Nutrient Levels, Bioactive Metabolite Contents, and Antioxidant Capacities of Faba Beans as Affected by Dehulling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Seed Material Collection, Cultivation, and Preparation
2.3. Determination of Nutritional Components
2.4. Fatty Acid Analysis by Gas Chromatography–Flame Ionization Detector (GC-FID) Instrument
2.5. Determination of Total Tannin, Saponin, and Phenol Contents and Antioxidant Activities
2.5.1. Determination of Total Tannin Content
2.5.2. Determination of Total Saponin Content
2.5.3. Determination of Total Phenolic Content and Antioxidant Activities
2.6. Statistical Analysis
3. Results and Discussion
3.1. Crude and Dietary Fiber Contents
3.2. Crude Protein and Crude Fat Contents
3.3. Fatty Acid Contents
3.4. TPC, TTC, and TSC
3.5. DPPH•-Scavenging Activity, ABTS•+-Scavenging Activity, and FRAP
3.6. Principal Component (PCA) and Correlation Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhull, S.B.; Kidwai, M.K.; Noor, R.; Chawla, P.; Rose, P.K. A review of nutritional profile and processing of faba bean (Vicia faba L.). Legume Sci. 2022, 4, e129. [Google Scholar] [CrossRef]
- Luo, Y.W.; Xie, W.H.; Cui, Q.X. Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba L.) flour and legume fractions. J. Agric. Food Chem. 2010, 58, 2483–2490. [Google Scholar] [CrossRef] [PubMed]
- Saldanha do Carmo, C.; Silventoinen, P.; Nordgård, C.T.; Poudroux, C.; Dessev, T.; Zobel, H.; Holtekjølen, A.K.; Draget, K.I.; Holopainen-Mantila, U.; Knutsen, S.H.; et al. Is dehulling of peas and faba beans necessary prior to dry fractionation for the production of protein- and starch-rich fractions? Impact on physical properties, chemical composition and techno-functional properties. J. Food Eng. 2020, 278, 109937. [Google Scholar] [CrossRef]
- Samaei, S.P.; Ghorbani, M.; Tagliazucchi, D.; Martini, S.; Gotti, R.; Themelis, T.; Tesini, F.; Gianotti, A.; Gallina Toschi, T.; Babini, E. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba L.) seed protein hydrolysates and fortified apple juice. Food Chem. 2020, 330, 127120. [Google Scholar] [CrossRef] [PubMed]
- Warsame, A.O.; Michael, N.; O’Sullivan, D.M.; Tosi, P. Seed Development and Protein Accumulation Patterns in Faba Bean (Vicia faba, L.). J. Agric. Food Chem. 2022, 70, 9295–9304. [Google Scholar] [CrossRef] [PubMed]
- Orlando, G.; Chiavaroli, A.; Leone, S.; Brunetti, L.; Politi, M.; Menghini, L.; Recinella, L.; Ferrante, C. Inhibitory effects induced by vicia faba, uncaria rhyncophylla, and glycyrrhiza glabra water extracts on oxidative stress biomarkers and dopamine turnover in hypoE22 cells and isolated rat striatum challenged with 6-hydroxydopamine. Antioxidants 2019, 8, 602. [Google Scholar] [CrossRef]
- Zhang, C.; Ou, X.; Wang, J.; Wang, Z.; Du, W.; Zhao, J.; Han, Y. Antifungal Peptide P852 Controls Fusarium Wilt in Faba Bean (Vicia faba L.) by Promoting Antioxidant Defense and Isoquinoline Alkaloid, Betaine, and Arginine Biosyntheses. Antioxidants 2022, 11, 1767. [Google Scholar] [CrossRef]
- Siah, S.D.; Konczak, I.; Agboola, S.; Wood, J.A.; Blanchard, C.L. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): Chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase. Br. J. Nutr. 2012, 108, S123–S134. [Google Scholar] [CrossRef]
- Sharma, A.; Sehgal, S. Effect of domestic processing, cooking and germination on the trypsin inhibitor activity and tannin content of faba bean (Vicia faba). Plant Foods Hum. Nutr. 1992, 42, 127–133. [Google Scholar] [CrossRef]
- Cho, M.; Smit, M.N.; He, L.; Kopmels, F.C.; Beltranena, E. Effect of Feeding Zero- or High-Tannin Faba Bean Cultivars and Dehulling on Growth Performance, Carcass Traits and Yield of Saleable Cuts of Broiler Chickens. J. Appl. Poult. Res. 2019, 28, 1305–1323. [Google Scholar] [CrossRef]
