [Google Scholar] [CrossRef]
- Choi, B.D.; Wong, N.A.K.; Auh, J.H. Defatting and Sonication Enhances Protein Extraction from Edible Insects. Korean J. Food Sci. Anim. Resour. 2017, 37, 955–961. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Kranthi Vanga, S.; Raghavan, V. Influence of high-intensity ultrasound on the IgE binding capacity of Act d 2 allergen, secondary structure, and in-vitro digestibility of kiwifruit proteins. Ultrason. Sonochem. 2021, 71, 105409. [Google Scholar] [CrossRef]
- Suchintita Das, R.; Tiwari, B.K.; Chemat, F.; Garcia-Vaquero, M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. Ultrason. Sonochem. 2022, 91, 106234. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, K.; Peng, W.; Guo, X. Comparative study of four physical approaches about allergenicity of soybean protein isolate for infant formula. Food Agric. Immunol. 2016, 27, 604–623. [Google Scholar] [CrossRef]
- Yi, L.; Lakemond, C.M.; Sagis, L.M.; Eisner-Schadler, V.; van Huis, A.; van Boekel, M.A. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Cajas-Lopez, K.; Ordoñez Araque, R. Analysis of chontacuro (Rhynchophorus palmarum L.) protein and fat content and incorporation into traditional Ecuadorian dishes. J. Insects Food Feed 2022, 8, 1521–1527. [Google Scholar] [CrossRef]
- Ghosh, S.; Meyer-Rochow, V.B.; Jung, C. Honey bees and their brood: A potentially valuable resource of food, worthy of greater appreciation and scientific attention. J. Ecol. Environ. 2021, 45, 31. [Google Scholar] [CrossRef]
- Aguilar, J.G.d.S. An overview of lipids from insects. Biocatal. Agric. Biotechnol. 2021, 33, 101967. [Google Scholar] [CrossRef]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Waterhouse, G.I.N.; You, L.; Zhang, J.; Liu, Y.; Ma, L.; Gao, J.; Dong, Y. Transforming insect biomass into consumer wellness foods: A review. Food Res. Int. 2016, 89, 129–151. [Google Scholar] [CrossRef]
- Ushakova, N.A.; Brodskii, E.S.; Kovalenko, A.A.; Bastrakov, A.I.; Kozlova, A.A.; Pavlov, D.S. Characteristics of lipid fractions of larvae of the black soldier fly Hermetia illucens. Dokl. Biochem. Biophys. 2016, 468, 209–212. [Google Scholar] [CrossRef]
- Barker, T. Vitamins and Human Health: Systematic Reviews and Original Research. Nutrients 2023, 15, 2888. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.C.; Miller, A.C.; Miller, M.E.; Xiao, H.; Wu, X. Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 2022, 62, 3499–3508. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Rochow, V.B.; Pinent, M.; Costa Neto, E.M.; Grabowski, N.T.; Fratini, F.; Mancini, S. Editorial: Insects as Food and Feed. Front. Vet. Sci. 2022, 9, 873765. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, J.; Ghosh, S.; Megu, K.; Jung, C.; Meyer-Rochow, V.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia-Pac. Entomol. 2016, 19, 711–720. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Maywald, M.; Rink, L. Zinc in Human Health and Infectious Diseases. Biomolecules 2022, 12, 1748. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, M.N.; Oonincx, D.; Stouten, T.; Veenenbos, M.; Melse-Boonstra, A.; Dicke, M.; van Loon, J.J.A. Insects as sources of iron and zinc in human nutrition. Nutr. Res. Rev. 2018, 31, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.T.; Rodionov, D.A.; Osterman, A.L.; Peterson, S.N. B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020, 12, 3380. [Google Scholar] [CrossRef]
- Soon, C.Y.; Tee, Y.B.; Tan, C.H.; Rosnita, A.T.; Khalina, A. Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. Int. J. Biol. Macromol. 2018, 108, 135–142. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Norberto, L.; Damini, R.; Musumeci, S. Human gastric juice contains chitinase that can degrade chitin. Ann. Nutr. Metab. 2007, 51, 244–251. [Google Scholar] [CrossRef]
- Baki, M.A.; Hossain, M.M.; Akter, J.; Quraishi, S.B.; Haque Shojib, M.F.; Atique Ullah, A.K.M.; Khan, M.F. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 2018, 159, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Kipkoech, C.; Kinyuru, J.N.; Imathiu, S.; Meyer-Rochow, V.B.; Roos, N. In Vitro Study of Cricket Chitosan’s Potential as a Prebiotic and a Promoter of Probiotic Microorganisms to Control Pathogenic Bacteria in the Human Gut. Foods 2021, 10, 2310. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Faqir, Y.; Tan, C.; Khaliq, G. Terrestrial insects as a promising source of chitosan and recent developments in its application for various industries. Food Chem. 2022, 373, 131407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Haga, A.; Sekiguchi, H.; Hirano, S. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int. J. Biol. Macromol. 2000, 27, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zou, X.; Zhu, W.; Duan, Y.; Merzendorfer, H.; Zhao, Z.; Yang, Q. Fatty acid binding protein is required for chitin biosynthesis in the wing of Drosophila melanogaster. Insect Biochem. Mol. Biol. 2022, 149, 103845. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, T.K.; Jeong, C.H.; Yong, H.I.; Cha, J.Y.; Kim, B.K.; Choi, Y.S. Biological activity and processing technologies of edible insects: A review. Food Sci. Biotechnol. 2021, 30, 1003–1023. [Google Scholar] [CrossRef] [PubMed]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds from Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Chapter 2—Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 33–50. [Google Scholar]
- Nino, M.C.; Reddivari, L.; Osorio, C.; Kaplan, I.; Liceaga, A. Insects as a source of phenolic compounds and potential health benefits. J. Insects Food Feed 2021, 7, 1077–1087. [Google Scholar] [CrossRef]
- Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Yang, Q. Antioxidant activity and phenolic compounds of Holotrichia parallela Motschulsky extracts. Food Chem. 2012, 134, 1885–1891. [Google Scholar] [CrossRef]
- Ssepuuya, G. Suitable extraction conditions for determination of total anti-oxidant capacity and phenolic compounds in Ruspolia differens Serville. J. Insects Food Feed 2020, 7, 205–214. [Google Scholar] [CrossRef]
- Eleftherianos, I.; Zhang, W.; Heryanto, C.; Mohamed, A.; Contreras, G.; Tettamanti, G.; Wink, M.; Bassal, T. Diversity of insect antimicrobial peptides and proteins—A functional perspective: A review. Int. J. Biol. Macromol. 2021, 191, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Patyra, E.; Kwiatek, K. Insect Meals and Insect Antimicrobial Peptides as an Alternative for Antibiotics and Growth Promoters in Livestock Production. Pathogens 2023, 12, 854. [Google Scholar] [CrossRef] [PubMed]
- Wang, G. Human antimicrobial peptides and proteins. Pharmaceuticals 2014, 7, 545–594. [Google Scholar] [CrossRef] [PubMed]
- Chowanski, S.; Adamski, Z.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Slocinska, M.; Spochacz, M.; Szymczak, M.; Urbanski, A.; Walkowiak-Nowicka, K.; et al. Insect Peptides—Perspectives in Human Diseases Treatment. Curr. Med. Chem. 2017, 24, 3116–3152. [Google Scholar] [CrossRef] [PubMed]
- Hara, S.; Yamakawa, M. A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J. 1995, 310 Pt 2, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Steiner, H.; Hultmark, D.; Engström, A.; Bennich, H.; Boman, H.G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981, 292, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Hultmark, D.; Steiner, H.; Rasmuson, T.; Boman, H.G. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 1980, 106, 7–16. [Google Scholar] [CrossRef]
- Orivel, J.; Redeker, V.; Le Caer, J.P.; Krier, F.; Revol-Junelles, A.M.; Longeon, A.; Chaffotte, A.; Dejean, A.; Rossier, J. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J. Biol. Chem. 2001, 276, 17823–17829. [Google Scholar] [CrossRef]
- Valachová, I.; Bohová, J.; Pálošová, Z.; Takáč, P.; Kozánek, M.; Majtán, J. Expression of lucifensin in Lucilia sericata medicinal maggots in infected environments. Cell Tissue Res. 2013, 353, 165–171. [Google Scholar] [CrossRef]
- Pöppel, A.K.; Koch, A.; Kogel, K.H.; Vogel, H.; Kollewe, C.; Wiesner, J.; Vilcinskas, A. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol. Chem. 2014, 395, 649–656. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Soni, K.; Samtiya, M.; Krishnan, V.; Dhewa, T. Antinutritional Factors: Nutrient Bioavailability and Health Beneficial Effects. In Conceptualizing Plant-Based Nutrition: Bioresources, Nutrients Repertoire and Bioavailability; Ramesh, S.V., Praveen, S., Eds.; Springer Nature: Singapore, 2022; pp. 157–179. [Google Scholar]
- Niassy, S.; Omuse, E.R.; Roos, N.; Halloran, A.; Eilenberg, J.; Egonyu, J.P.; Tanga, C.; Meutchieye, F.; Mwangi, R.; Subramanian, S.; et al. Safety, regulatory and environmental issues related to breeding and international trade of edible insects in Africa. Rev. Sci. Tech. 2022, 41, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Durst, P.B.; Johnson, D.V.; Leslie, R.N.; Shono, K.; Durst, P.B.; Johnson, D.V.; Leslie, R.N.; Shono, K. Forest insects as food: Humans bite back: Proceedings of a workshop on Asia-Pacific resources and their potential for development, Chiang Mai, Thailand, 19–21 February 2008. Int. J. Hydrogen Energy 2010, 32, 4871–4888. [Google Scholar]
- Sogari, G.; Bellezza Oddon, S.; Gasco, L.; van Huis, A.; Spranghers, T.; Mancini, S. Review: Recent advances in insect-based feeds: From animal farming to the acceptance of consumers and stakeholders. Animal 2023, 17 (Suppl. 2), 100904. [Google Scholar] [CrossRef] [PubMed]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Zielińska, E.; Karaś, M.; Jakubczyk, A.; Zieliński, D.; Baraniak, B. Edible Insects as Source of Proteins. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–53. [Google Scholar]