- Anderson, J.C.; Idowu, A.O.; Singh, U.; Singh, B. Physicochemical characteristics of flours of faba bean as influenced by processing methods. Plant Foods Hum. Nutr. 1994, 45, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Basu, S.; Goswami, D.; Devi, M.; Shivhare, U.S.; Vishwakarma, R.K. Anti-nutritional compounds in pulses: Implications and alleviation methods. Legume Sci. 2022, 4, e111. [Google Scholar] [CrossRef]
- Corzo-Ríos, L.J.; Jiménez-Martínez, C.; Cid-Gallegos, M.S.; Cardador-Martínez, A.; Martínez-Herrera, J.; Sánchez-Chino, X.M. Chemical and non-nutritional modification of faba bean (Vicia faba) due to the effect of roasting and boiling. Int. J. Gastron. Food Sci. 2022, 30, 100622. [Google Scholar] [CrossRef]
- Duan, S.C.; Kwon, S.J.; Eom, S.H. Effect of thermal processing on color, phenolic compounds, and antioxidant activity of faba bean (Vicia faba L.) leaves and seeds. Antioxidants 2021, 10, 1207. [Google Scholar] [CrossRef] [PubMed]
- Meijer, M.M.T.; Ogink, J.J.M.; van Gelder, W.M.J. Technological-scale dehulling process to improve the nutritional value of faba beans. Anim. Feed Sci. Technol. 1994, 46, 1–10. [Google Scholar] [CrossRef]
- Patterson, C.A.; Curran, J.; Der, T. Effect of processing on antinutrient compounds in pulses. Cereal Chem. 2017, 94, 2–10. [Google Scholar] [CrossRef]
- Duc, G.; Brun, N.; Merghem, R.; Jay, M. Genetic variation in tannin-related characters of faba-bean seeds (Vicia faba L.) and their relationship to seed-coat colour. Plant Breed. 1995, 114, 272–274. [Google Scholar] [CrossRef]
- Youssef, M.M.; Abd El-Aal, M.H.; Shekib, L.A.E.; Ziena, H.M. Effects of dehulling, soaking and germination on chemical composition, mineral elements and protein patterns of faba beans (Vicia faba L.). Food Chem. 1987, 23, 129–138. [Google Scholar] [CrossRef]
- Luo, Y.W.; Xie, W.H. Effect of different processing methods on certain antinutritional factors and protein digestibility in green and white faba bean (Vicia faba L.). CYTA—J. Food 2013, 11, 43–49. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, W.; Cui, Q. Effects of phytase, cellulase and dehulling treatments on zinc in vitro solubility in faba bean (Vicia faba L.) flour and seed fractions. Int. J. Food Sci. Technol. 2010, 45, 358–364. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, W.; Cui, Q. Effects of Phytases and Dehulling Treatments on In Vitro Iron and Zinc Bioavailability in Faba Bean (Vicia faba L.) Flour and Legume Fractions. J. Food Sci. 2010, 75, C191–C198. [Google Scholar] [CrossRef] [PubMed]
- Rajhi, I.; Boulaaba, M.; Baccouri, B.; Rajhi, F.; Hammami, J.; Barhoumi, F.; Flamini, G.; Mhadhbi, H. Assessment of dehulling effect on volatiles, phenolic compounds and antioxidant activities of faba bean seeds and flours. S. Afr. J. Bot. 2022, 147, 741–753. [Google Scholar] [CrossRef]
- Saldanha do Carmo, C.; Silventoinen-Veijalainen, P.; Zobel, H.; Holopainen-Mantila, U.; Sahlstrøm, S.; Knutsen, S.H. The effect of dehulling of yellow peas and faba beans on the distribution of carbohydrates upon dry fractionation. LWT 2022, 163, 113509. [Google Scholar] [CrossRef]
- Rahate, K.A.; Madhumita, M.; Prabhakar, P.K. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT 2021, 138, 110796. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Grace, R.; Mancha, M. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 1993, 211, 139–143. [Google Scholar]
- Boudjou, S.; Oomah, B.D.; Zaidi, F.; Hosseinian, F. Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chem. 2013, 138, 1543–1550. [Google Scholar] [CrossRef]
- Price, M.L.; Van-Scoyoc, S.; Butler, L.G. A critical evaluation of the Vanillin Reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Baojun, X.; Chang, S.K.C. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. J. Agric. Food Chem. 2009, 57, 10718–10731. [Google Scholar] [CrossRef]