- Tanga, C.M.; Egonyu, J.P.; Beesigamukama, D.; Niassy, S.; Emily, K.; Magara, H.J.; Omuse, E.R.; Subramanian, S.; Ekesi, S. Edible insect farming as an emerging and profitable enterprise in East Africa. Curr. Opin. Insect Sci. 2021, 48, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Namin, S.M.; Meyer-Rochow, V.B.; Jung, C. Chemical Composition and Nutritional Value of Different Species of Vespa Hornets. Foods 2021, 10, 418. [Google Scholar] [CrossRef]
- Kiewhuo, P.; Mozhui, L.; Kakati, L.N.; Lirikum; Meyer-Rochow, V.B. Traditional rearing techniques of the edible Asian giant hornet (Vespa mandarinia Smith) and its socio-economic perspective in Nagaland, India. J. Insects Food Feed 2022, 8, 325–335. [Google Scholar] [CrossRef]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Salinas-Castro, A. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef]
- Castro-López, C.; Santiago-López, L.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Liceaga, A.M.; García, H.S.; Hernández-Mendoza, A. An insight to fermented edible insects: A global perspective and prospective. Food Res. Int. 2020, 137, 109750. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Gnana Moorthy Eswaran, U.; Karunanithi, S.; Gupta, R.K.; Rout, S.; Srivastav, P.P. Edible insects as emerging food products-processing and product development perspective. J. Food Sci. Technol. 2023, 60, 2105–2120. [Google Scholar] [CrossRef] [PubMed]
- Mutungi, C.; Irungu, F.G.; Nduko, J.; Mutua, F.; Affognon, H.; Nakimbugwe, D.; Ekesi, S.; Fiaboe, K.K.M. Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development. Crit. Rev. Food Sci. Nutr. 2019, 59, 276–298. [Google Scholar] [CrossRef]
- Li, H.; Chumroenphat, T.; Boonarsa, P.; Yahuafai, J.; Wrigley, C.; Siriamornpun, S. Evaluation of Roasting and Grilling Effects on Chemical Composition, Volatile Profiles, and Toxicity of Stink Bugs (Tessaratoma papillosa): Implications for Utilization as Functional Food Ingredients. Foods 2023, 12, 3053. [Google Scholar] [CrossRef] [PubMed]
- Durst, P.B.; Hanboonsong, Y. Small-scale production of edible insects for enhanced food security and rural livelihoods: Experience from Thailand and Lao People’s Democratic Republic. J. Insects Food Feed 2015, 1, 25–31. [Google Scholar] [CrossRef]
- Wynants, E.; Crauwels, S.; Verreth, C.; Gianotten, N.; Lievens, B.; Claes, J.; Van Campenhout, L. Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiol. 2018, 70, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Nyangena, D.N.; Mutungi, C.; Imathiu, S.; Kinyuru, J.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africa. Foods 2020, 9, 574. [Google Scholar] [CrossRef]
- Kröncke, N.; Böschen, V.; Woyzichovski, J.; Demtröder, S.; Benning, R. Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2018, 50, 20–25. [Google Scholar] [CrossRef]
- Laroche, M.; Perreault, V.; Marciniak, A.; Gravel, A.; Chamberland, J.; Doyen, A. Comparison of Conventional and Sustainable Lipid Extraction Methods for the Production of Oil and Protein Isolate from Edible Insect Meal. Foods 2019, 8, 572. [Google Scholar] [CrossRef]
- Halloran, A.; Flore, R. A New World of Ingredients: Aspiring Chefs’ Opinions on Insects in Gastronomy. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 129–137. [Google Scholar]
- Liceaga, A.M. Processing insects for use in the food and feed industry. Curr. Opin. Insect Sci. 2021, 48, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, L.S.; Nogueira Silva, N.F.; Jessen, F.; Mohammadifar, M.A.; Stephani, R.; Fernandes de Carvalho, A.; Perrone, Í.T.; Casanova, F. Edible insect as an alternative protein source: A review on the chemistry and functionalities of proteins under different processing methods. Heliyon 2023, 9, e14831. [Google Scholar] [CrossRef] [PubMed]
- Kewuyemi, Y.O.; Kesa, H.; Chinma, C.E.; Adebo, O.A. Fermented Edible Insects for Promoting Food Security in Africa. Insects 2020, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Stork, N.E. How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? Annu. Rev. Entomol. 2018, 63, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Van Itterbeeck, J.; Pelozuelo, L. How Many Edible Insect Species Are There? A Not So Simple Question. Diversity 2022, 14, 143. [Google Scholar] [CrossRef]
- Jongema, Y. List of Edible Insects of the World (1 April 2017). Available online: https://www.wur.nl/en/research-results/chair-groups/plant-sciences/laboratory-of-entomology/edible-insects/worldwide-species-list.htm (accessed on 28 October 2023).