- Desta, K.T.; Yoon, H.; Shin, M.J.; Lee, S.; Wang, X.H.; Choi, Y.M.; Yi, J.Y. Variability of Anthocyanin Concentrations, Total Metabolite Contents and Antioxidant Activities in Adzuki Bean Cultivars. Antioxidants 2022, 11, 1134. [Google Scholar] [CrossRef]
- Mayer Labba, I.C.; Frøkiær, H.; Sandberg, A.S. Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Res. Int. 2021, 140, 110038. [Google Scholar] [CrossRef]
- Çalışkantürk Karataş, S.; Günay, D.; Sayar, S. In vitro evaluation of whole faba bean and its seed coat as a potential source of functional food components. Food Chem. 2017, 230, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.J.; Masli, M.D.P.; Ganjyal, G.M. Whole faba bean flour exhibits unique expansion characteristics relative to the whole flours of lima, pinto, and red kidney beans during extrusion. J. Food Sci. 2020, 85, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hatcher, D.W.; Toews, R.; Gawalko, E.J. Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT 2009, 42, 842–848. [Google Scholar] [CrossRef]
- Ghavidel, R.A.; Prakash, J. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT 2007, 40, 1292–1299. [Google Scholar] [CrossRef]
- Oghbaei, M.; Prakash, J. Effect of dehulling and cooking on nutritional quality of chickpea (Cicer arietinum L.) germinated in mineral fortified soak water. J. Food Compos. Anal. 2020, 94, 103619. [Google Scholar] [CrossRef]
- Wei, X.; Wanasundara, J.P.D.; Shand, P. Short-term germination of faba bean (Vicia faba L.) and the effect on selected chemical constituents. Appl. Food Res. 2022, 2, 100030. [Google Scholar] [CrossRef]
- Guajardo-Flores, D.; Pérez-Carrillo, E.; Romo-López, I.; Ramírez-Valdez, L.E.; Moreno-García, B.E.; Gutiérrez-Uribe, J.A. Effect of dehulling and germination on physicochemical and pasting properties of black beans (Phaseolus vulgaris L.). Cereal Chem. 2017, 94, 98–103. [Google Scholar] [CrossRef]
- Arbaoui, M.; Link, W. Effect of hardening on frost tolerance and fatty acid composition of leaves and stems of a set of faba bean (Vicia faba L.) genotypes. Euphytica 2008, 162, 211–219. [Google Scholar] [CrossRef]
- Sipeniece, E.; Mišina, I.; Qian, Y.; Grygier, A.; Sobieszczańska, N.; Sahu, P.K.; Rudzińska, M.; Patel, K.S.; Górnaś, P. Fatty Acid Profile and Squalene, Tocopherol, Carotenoid, Sterol Content of Seven Selected Consumed Legumes. Plant Foods Hum. Nutr. 2021, 76, 53–59. [Google Scholar] [CrossRef]
- Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suárez, M.J.; Zapata-Revilla, M.A.; Tenorio-Sanz, M.D. Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT 2010, 43, 1467–1470. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, D.-G.; Lee, M.-K.; Kim, J.M.; Hong, M.J.; Kang, K.-Y.; Eom, S.H.; Kang, S.-Y.; Kim, J.-B.; Kwon, S.-J. Fatty Acid Composition, Isoflavone and L-3,4-dihydroxyphenylalanine (L-dopa) Contents in Different Parts of Faba Bean (Vicia faba) Genotypes. Plant Breed. Biotechnol. 2017, 5, 314–324. [Google Scholar] [CrossRef]
- Yoshida, H.; Saiki, M.; Yoshida, N.; Tomiyama, Y.; Mizushina, Y. Fatty acid distribution in triacylglycerols and phospholipids of broad beans (Vicia faba). Food Chem. 2009, 112, 924–928. [Google Scholar] [CrossRef]
- Akkad, R.; Kharraz, E.; Han, J.; House, J.D.; Curtis, J.M. Characterisation of the volatile flavour compounds in low and high tannin faba beans (Vicia faba var. minor) grown in Alberta, Canada. Food Res. Int. 2019, 120, 285–294. [Google Scholar] [CrossRef]
- Khalil, M.I.; Salih, M.A.; Mustafa, A.A. Broad beans (Vicia faba) and the potential to protect from COVID-19 coronavirus infection. Sudan J. Paediatr. 2020, 20, 10–12. [Google Scholar] [CrossRef]