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Tang, C.; Yang, D.; Liao, H.; Sun, H.; Liu, C.; Wei, L.; Li, F. Edible insects as a food source: A review. Food Prod. Process. Nutr. 2019, 1, 8. [Google Scholar] [CrossRef]
- Jameson, M.L.; Drumont, A. Aroid scarabs in the genus Peltonotus Burmeister (Coleoptera, Scarabaeidae, Dynastinae): Key to species and new distributional data. Zookeys 2013, 320, 63–95. [Google Scholar] [CrossRef]
- Anankware, J.P.; Roberts, B.J.; Cheseto, X.; Osuga, I.; Savolainen, V.; Collins, C.M. The Nutritional Profiles of Five Important Edible Insect Species from West Africa—An Analytical and Literature Synthesis. Front. Nutr. 2021, 8, 792941. [Google Scholar] [CrossRef]
- Jaramillo-Vivanco, T.; Balslev, H.; Montúfar, R.; Cámara, R.M.; Giampieri, F.; Battino, M.; Cámara, M.; Alvarez-Suarez, J.M. Three Amazonian palms as underestimated and little-known sources of nutrients, bioactive compounds and edible insects. Food Chem. 2022, 372, 131273. [Google Scholar] [CrossRef]
- Kurdi, P.; Chaowiwat, P.; Weston, J.; Hansawasdi, C. Studies on Microbial Quality, Protein Yield, and Antioxidant Properties of Some Frozen Edible Insects. Int. J. Food Sci. 2021, 2021, 5580976. [Google Scholar] [CrossRef] [PubMed]
- Shafique, L.; Abdel-Latif, H.M.R.; Hassan, F.U.; Alagawany, M.; Naiel, M.A.E.; Dawood, M.A.O.; Yilmaz, S.; Liu, Q. The Feasibility of Using Yellow Mealworms (Tenebrio molitor): Towards a Sustainable Aquafeed Industry. Animal 2021, 11, 811. [Google Scholar] [CrossRef] [PubMed]
- Phokasem, P.; Jantrapirom, S.; Karinchai, J.; Yoshida, H.; Yamaguchi, M.; Chantawannakul, P. Honeybee products and edible insect powders improve locomotive and learning abilities of Ubiquilin-knockdown Drosophila. BMC Complement. Med. Ther. 2020, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- Kooij, P.W.; Dentinger, B.M.; Donoso, D.A.; Shik, J.Z.; Gaya, E. Cryptic Diversity in Colombian Edible Leaf-Cutting Ants (Hymenoptera: Formicidae). Insects 2018, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Van Itterbeeck, J.; Rakotomalala Andrianavalona, I.N.; Rajemison, F.I.; Rakotondrasoa, J.F.; Ralantoarinaivo, V.R.; Hugel, S.; Fisher, B.L. Diversity and Use of Edible Grasshoppers, Locusts, Crickets, and Katydids (Orthoptera) in Madagascar. Foods 2019, 8, 666. [Google Scholar] [CrossRef] [PubMed]
- Barennes, H.; Phimmasane, M.; Rajaonarivo, C. Insect Consumption to Address Undernutrition, a National Survey on the Prevalence of Insect Consumption among Adults and Vendors in Laos. PLoS ONE 2015, 10, e0136458. [Google Scholar] [CrossRef] [PubMed]
- Magara, H.J.O.; Niassy, S.; Ayieko, M.A.; Mukundamago, M.; Egonyu, J.P.; Tanga, C.M.; Kimathi, E.K.; Ongere, J.O.; Fiaboe, K.K.M.; Hugel, S.; et al. Edible Crickets (Orthoptera) Around the World: Distribution, Nutritional Value, and Other Benefits-A Review. Front. Nutr. 2020, 7, 537915. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, X.M.; Zhao, M.; He, Z.; Sun, L.; Wang, C.Y.; Ding, W.F. Edible insects in China: Utilization and prospects. Insect Sci. 2018, 25, 184–198. [Google Scholar] [CrossRef]
- Dzerefos, C.M.; Witkowski, E.T.; Toms, R. Comparative ethnoentomology of edible stinkbugs in southern Africa and sustainable management considerations. J. Ethnobiol. Ethnomed. 2013, 9, 20. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, D.; Xu, M.L.; Shi, S.S.; Xiong, J.F. Toxicological characteristics of edible insects in China: A historical review. Food Chem. Toxicol. 2018, 119, 237–251. [Google Scholar] [CrossRef]
- Van Huis, A.; Rumpold, B. Strategies to convince consumers to eat insects? A review. Food Qual. Prefer. 2023, 110, 104927. [Google Scholar] [CrossRef]
- Dossey, A.T.; Tatum, J.T.; McGill, W.L. Modern Insect-Based Food Industry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: San Diego, CA, USA, 2016; Chapter 5; pp. 113–152. [Google Scholar]
- Cicatiello, C.; Vitali, A.; Lacetera, N. How does it taste? Appreciation of insect-based snacks and its determinants. Int. J. Gastron. Food Sci. 2020, 21, 100211. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innov. Food Sci. Emerg. Technol. 2019, 51, 205–210. [Google Scholar] [CrossRef]
- De Oliveira, L.M.; da Silva Lucas, A.J.; Cadaval, C.L.; Mellado, M.S. Bread enriched with flour from cinereous cockroach (Nauphoeta cinerea). Innov. Food Sci. Emerg. Technol. 2017, 44, 30–35. [Google Scholar] [CrossRef]
- Mafu, A.; Ketnawa, S.; Phongthai, S.; Schönlechner, R.; Rawdkuen, S. Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods 2022, 11, 2142. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, M.; Bianchi, E.; Vigani, B.; Sánchez-Espejo, R.; Spano, M.; Totaro Fila, C.; Mannina, L.; Viseras, C.; Rossi, S.; Sandri, G. Nutritional and Functional Properties of Novel Italian Spray-Dried Cricket Powder. Antioxidants 2023, 12, 112. [Google Scholar] [CrossRef]
- Rosales-Escobar, O.; Villanueva-Bocanegra, B.; Torres Castillo, J.A.; Arellano-Méndez, L.; Moreno-Ramírez, Y.D.R. Valor Antioxidante de la Grilleta Pterophylla beltrani para Suplementar Alimentos. Southwest. Entomol. 2018, 43, 475–483. [Google Scholar] [CrossRef]
- Acosta, R.I.; Torres Castillo, J.A.; Torres de Los Santos, R.; García, N.; García, L. From the Forest to the Bottle: Entomochemicals from Pterophylla beltrani (Bolivar and Bolivar) for the Beverage Industry. Southwest. Entomol. 2019, 44, 449. [Google Scholar] [CrossRef]
- Acosta, R.I.; Moreno-Ramírez, Y.D.R.; García-García, L.; Espinoza-Sánchez, E.; Juarez, M.; Torres de Los Santos, R.; Torres Castillo, J.A. Insects with Phenolics and Antioxidant Activities to Supplement Mezcal: Tenebrio molitor L. and Schistocerca piceifrons Walker. Southwest. Entomol. 2021, 46, 625–636. [Google Scholar] [CrossRef]
- Ochieng, B.O.; Anyango, J.O.; Nduko, J.M.; Cheseto, X.; Mudalungu, C.M.; Khamis, F.M.; Ghemoh, C.J.; Egonyu, P.J.; Subramanian, S.; Nakimbugwe, D.; et al. Dynamics in nutrients, sterols and total flavonoid content during processing of the edible Long-Horned grasshopper (Ruspolia differens Serville) for food. Food Chem. 2022, 383, 132397. [Google Scholar] [CrossRef] [PubMed]
- Ferdousi, L.; Begum, M.; Yeasmin, M.S.; Uddin, J.; Miah, M.A.; Rana, G.M.M.; Chowdhury, T.A.; Boby, F.; Maitra, B.; Khan, R.; et al. Facile acid fermentation extraction of silkworm pupae oil and evaluation of its physical and chemical properties for utilization as edible oil. Heliyon 2023, 9, e12815. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.; van Broekhoven, S.; van Huis, A.; van Loon, J.J. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- Elahi, U.; Xu, C.C.; Wang, J.; Lin, J.; Wu, S.G.; Zhang, H.J.; Qi, G.H. Insect meal as a feed ingredient for poultry. Anim. Biosci. 2022, 35, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Volek, Z.; Zita, L.; Adámková, A.; Adámek, M.; Mlček, J.; Plachý, V. Dietary Inclusion of Crickets (Acheta domesticus) and Yellow Mealworm Meal (Tenebrio molitor) in Comparison with Soybean Meal: Effect on the Growth, Total Tract Apparent Digestibility, and Nitrogen Balance of Fattening Rabbits. Animal 2023, 13, 1637. [Google Scholar] [CrossRef]
- Hedrera, M.I.; Galdames, J.A.; Jimenez-Reyes, M.F.; Reyes, A.E.; Avendaño-Herrera, R.; Romero, J.; Feijóo, C.G. Soybean Meal Induces Intestinal Inflammation in Zebrafish Larvae. PLoS ONE 2013, 8, e69983. [Google Scholar] [CrossRef] [PubMed]
- Kalhoro, H.; Zhou, J.; Hua, Y.; Ng, W.-K.; Ye, L.; Zhang, J.; Shao, Q.J. Soy protein concentrate as a substitute for fish meal in diets for juvenile Acanthopagrus schlegelii: Effects on growth, phosphorus discharge and digestive enzyme activity. Aquac. Res. 2018, 49, 1896–1906. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Woodhead Publishing: Oxford, UK, 2015; Chapter 8; pp. 203–233. [Google Scholar]
- Rimoldi, S.; Ceccotti, C.; Brambilla, F.; Faccenda, F.; Antonini, M.; Terova, G. Potential of shrimp waste meal and insect exuviae as sustainable sources of chitin for fish feeds. Aquaculture 2023, 567, 739256. [Google Scholar] [CrossRef]
- Hermes, R.G.; Zorrilla, M.J.; Piggott, N.J. 115. Insect meal improves the survival rate and boosts performance when replacing fishmeal in Whiteleg Shrimp Diets. Anim.-Sci. Proc. 2022, 13, 86. [Google Scholar] [CrossRef]
- Okin, G.S. Environmental impacts of food consumption by dogs and cats. PLoS ONE 2017, 12, e0181301. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, H.G.; Song, S.; Kim, N. Developmental characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) larvae in different instars. Int. J. Ind. Entomol. 2015, 30, 45–49. [Google Scholar] [CrossRef]
- Wang, D.; Zhai, S.W.; Chuan-Xi, Z.; Bai, Y.; An, S.; Xu, Y. Evaluation on Nutritional Value of Field Crickets as a Poultry Feedstuff. Asian-Australas. J. Anim. Sci. 2005, 18, 667–670. [Google Scholar] [CrossRef]
- Valdés, F.; Villanueva, V.; Durán, E.; Campos, F.; Avendaño, C.; Sánchez, M.; Domingoz-Araujo, C.; Valenzuela, C. Insects as Feed for Companion and Exotic Pets: A Current Trend. Animals 2022, 12, 1450. [Google Scholar] [CrossRef] [PubMed]
- Kierończyk, B.; Rawski, M.; Pawełczyk, P.; Różyńska, J.; Golusik, J.; Mikołajczak, Z.; Józefiak, D. Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas—A preliminary study. Ann. Anim. Sci. 2018, 18, 795. [Google Scholar] [CrossRef]
- Paßlack, N.; Zentek, J. Acceptance, tolerance and apparent nutrient digestibility of complete diets based on larvae meal of Hermetia illucens in cats. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2018, 46, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Freel, T.A.; McComb, A.; Koutsos, E.A. Digestibility and safety of dry black soldier fly larvae meal and black soldier fly larvae oil in dogs. J. Anim. Sci. 2021, 99, skab047. [Google Scholar] [CrossRef]