- Kuźniacka, J.; Banaszak, M.; Jakub Biesek, J.; Giuseppe Maiorano, G.; Adamski, M. Effect of faba bean-based diets on the meat quality and fatty acids composition in breast muscles of broiler chickens. Sci. Rep. 2020, 10, 5292. [Google Scholar] [CrossRef]
- Karolkowski, A.; Guichard, E.; Briand, L.; Salles, C. Volatile compounds in pulses: A review. Foods 2021, 10, 3140. [Google Scholar] [CrossRef]
- Pal, R.S.; Bhartiya, A.; Yadav, P.; Kant, L.; Mishra, K.K.; Aditya, J.P.; Pattanayak, A. Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). J. Food Sci. Technol. 2017, 54, 909–920. [Google Scholar] [CrossRef]
- Oomah, B.D.; Luc, G.; Leprelle, C.; Drover, J.C.G.; Harrison, J.E.; Olson, M. Phenolics, phytic acid, and phytase in canadian-grown low-tannin faba bean (Vicia faba L.) genotypes. J. Agric. Food Chem. 2011, 59, 3763–3771. [Google Scholar] [CrossRef]
- Kwon, S.J.; Kim, D.G.; Kim, J.M.; Kang, K.Y.; Lee, M.K.; Hong, M.J.; Kim, J.B.; Eom, S.H.; Kang, S.Y.; Ha, B.K.; et al. Phytochemical compounds and antioxidant activity in the grain of selected faba bean (Vicia faba) genotypes. Plant Breed. Biotechnol. 2018, 6, 65–73. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Becker, K.; Abel, H.; Pawelzik, E. Nutrient contents, rumen protein degradability and antinutritional factors in some colour- and white-flowering cultivars of Vicia faba beans. J. Sci. Food Agric. 1997, 75, 511–520. [Google Scholar] [CrossRef]
- Manco, A.; Gerardi, C.; Romano, G.; D’Amico, L.; Blanco, A.; Milano, F.; Di Sansebastiano, G.P.; Balech, R.; Laddomada, B. Phenolic profile of whole seeds and seed fractions of lentils and its impact on antioxidant activity. Food Biosci. 2023, 54, 102887. [Google Scholar] [CrossRef]
- Moats, J.; Mutsvangwa, T.; Refat, B.; Christensen, D.A. Evaluation of whole flaxseed and the use of tannin-containing fava beans as an alternative to peas in a co-extruded flaxseed product on ruminal fermentation, selected milk fatty acids, and production in dairy cows. Prof. Anim. Sci. 2018, 34, 435–446. [Google Scholar] [CrossRef]
- Siah, S.; Wood, J.A.; Agboola, S.; Konczak, I.; Balnchard, C.L. Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba L.) differing in seed coat colours. Food Chem. 2014, 142, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, B.; González, J.L.; López-Mesas, M.; Bouslama, M.; Valiente, M. Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.). Food Res. Int. 2011, 44, 970–977. [Google Scholar] [CrossRef]
Cultivar | Sample | Fatty Acid Contents (%) | ||||||
---|---|---|---|---|---|---|---|---|
Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | Linolenic Acid | TSFA | TUFA | ||
Abawi# 1 | Whole | 16.33 ± 0.02 j | 2.58 ± 0.01 g | 29.93 ± 0.05 l | 48.74 ± 0.04 e | 2.43 ± 0.02 d | 18.91 ± 0.01 l | 81.09 ± 0.01 e |
Dehulled | 16.29 ± 0.05 l (−0.23) ns | 2.37 ± 0.01 h (−8.29) ns | 28.23 ± 0.07 l (−5.69) ns | 50.42 ± 0.08 f (3.34) ns | 2.69 ± 0.04 c (9.94) ns | 18.66 ± 0.05 l (−1.33) ns | 81.34 ± 0.05 d (0.31) ns | |
Aguadulce | Whole | 18.57 ± 0.05 b | 2.41 ± 0.01 jk | 25.53 ± 0.10 ° | 50.82 ± 0.10 d | 2.67 ± 0.05 bc | 20.98 ± 0.05 c | 79.02 ± 0.05 n |
Dehulled | 18.57 ± 0.01 b (−0.04) ns | 2.13 ± 0.00 ° (−11.47) ns | 25.62 ± 0.07 p (0.36) ns | 51.02 ± 0.06 e (0.41) ns | 2.65 ± 0.01 c (−0.59) ns | 20.70 ± 0.01 b (−1.35) ns | 79.30 ± 0.01 n (0.36) ns | |
Algerian | Whole | 16.83 ± 0.06 h | 2.57 ± 0.01 g | 30.78 ± 0.13 j | 47.77 ± 0.16 g | 2.05 ± 0.03 h | 19.40 ± 0.07 f | 80.60 ± 0.07 k |
Dehulled | 16.95 ± 0.04 i (0.69) ns | 2.20 ± 0.01 m (−14.67) ns | 31.43 ± 0.02 i (2.08) ns | 47.23 ± 0.20 j (−1.14) ns | 2.20 ± 0.07 g (6.92) ns | 19.14 ± 0.05 j (−1.34) ns | 80.86 ± 0.05 f (0.32) ns | |
Alicante | Wholef | 17.21 ± 0.00 f | 2.75 ± 0.01 e | 31.74 ± 0.07 i | 46.28 ± 0.07 i | 2.01 ± 0.02 h | 19.96 ± 0.02 f | 80.04 ± 0.02 k |
Dehulled | 17.29 ± 0.03 g (0.43) ns | 2.47 ± 0.02 g (−10.10) ns | 30.61 ± 0.05 j (−3.54) ns | 47.62 ± 0.06 i (2.81) ns | 2.00 ± 0.02 ij (−0.50) ns | 19.76 ± 0.03 g (−1.02) ns | 80.24 ± 0.03 i (0.25) ns | |
Ascott | Whole | 15.87 ± 0.04 l | 2.22 ± 0.01 n | 34.83 ± 0.11 d | 45.05 ± 0.12 k | 2.03 ± 0.02 h | 18.09 ± 0.03 ° | 81.91 ± 0.03 b |
Dehulled | 16.52 ± 0.03 k (3.91) ns | 1.86 ± 0.01 r (−16.19) ns | 34.37 ± 0.02 e (−1.31) ns | 45.20 ± 0.12 m (0.33) ns | 2.05 ± 0.00 hi (1.06) ns | 18.38 ± 0.03 m (1.56) ns | 81.62 ± 0.03 c (−0.35) ns | |
Brocal | Whole | 17.50 ± 0.03 e | 3.14 ± 0.00 b | 32.16 ± 0.09 h | 44.65 ± 0.09 l | 2.55 ± 0.02 c | 20.64 ± 0.03 d | 79.36 ± 0.03 m |
Dehulled | 16.17 ± 0.03 m (−7.59) ns | 2.69 ± 0.01 d (−14.26) ns | 36.42 ± 0.00 b (11.70) ns | 42.25 ± 0.11 q (−5.37) ns | 2.47 ± 0.02 ef (−3.29) ns | 18.86 ± 0.03 k (−8.61) ns | 81.14 ± 0.03 e (2.19) ns | |
Domasna-1 | Whole | 16.80 ± 0.02 h | 2.90 ± 0.01 c | 29.73 ± 0.03 l | 48.22 ± 0.04 f | 2.35 ± 0.00 de | 19.70 ± 0.01 gh | 80.30 ± 0.01 ij |
Dehulled | 16.70 ± 0.02 j (−7.37) ns | 2.91 ± 0.00 b (−9.15) ns | 27.05 ± 0.05 m (8.38) ns | 50.91 ± 0.04 e (−3.49) ns | 2.43 ± 0.01 f (8.47) ns | 19.61 ± 0.03 h (−7.60) ns | 80.39 ± 0.03 h (1.83) ns | |
Domasna-2 | Whole | 17.29 ± 0.01 f | 2.44 ± 0.01 ij | 32.50 ± 0.05 g | 45.71 ± 0.05 j | 2.05 ± 0.01 h | 19.74 ± 0.02 g | 80.26 ± 0.02 j |
Dehulled | 16.02 ± 0.08 n (−0.63) ns | 2.22 ± 0.00 l (0.58) ns | 35.47 ± 0.26 c (−9.02) ns | 44.05 ± 0.29 n (5.28) ns | 2.24 ± 0.05 g (3.40) ns | 18.24 ± 0.08 n (−0.45) ns | 81.76 ± 0.08 b (0.11) ns | |
Ethiopia 530 | Whole | 16.14 ± 0.06 k | 2.22 ± 0.01 n | 33.69 ± 0.22 f | 45.61 ± 0.25 j | 2.33 ± 0.04 de | 18.37 ± 0.06 n | 81.63 ± 0.06 c |
Dehulled | 15.83 ± 0.04 ° (−1.94) ns | 2.17 ± 0.00 n (−2.40) ns | 33.78 ± 0.11 g (0.28) ns | 46.14 ± 0.13 k (1.14) ns | 2.08 ± 0.02 h (−10.74) ns | 18.00 ± 0.04 ° (−2.00) ns | 82.00 ± 0.04 e (0.45) ns | |
Giant Three Seeded | Whole | 15.38 ± 0.02 m | 2.44 ± 0.00 ij | 39.13 ± 0.07 b | 41.18 ± 0.05 ° | 1.87 ± 0.01 i | 17.83 ± 0.02 p | 82.17 ± 0.02 a |
Dehulled | 16.02 ± 0.05 n (4.00) ns | 2.23 ± 0.01 l (−8.70) ns | 34.10 ± 0.15 f (−12.85) ns | 45.82 ± 0.13 l (10.14) ns | 1.83 ± 0.02 k (−2.49) ns | 18.25 ± 0.06 n (2.35) ns | 81.75 ± 0.06 b (−0.52) ns | |
Large Mazandaran | Whole | 18.83 ± 0.16 a | 2.44 ± 0.01 ij | 24.32 ± 0.19 p | 51.30 ± 0.27 c | 3.11 ± 0.07 a | 21.27 ± 0.17 b | 78.73 ± 0.17 ° |
Dehulled | 19.09 ± 0.01 a (1.37) ns | 2.06 ± 0.00 q (−15.49) ns | 24.14 ± 0.05 r (−0.73) ns | 51.57 ± 0.04 c (0.53) ns | 3.13 ± 0.02 a (0.70) ns | 21.15 ± 0.02 a (−0.54) ns | 78.85 ± 0.02 ° (0.15) ns | |
Levens Marschbohne | Whole | 16.50 ± 0.11 i | 2.79 ± 0.02 d | 23.87 ± 0.12 q | 54.44 ± 0.24 a | 2.41 ± 0.00 d | 19.29 ± 0.13 jk | 80.71 ± 0.13 fg |
Dehulled | 17.19 ± 0.08 h (3.98) ns | 2.64 ± 0.01 e (−5.24) ns | 22.43 ± 0.09 s (−6.02) ns | 55.28 ± 0.13 a (1.52) ns | 2.46 ± 0.04 ef (2.33) ns | 19.83 ± 0.09 fg (2.71) ns | 80.17 ± 0.09 ij (−0.67) ns | |
MMR-KJT-2010-K161716 | Whole | 17.57 ± 0.05 e | 2.32 ± 0.01 m | 29.34 ± 0.16 m | 48.77 ± 0.10 e | 2.00 ± 0.03 h | 19.89 ± 0.05 f | 80.11 ± 0.05 k |
Dehulled | 17.79 ± 0.06 d (1.21) ns | 2.09 ± 0.00 p (−9.98) ns | 28.16 ± 0.09 l (−4.02) ns | 49.77 ± 0.11 g (2.02) ns | 2.19 ± 0.04 g (8.87) ns | 19.88 ± 0.07 f (−0.09) ns | 80.12 ± 0.07 j (0.02) ns | |
Muchamiel | Whole | 18.09 ± 0.08 d | 2.38 ± 0.00 kl | 25.49 ± 0.21 ° | 51.27 ± 0.22 c | 2.77 ± 0.07 b | 20.47 ± 0.08 e | 79.53 ± 0.08 l |
Dehulled | 18.01 ± 0.02 c (−0.46) ns | 2.28 ± 0.00 k (−4.26) ns | 24.57 ± 0.03 q (−3.60) ns | 52.17 ± 0.01 b (1.73) ns | 2.98 ± 0.01 b (6.83) ns | 20.28 ± 0.02 d (−0.91) ns | 79.72 ± 0.02 l (0.23) ns | |