- Lei, X.J.; Kim, T.H.; Park, J.H.; Kim, I.H. Evaluation of Supplementation of Defatted Black Soldier Fly (Hermetia illucens) Larvae Meal in Beagle Dogs. Ann. Anim. Sci. 2019, 19, 767–777. [Google Scholar] [CrossRef]
- Hong, Y.; Zhou, J.; Yuan, M.-M.; Dong, H.; Cheng, G.-Q.; Wang, Y.-J.; Xia, J.-Y.; Zhang, L. Dietary Supplementation with Housefly (Musca domestica) Maggot Meal in Growing Beagles: Hematology, Serum Biochemistry, Immune Responses and Oxidative Damage. Ann. Anim. Sci. 2020, 20, 1351–1364. [Google Scholar] [CrossRef]
- Jarett, J.K.; Carlson, A.; Rossoni Serao, M.; Strickland, J.; Serfilippi, L.; Ganz, H.H. Diets with and without edible cricket support a similar level of diversity in the gut microbiome of dogs. PeerJ 2019, 7, e7661. [Google Scholar] [CrossRef]
- Delvendahl, N.; Rumpold, B.A.; Langen, N. Edible Insects as Food-Insect Welfare and Ethical Aspects from a Consumer Perspective. Insects 2022, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.I.; Kim, T.-K.; Cha, J.Y.; Lee, J.H.; Kang, M.-C.; Jung, S.; Choi, Y.-S. Effects of edible insect extracts on the antioxidant, physiochemical, and microbial properties of Tteokgalbi during refrigerated storage. Food Biosci. 2023, 52, 102377. [Google Scholar] [CrossRef]
- Schlüter, O.; Rumpold, B.; Holzhauser, T.; Roth, A.; Vogel, R.F.; Quasigroch, W.; Vogel, S.; Heinz, V.; Jäger, H.; Bandick, N.; et al. Safety aspects of the production of foods and food ingredients from insects. Mol. Nutr. Food Res. 2017, 61, 1600520. [Google Scholar] [CrossRef] [PubMed]
- De Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, N.T.; Abdulmawjood, A.; Acheuk, F.; Barragán Fonseca, K.; Chhay, T.; Costa Neto, E.M.; Ferri, M.; Franco Olivas, J.; González Aguilar, D.G.; Keo, S.; et al. Review: Insects—A Source of Safe and Sustainable Food?—“Jein” (Yes and No). Front. Sustain. Food Syst. 2022, 5, 701797. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of processed edible insect products—Results of a preliminary survey. Int. J. Food Microbiol. 2017, 243, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Yen, A. Edible insects: Traditional knowledge or western phobia? Entomol. Res. 2009, 39, 289–298. [Google Scholar] [CrossRef]
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Chavez, M. The sustainability of industrial insect mass rearing for food and feed production: Zero waste goals through by-product utilization. Curr. Opin. Insect Sci. 2021, 48, 44–49. [Google Scholar] [CrossRef]
- Chavez, M.; Uchanski, M. Insect left-over substrate as plant fertiliser. J. Insects Food Feed 2021, 7, 683–694. [Google Scholar] [CrossRef]
- Savci, S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Hossain, M.E.; Mei, X.; Zhang, W.; Dong, W.; Yan, Z.; Liu, X.; Rachit, S.; Gopalakrishnan, S.; Liu, E. Substitution of Chemical Fertilizer with Organic Fertilizer Affects Soil Total Nitrogen and Its Fractions in Northern China. Int. J. Environ. Res. Public Health 2021, 18, 12848. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.; de Vries, W. Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Curr. Opin. Green Sustain. Chem. 2020, 25, 100335. [Google Scholar] [CrossRef]
- Barragán-Fonseca, K.Y.; Barragán-Fonseca, K.B.; Verschoor, G.; van Loon, J.J.A.; Dicke, M. Insects for peace. Curr. Opin. Insect Sci. 2020, 40, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kee, P.E.; Cheng, Y.-S.; Chang, J.-S.; Yim, H.S.; Tan, J.C.Y.; Lam, S.S.; Lan, J.C.-W.; Ng, H.S.; Khoo, K.S. Insect biorefinery: A circular economy concept for biowaste conversion to value-added products. Environ. Res. 2023, 221, 115284. [Google Scholar] [CrossRef]
- Wang, X.; Wu, N.; Wu, X.; Geng, W.; Xu, X. Effect of insect feces (Hermetia illucens) on rice growth and heavy metal migration from polluted soil to rice plant. Environ. Sci. Pollut. Res. Int. 2022, 29, 14695–14704. [Google Scholar] [CrossRef] [PubMed]
- Beesigamukama, D.; Mochoge, B.; Korir, N.; Ghemoh, C.J.; Subramanian, S.; Tanga, C.M. In situ nitrogen mineralization and nutrient release by soil amended with black soldier fly frass fertilizer. Sci. Rep. 2021, 11, 14799. [Google Scholar] [CrossRef]
- Mancini, S.; Moruzzo, R.; Riccioli, F.; Paci, G. European consumers’ readiness to adopt insects as food. A review. Food Res. Int. 2019, 122, 661–678. [Google Scholar] [CrossRef]
- Kroger, T.; Dupont, J.; Busing, L.; Fiebelkorn, F. Acceptance of Insect-Based Food Products in Western Societies: A Systematic Review. Front. Nutr. 2021, 8, 759885. [Google Scholar] [CrossRef]
- Liu, A.J.; Li, J.; Gomez, M.I. Factors Influencing Consumption of Edible Insects for Chinese Consumers. Insects 2019, 11, 10. [Google Scholar] [CrossRef]
- Payne, C.L.R. Wild harvesting declines as pesticides and imports rise: The collection and consumption of insects in contemporary rural Japan. J. Insects Food Feed 2015, 1, 57–65. [Google Scholar] [CrossRef]
- Cicatiello, C.; De Rosa, B.; Franco, S.; Lacetera, N. Consumer approach to insects as food: Barriers and potential for consumption in Italy. Br. Food J. 2016, 118, 2271–2286. [Google Scholar] [CrossRef]
- Gere, A.; Székely, G.; Kovács, S.; Kókai, Z.; Sipos, L. Readiness to adopt insects in Hungary: A case study. Food Qual. Prefer. 2017, 59, 81–86. [Google Scholar] [CrossRef]
- Gómez-Luciano, C.A.; Vriesekoop, F.; Urbano, B. Towards Food Security of Alternative Dietary Proteins: A Comparison between Spain and the Dominican Republic. Amfiteatru Econ. 2019, 21, 393–407. [Google Scholar] [CrossRef]
- Woolf, E.; Zhu, Y.; Emory, K.; Zhao, J.; Liu, C. Willingness to consume insect-containing foods: A survey in the United States. LWT 2019, 102, 100–105. [Google Scholar] [CrossRef]
- Ruby, M.B.; Rozin, P.; Chan, C. Determinants of willingness to eat insects in the USA and India. J. Insects Food Feed 2015, 1, 215–225. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Amato, M.; Grunert, K. Understanding Westerners’ disgust for the eating of insects: The role of food neophobia and implicit associations. Food Qual. Prefer. 2018, 64, 120–125. [Google Scholar] [CrossRef]
- Schouteten, J.J.; De Steur, H.; De Pelsmaeker, S.; Lagast, S.; Juvinal, J.G.; De Bourdeaudhuij, I.; Verbeke, W.; Gellynck, X. Emotional and sensory profiling of insect-, plant- and meat-based burgers under blind, expected and informed conditions. Food Qual. Prefer. 2016, 52, 27–31. [Google Scholar] [CrossRef]
- Gumussoy, M.; Rogers, P.J. A social norm intervention increases liking and intake of whole crickets, and what this tells us about food disgust. Appetite 2023, 188, 106768. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef]
- Elorinne, A.L.; Niva, M.; Vartiainen, O.; Väisänen, P. Insect Consumption Attitudes among Vegans, Non-Vegan Vegetarians, and Omnivores. Nutrients 2019, 11, 292. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.; Costa, A.; Balzaretti, C.; Russo, V.; Tedesco, D. Survey on Food Preferences of University Students: From Tradition to New Food Customs? Agriculture 2018, 8, 155. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Menozzi, D.; Sogari, G.; Veneziani, M.; Simoni, E.; Mora, C. Eating novel foods: An application of the Theory of Planned Behaviour to predict the consumption of an insect-based product. Food Qual. Prefer. 2017, 59, 27–34. [Google Scholar] [CrossRef]
- Tuccillo, F.; Marino, M.G.; Torri, L. Italian consumers’ attitudes towards entomophagy: Influence of human factors and properties of insects and insect-based food. Food Res. Int. 2020, 137, 109619. [Google Scholar] [CrossRef] [PubMed]
- Żuk-Gołaszewska, K.; Gałęcki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing-An Overview. Insects 2022, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, D.; Zhou, S.; Duan, H.; Guo, J.; Yan, W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022, 11, 3961. [Google Scholar] [CrossRef]
- Renna, M.; Rastello, L.; Veldkamp, T.; Toral, P.G.; Gonzalez-Ronquillo, M.; Jimenez, L.E.R.; Gasco, L. Are insects a solution for feeding ruminants? Legislation, scientific evidence, and future challenges. Anim. Front. 2023, 13, 102–111. [Google Scholar] [CrossRef]
- Madau, F.A.; Arru, B.; Furesi, R.; Pulina, P. Insect Farming for Feed and Food Production from a Circular Business Model Perspective. Sustainability 2020, 12, 5418. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Marimuthu, S.B.; Meijer, N. Regulations on insects as food and feed: A global comparison. J. Insects Food Feed 2021, 7, 849–856. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Tchibozo, S.; Abdulmawjood, A.; Acheuk, F.; Guerfali, M.M.; Sayed, W.A.A.; Plotz, M. Edible Insects in Africa in Terms of Food, Wildlife Resource, and Pest Management Legislation. Foods 2020, 9, 502. [Google Scholar] [CrossRef]
- Preteseille, N.; Deguerry, A.; Reverberi, M.; Weigel, T. Insects in Thailand: National Leadership and Regional Development, from Standards to Regulations Through Association. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 435–442. [Google Scholar]
Source | Protein (g/100 g) | Fat (g/100 g) | Saturated Fat (g/100 g) | Sodium (mg/100 g) | Calcium (mg/100 g) | Iron (mg/100 g) | Lodine (mg/100 g) | Vitamin C (mg/100 g) | Vitamin A (mg/100 g) | Riboflavin (mg/100 g) | Niacin (mg/100 g) |
---|---|---|---|---|---|---|---|---|---|---|---|
Beef | 20.6 | 9.3 | 3.8 | 60 | 5 | 1.95 | 10 | 0 | 0 | 0.23 | 4.7 |
chicken | 19.9 | 7.2 | 1.81 | 80 | 8 | 0.88 | 6 | 1.1 | 0 | 0.16 | 6.5 |
pork | 20.1 | 12.4 | 3.5 | 62 | 7 | 0.8 | 5 | 0 | 0 | 0.235 | 5.6 |
Cricket (adult) | 20.1 | 5.06 | 2.28 | 152 | 104 | 5.46 | 0.021 | 3 | 6.53 | 3.41 | 3.84 |