NPL-JSW-2003-65 | Whole | 18.25 ± 0.04 c | 3.26 ± 0.02 a | 22.97 ± 0.14 r | 52.93 ± 0.07 b | 2.59 ± 0.01 c | 21.50 ± 0.06 a | 78.50 ± 0.06 p |
Dehulled | 16.95 ± 0.01 i (−7.14) ns | 3.26 ± 0.00 a (0.21) ns | 26.69 ± 0.09 n (13.93) ns | 50.51 ± 0.09 f (−4.58) ns | 2.59 ± 0.01 d (−0.06) ns | 20.21 ± 0.02 d (−6.03) ns | 79.79 ± 0.01 l (1.62) ns | |
Pirkkonen | Whole | 17.07 ± 0.02 g | 2.47 ± 0.00 i | 31.55 ± 0.07 i | 46.84 ± 0.04 h | 2.08 ± 0.01 h | 19.53 ± 0.02 hi | 80.47 ± 0.02 hi |
Dehulled | 16.03 ± 0.04 n (−6.06) ns | 2.30 ± 0.01 j (−6.87) ns | 33.62 ± 0.03 g (6.18) ns | 46.08 ± 0.15 k (−1.63) ns | 1.97 ± 0.02 j (−5.32) ns | 18.33 ± 0.04 mn (6.16) ns | 81.67 ± 0.04 bc (1.47) ns | |
Primus | Whole | 16.83 ± 0.16 h | 2.73 ± 0.04 e | 30.43 ± 0.16 k | 48.20 ± 0.28 f | 1.80 ± 0.05 i | 19.56 ± 0.17 hi | 80.44 ± 0.17 hi |
Dehulled | 17.62 ± 0.03 e (4.50) ns | 2.79 ± 0.01 c (2.09) ns | 29.08 ± 0.08 k (−4.44) ns | 48.70 ± 0.07 h (1.01) ns | 1.81 ± 0.02 k (0.37) ns | 20.41 ± 0.04 c (4.17) ns | 79.59 ± 0.04 m (−1.06) ns | |
Seville | Whole | 16.38 ± 0.02 ij | 2.34 ± 0.01 lm | 39.54 ± 0.05 a | 39.53 ± 0.06 p | 2.21 ± 0.03 fg | 18.72 ± 0.03 m | 81.28 ± 0.03 d |
Dehulled | 16.14 ± 0.01 m (−1.42) ns | 2.23 ± 0.00 l (−4.91) ns | 39.50 ± 0.04 a (−0.11) ns | 40.09 ± 0.05 r (1.39) ns | 2.05 ± 0.01 hi (−7.40) ns | 18.37 ± 0.01 m (−1.86) ns | 81.63 ± 0.01 c (0.43) ns | |
Strumicka | Whole | 16.72 ± 0.07 h | 2.52 ± 0.04 h | 32.35 ± 0.14 gh | 46.30 ± 0.12 i | 2.11 ± 0.03 gh | 19.24 ± 0.04 k | 80.76 ± 0.04 f |
Dehulled | 16.30 ± 0.02 l (−2.48) ns | 2.35 ± 0.02 hi (−6.75) ns | 33.16 ± 0.09 h (2.43) ns | 46.12 ± 0.09 k (−0.40) ns | 2.07 ± 0.02 h (−1.65) ns | 18.65 ± 0.04 l (−3.04) ns | 81.35 ± 0.04 d (0.72) ns | |
Tempranas De Machamiel | Whole | 16.84 ± 0.01 h | 2.67 ± 0.00 f | 34.25 ± 0.03 e | 43.88 ± 0.04 m | 2.35 ± 0.00 de | 19.51 ± 0.01 i | 80.49 ± 0.01 h |
Dehulled | 16.90 ± 0.02 i (0.36) ns | 2.34 ± 0.01 i (−12.29) ns | 34.77 ± 0.06 d (1.49) ns | 43.79 ± 0.05 ° (−0.22) ns | 2.20 ± 0.01 g (−6.55) ns | 19.25 ± 0.01 i (−1.37) ns | 80.75 ± 0.01 g (0.33) ns | |
Yavneh | Whole | 17.22 ± 0.10 f | 2.35 ± 0.04 lm | 27.41 ± 0.45 n | 50.76 ± 0.10 d | 2.26 ± 0.21 ef | 19.57 ± 0.14 hi | 80.43 ± 0.14 hi |
Dehulled | 17.46 ± 0.06 f (1.37) ns | 2.59 ± 0.00 f (9.27) ns | 26.15 ± 0.03 ° (−4.60) ns | 51.31 ± 0.08 d (1.06) ns | 2.49 ± 0.01 e (9.37) ns | 20.05 ± 0.06 e (2.39) ns | 79.95 ± 0.06 k (−0.60) ns | |
Zborovicki | Whole | 14.93 ± 0.10 n | 2.79 ± 0.01 d | 38.79 ± 0.11 c | 41.47 ± 0.17 n | 2.02 ± 0.02 h | 17.72 ± 0.09 p | 82.28 ± 0.09 a |
Dehulled | 15.51 ± 0.03 p (3.73) ns | 2.78 ± 0.01 c (−0.39) ns | 36.54 ± 0.03 b (−5.79) ns | 43.09 ± 0.04 p (3.76) ns | 2.08 ± 0.01 h (2.76) ns | 18.29 ± 0.03 mn (3.11) ns | 81.71 ± 0.03 bc (0.69) ns | |
Total range | Whole | 4.93–18.83 | 2.22–3.26 | 22.97–39.54 | 39.53–54.44 | 1.80–3.11 | 17.72–21.50 | 78.50–82.28 |
Dehulled | 15.51–19.09 | 1.86–3.26 | 22.43–39.50 | 40.09–55.28 | 1.81–3.13 | 18.00–21.15 | 78.85–82.00 | |
Total mean | Whole | 16.96 | 2.58 | 30.92 | 47.26 | 2.27 | 19.54 | 80.46 |
Dehulled | 16.88 | 2.41 | 30.72 | 47.69 | 2.30 | 19.29 | 80.71 | |
CV (%) | Whole | 5.55 | 10.43 | 15.06 | 7.92 | 13.80 | 5.16 | 1.25 |
Dehulled | 5.37 | 13.37 | 15.10 | 7.78 | 14.95 | 4.76 | 1.14 |
Cultivar | Total Phenolic Content (mg GAE/g) | Total Saponin Content (mg DE/g) | Total Tannin Content (mg CE/g) | |||
---|---|---|---|---|---|---|
Whole | Dehulled | Whole | Dehulled | Whole | Dehulled | |
Abawi# 1 | 2.85 ± 0.08 ghi | 3.39 ± 0.07 f (16.12) ** | 9.55 ± 0.32 ab | 8.02 ± 0.69 a–d (−16.09) * | 4.40 ± 0.20 d–g | 3.45 ± 0.04 a (−21.57) ** |
Aguadulce | 3.81 ± 0.12 cd | 3.54 ± 0.10 ef (−6.85) ns | 6.26 ± 0.83 ij | 7.36 ± 0.44 a–d (14.98) ns | 4.59 ± 0.11 c–f | 2.95 ± 0.32 bc (−35.78) ** |