Honeybee (brood) | 15.2 | 3.64 | 2.75 | 19.4 | 30 | 18.5 | NA | 10.5 | 25.7 | 3.24 | NA |
Silkworm (pupae) | 14.8 | 8.26 | 3.45 | 14 | 42 | 1.8 | NA | NA | NA | 1.05 | 0.9 |
Mopane caterpillar (final instar) | 35.2 | 15.2 | 5.74 | NA | 700 | NA | NA | NA | NA | NA | NA |
Palm weevil (larvae) | 9.96 | 25.3 | 9.84 | 11 | 39.6 | 2.58 | NA | 0.00425 | 11.3 | 2.21 | NA |
Mealworm (larvae) | 19.4 | 12.3 | 2.93 | 53.7 | 42.9 | 1.87 | 0.017 | 1.2 | 9.59 | 0.81 | 4.07 |
Processing Technology | Goal | Scope of Application | References |
---|---|---|---|
Boiling, grilling, frying, deep-frying, and smoking, curing | Cooking insects for consumption and extending their shelf life | Traditional cuisine | [90] |
Scalding (steam or boiling), pasteurization | Reduces degradation and destruction of products by enzymes, reduces microbial contamination, inactivates food, inactivates endogenous insect enzymes | Inactivation of enzymes and destruction of pathogenic bacteria | [84,91] |
Drying (freeze-drying, heat-drying) | Reduces moisture, reduces microorganisms, extends shelf life | Preparation of edible insect powder | [92,93] |
Soxhlet Continuous Extraction, Three-Phase Fractionation, and Supercritical Carbon Dioxide Extraction | Separation of insect lipids and fats | Extraction of insect lipids | [94,95] |
Hydrolysis | Enzymes, acids, or bases hydrolyzed insects for subsequent extraction of insect proteins. | Insect protein extraction | [96,97] |
Fermentation | Improved nutritional quality and flavor | Fermented insect soy sauce, biofuel, feedstuffs | [85,98] |
Insect Order | Typical Insect | Cooking Method | References |
---|---|---|---|
Coleoptera | Palm weevil (Rhynchophorus ferrugineus larva) | Eat raw, boil, fry, grill | [105,106] |
bamboo worm (Omphisa fuscidentalis) | deep-fried | ||
huhu beetle (Prionoplus reticularis) | Eaten raw or fried, it tastes like peanut butter | [107] | |
mealworm (Tenebrio molitor) | Made into insect snacks and insect oil | [108] | |
Hymenoptera | ant (Pheidole megacephala) | Roast or serve as a sweet dish | [109,110] |
honey bee (Bee) and wasps (Wasp) | Collect honey, larvae and pupae for roasting and frying | [109] | |
Orthoptera | cricket (Acheta domesticus) | Eat whole by cooking or make into snacks | [111] |
Grasshoppers (Sphenarium purpurascens) and grasshopper (locusts) | Roast, fry, make soup or stew | [112,113] | |
Isoptera | Termite (Macrotermes bellicosus) | Grilled or fried for a crispy texture | [105] |
Hemiptera | cicada (Cicadidae) | boil or fry | [114] |
stinkbug (Encosternumdelgorguei) | grate into paste | [115] | |
Lepidoptera | caterpillars (Clanis bilineata) and silkworms (Bombyx mori) | Fried, baked, boiled; worm tea (made from eating the feces excreted by certain types of plants, mostly consumed in China) | [116] |
Insect Species | Pet | Finds | References |
---|---|---|---|
Tenebrio molitor larvae | Cat | Different species of pets have different preferences for each insect, with cats preferring T. molitor and dogs preferring H. illucens | [142] |
dog | Insect feed can entice dogs to eat, but gender affects it | [143] | |
Hermetia illucen larvae | Cat | H. illucens, which is suitable for cats, is basically suitable for other animals. | [144] |
beagle dog | Substituting H. illucens larval fat for chicken fat in the original feed does not affect the palatability of the feed to dogs. | [145] | |
dog | The addition of relatively small amounts of Hermetia illucens larval feed significantly improved digestibility and had a beneficial effect on immune and antioxidant status. | [146] | |
Musca domestica larvae | Beagle dog | Administration of Musca domestica at the 5% level does not affect the dog’s growth, feed intake, hematology, biochemistry or immune properties, nor does it reduce oxidative stress. | [147] |
Shelfordella lateralis (adult) | Dog | Insect feed can lure dogs to eat, but gender will make their favorite insects different. | [143] |
Gryllodes siggilatus (adult) | Beagle dog | After adding 24% Gryllodes siggilatus to the beagle’s diet, the total microbial community in the beagle’s body was unaffected. | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Mao, C.; Li, X.; Jiang, L.; Zhang, W.; Li, M.; Liu, H.; Fang, Y.; Liu, S.; Yang, G.; et al. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods 2023, 12, 4073. https://doi.org/10.3390/foods12224073
Li M, Mao C, Li X, Jiang L, Zhang W, Li M, Liu H, Fang Y, Liu S, Yang G, et al. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods. 2023; 12(22):4073. https://doi.org/10.3390/foods12224073
Chicago/Turabian StyleLi, Mengjiao, Chengjuan Mao, Xin Li, Lei Jiang, Wen Zhang, Mengying Li, Huixue Liu, Yaowei Fang, Shu Liu, Guang Yang, and et al. 2023. "Edible Insects: A New Sustainable Nutritional Resource Worth Promoting" Foods 12, no. 22: 4073. https://doi.org/10.3390/foods12224073