Algerian | 2.76 ± 0.07 hi | 3.07 ± 0.11 g (10.02) * | 8.46 ± 0.62 b–e | 8.12 ± 0.35 a–d (−4.02) ns | 3.19 ± 0.27 ij | 2.37 ± 0.14 fgh (−25.55) * |
Alicante | 3.54 ± 0.23 de | 3.95 ± 0.18 bcd (10.35) ns | 7.57 ± 0.84 d–h | 7.63 ± 0.32 a–d (0.71) ns | 5.11 ± 0.49 bcd | 3.11 ± 0.17 b (−39.06) ** |
Ascott | 2.14 ± 0.12 j | 3.94 ± 0.01 bcd (45.63) *** | 7.93 ± 0.21 c–g | 8.67 ± 0.31 ab (8.61) * | 3.44 ± 0.07 hij | 2.07 ± 0.04 hi (−39.90) *** |
Brocal | 2.64 ± 0.23 i | 3.31 ± 0.14 f (20.24) * | 8.25 ± 0.18 c–f | 7.75 ± 0.71 a–d (−6.08) ns | 3.01 ± 0.40 ij | 2.96 ± 0.14 bc (−1.70) ns |
Domasna-2 | 2.96 ± 0.11 ghi | 2.86 ± 0.07 g (−3.57) ns | 7.09 ± 0.74 f–i | 6.57 ± 0.50 de (−7.31) ns | 4.18 ± 0.14 e–h | 2.49 ± 0.11 d–g (−40.44) ** |
Domasna-1 | 3.54 ± 0.07 de | 4.05 ± 0.07 bc (12.61) ** | 7.30 ± 0.81 e–i | 8.81 ± 0.74 a (17.19) ns | 5.44 ± 0.41 bc | 2.63 ± 0.04 c–f (−51.75) ** |
Ethiopia 530 | 3.14 ± 0.08 fg | 3.95 ± 0.05 bcd (20.51) ** | 7.30 ± 0.48 e–i | 8.20 ± 0.23 abc (10.94) ns | 3.62 ± 0.24 g–j | 2.63 ± 0.17 c–f (−27.44) ** |
Giant Three Seeded | 3.20 ± 0.17 efg | 3.99 ± 0.19 bcd (19.83) * | 6.64 ± 0.26 g–j | 7.32 ± 0.70 a–d (9.29) ns | 2.94 ± 0.09 j | 1.93 ± 0.21 i (−34.19) ** |
Large Mazandaran | 3.88 ± 0.16 c | 3.74 ± 0.08 de (−3.62) ns | 9.00 ± 0.87 a–c | 7.19 ± 0.22 b–e (−20.16) * | 7.84 ± 0.52 a | 2.76 ± 0.08 b–e (−64.78) ** |
Levens Marschbohne | 2.71 ± 0.18 i | 4.01 ± 0.12 bcd (32.48) ** | 7.17 ± 0.77 e–i | 7.86 ± 0.19 a–d (8.72) ns | 3.79 ± 0.56 f–j | 1.85 ± 0.13 i (−51.27) ** |
MMR-KJT-2010-K161716 | 2.31 ± 0.14 j | 3.77 ± 0.21 cde (38.91) ** | 5.81 ± 0.27 j | 7.35 ± 0.81 a–d (21.03) ns | 5.23 ± 0.48 bcd | 2.47 ± 0.14 efg (−52.88) ** |
Muchamiel | 3.45 ± 0.21 def | 3.83 ± 0.21 cd (9.92) ns | 7.73 ± 0.30 d–g | 7.99 ± 0.97 a–d (3.33) ns | 4.87 ± 0.07 cde | 3.50 ± 0.27 a (−28.09) ** |
NPL-JSW-2003-65 | 2.04 ± 0.01 j | 3.36 ± 0.15 f (39.34) ** | 6.29 ± 0.38 h–j | 6.74 ± 0.12 cde (6.63) ns | 4.61 ± 0.17 c–f | 1.96 ± 0.14 i (−57.59) *** |
Pirkkonen | 4.53 ± 0.10 b | 3.42 ± 0.08 f (−24.67) ** | 8.78 ± 0.43 a–d | 5.78 ± 0.14 e (−34.17) ** | 7.08 ± 0.93 a | 2.34 ± 0.14 fgh (−66.99) ** |
Primus | 3.11 ± 0.29 fgh | 4.76 ± 0.09 a (34.81) ** | 7.59 ± 0.78 d–h | 8.64 ± 0.65 ab (12.15) ns | 4.97 ± 0.43 b–e | 2.87 ± 0.27 bc (−42.29) ** |
Seville | 6.11 ± 0.15 a | 4.63 ± 0.19 a (−24.31) ** | 7.20 ± 0.47 e–i | 8.39 ± 0.50 ab (14.22) ns | 4.88 ± 0.51 c–e | 2.17 ± 0.07 ghi (−55.49) ** |
Strumicka | 3.41 ± 0.30 ef | 3.45 ± 0.04 f (1.42) ns | 6.63 ± 0.35 g–j | 7.29 ± 0.34 a–d (8.96) ns | 3.86 ± 0.14 f–i | 2.06 ± 0.21 hi (−45.59) ** |
Tempranas De Machamiel | 4.08 ± 0.11 c | 4.77 ± 0.04 a (14.49) ** | 7.99 ± 0.38 c–f | 8.06 ± 0.69 a–d (0.89) ns | 5.83 ± 0.33 b | 2.87 ± 0.04 bcd (−50.79) ** |
Yavneh | 2.85 ± 0.17 ghi | 3.07 ± 0.04 g (7.12) ns | 7.20 ± 0.26 e–i | 7.65 ± 0.11 a–d (5.99) ns | 3.69 ± 0.33 g–j | 2.60 ± 0.17 c–f (−29.71) * |
Zborovicki | 2.10 ± 0.06 j | 4.17 ± 0.06 b (49.58) *** | 9.71 ± 0.33 a | 7.21 ± 0.46 a–e (−25.71) ** | 4.99 ± 0.11 b–e | 2.63 ± 0.19 c–f (−47.25) ** |
Total range | 2.04–6.11 | 2.86–4.77 | 5.81–9.71 | 5.78–8.81 | 2.94–7.84 | 1.85–3.50 |
Total mean | 3.23 | 3.77 | 7.61 | 7.66 | 4.62 | 2.58 |
CV (%) | 27.75 | 13.59 | 13.31 | 9.32 | 26.02 | 17.64 |
Cultivar | DPPH•-Scavenging Activity (mg AAE/g) | ABTS•+-Scavenging Activity (mg TE/g) | FRAP (mg AAE/g) | |||
---|---|---|---|---|---|---|
Whole | Dehulled | Whole | Dehulled | Whole | Dehulled | |
Abawi# 1 | 1.08 ± 0.07 fgh | 0.99 ± 0.04 hi (−8.45) ns | 6.57 ± 0.29 bcd | 6.46 ± 0.40 fg (−1.66) ns | 1.87 ± 0.09 d–g | 2.00 ± 0.04 d (6.80) ns |
Aguadulce | 1.17 ± 0.07 efg | 1.20 ± 0.08 fg (2.17) ns | 6.29 ± 0.20 cd | 7.81 ± 0.26 cde (19.43) ** | 1.65 ± 0.07 f–i | 1.41 ± 0.09 f (−14.48) * |
Algerian | 0.85 ± 0.04 hi | 0.85 ± 0.04 ij (0.00) ns | 5.87 ± 0.21 def | 6.12 ± 0.14 gh (4.07) ns | 1.41 ± 0.07 hij | 1.42 ± 0.08 f (1.08) ns |
Alicante | 1.32 ± 0.13 de | 1.36 ± 0.07 de (3.46) ns | 7.13 ± 0.13 ab | 7.62 ± 0.20 c-f (6.39) * | 2.01 ± 0.24 de | 1.54 ± 0.07 ef (−23.35) ns |
Ascott | 0.54 ± 0.02 kl | 1.10 ± 0.02 gh (50.63) *** | 3.07 ± 0.45 j | 7.93 ± 0.44 cde (61.33) ** | 0.69 ± 0.03 k | 1.19 ± 0.02 g (42.27) *** |
Brocal | 0.91 ± 0.08 hi | 1.05 ± 0.08 gh (13.71) ns | 4.82 ± 0.60 gh | 4.57 ± 0.34 i (−5.19) ns | 1.20 ± 0.21 j | 1.78 ± 0.22 e (32.65) ns |
Domasna-1 | 1.26 ± 0.02 def | 1.39 ± 0.04 de (9.65) * | 6.02 ± 0.44 de | 9.73 ± 0.19 ab (−26.89) ** | 1.95 ± 0.08 def | 1.62 ± 0.08 ef (−27.73) ** |
Domasna-2 | 1.04 ± 0.09 gh | 0.53 ± 0.04 k (−49.46) ** | 6.43 ± 0.21 bcd | 4.70 ± 0.17 i (38.14) ** | 1.59 ± 0.09 ghi | 1.15 ± 0.07 g (−17.08) * |
Ethiopia 530 | 1.07 ± 0.06 fgh | 1.49 ± 0.03 cd (27.87) ** | 5.13 ± 0.29 g | 8.59 ± 0.89 cd (40.31) ** | 1.85 ± 0.04 d–g | 1.73 ± 0.07 e (−6.42) ns |
Giant Three Seeded | 0.78 ± 0.04 ij | 1.44 ± 0.15 cde (46.14) ** | 6.88 ± 0.23 abc | 7.88 ± 0.18 cde (12.80) ** | 1.41 ± 0.04 hij | 1.56 ± 0.20 ef (9.48) ns |
Large Mazandaran | 1.66 ± 0.17 b | 1.27 ± 0.03 ef (−23.52) * | 6.38 ± 0.14 cd | 8.72 ± 0.46 bc (26.86) ** | 2.56 ± 0.16 c | 1.48 ± 0.07 f (−42.25) ** |
Levens Marschbohne | 1.02 ± 0.13 gh | 1.57 ± 0.06 c (34.95) ** | 3.28 ± 0.36 j | 5.94 ± 0.52 gh (44.77) ** | 1.39 ± 0.14 hij | 1.60 ± 0.05 ef (12.96) ns |
MMR-KJT-2010-K161716 | 0.69 ± 0.01 ijk | 0.87 ± 0.07 ij (20.05) * | 4.28 ± 0.33 hi | 6.08 ± 0.75 gh (29.55) ** | 1.35 ± 0.02 ij | 0.89 ± 0.11 h (−33.62) ** |
Muchamiel | 1.43 ± 0.17 cd | 1.42 ± 0.02 cde (−1.17) ns | 6.97 ± 0.41 abc | 6.96 ± 0.25 efg (−0.20) ns | 2.50 ± 0.30 c | 2.69 ± 0.08 a (7.09) ns |
NPL-JSW-2003-65 | 0.62 ± 0.01 jk | 0.94 ± 0.01 hi (33.25) *** | 3.71 ± 0.04 ij | 8.09 ± 3.04 cde (54.12) | 1.12 ± 0.02 j | 1.00 ± 0.12 gh (−10.42) ns |
Pirkkonen | 0.35 ± 0.02 l | 1.31 ± 0.03 ef (73.61) *** | 7.34 ± 0.13 a | 4.55 ± 0.26 i (−37.94) ** | 3.62 ± 0.23 a | 1.46 ± 0.10 f (−59.69) *** |
Primus | 1.53 ± 0.20 bc | 2.45 ± 0.10 a (37.50) ** | 5.43 ± 0.58 efg | 10.34 ± 0.39 a (47.50) ** | 2.16 ± 0.27 d | 2.49 ± 0.01 b (13.17) ns |
Seville | 2.24 ± 0.10 a | 2.17 ± 0.20 b (−3.10) ns | 5.41 ± 0.13 efg | 7.47 ± 0.05 def (27.48) ns | 3.07 ± 0.13 b | 2.29 ± 0.18 bc (−25.51) ** |
Strumicka | 1.02 ± 0.08 gh | 1.09 ± 0.09 gh (7.05) ns | 5.25 ± 0.45 fg | 6.61 ± 0.26 fg (20.58) * | 1.21 ± 0.13 j | 1.19 ± 0.06 g (−2.02) ns |
Tempranas De Machamiel | 2.09 ± 0.13 a | 2.13 ± 0.03 b (1.76) ns | 6.37 ± 0.22 cd | 7.46 ± 0.78 def (14.63) ns | 3.25 ± 0.11 b | 2.30 ± 0.02 bc (−29.03) ** |
Yavneh | 1.00 ± 0.10 gh | 0.72 ± 0.04 j (−28.15) * | 6.49 ± 0.10 bcd | 5.30 ± 0.39 hi (−18.41) * | 1.69 ± 0.14 e–h | 1.56 ± 0.07 ef (−7.65) ns |
Zborovicki | 0.79 ± 0.04 ij | 2.07 ± 0.08 b (61.97) *** | 3.10 ± 0.28 j | 8.59 ± 0.36 cd (63.93) *** | 1.13 ± 0.10 j | 2.19 ± 0.09 cd (48.26) *** |
Total range | 0.35–2.24 | 0.53–2.45 | 3.07–7.34 | 4.55–10.34 | 0.69–3.62 | 0.89–2.69 |
Total mean | 1.11 | 1.34 | 5.56 | 7.16 | 1.85 | 1.66 |
CV | 40.94 | 36.38 | 23.50 | 21.81 | 39.72 | 28.48 |
Parameter | PC1 | PC2 | PC3 | PC4 | ||||
---|---|---|---|---|---|---|---|---|
FL | % | FL | % | FL | % | FL | % | |
Crude fiber content | 0.28 | 1.49 | 0.89 | 19.57 | 0.19 | 1.26 | −0.01 | 0.02 |
Dietary fiber content | 0.32 | 1.94 | 0.86 | 18.46 | 0.14 | 0.69 | −0.05 | 0.25 |
Crude protein | 0.06 | 0.07 | −0.70 | 12.14 | −0.31 | 3.46 | 0.43 | 15.44 |
Crude fat | −0.38 | 2.80 | −0.58 | 8.48 | −0.04 | 0.06 | −0.47 | 18.75 |
Palmitic acid | 0.88 | 15.09 | −0.29 | 2.09 | 0.11 | 0.39 | −0.18 | 2.85 |
Stearic acid | 0.33 | 2.09 | 0.28 | 1.94 | −0.01 | 0.01 | 0.67 | 38.11 |
Oleic acid | −0.88 | 15.29 | 0.29 | 2.04 | 0.19 | 1.24 | −0.02 | 0.04 |
Linoleic acid | 0.80 | 12.41 | −0.29 | 2.11 | −0.26 | 2.45 | 0.05 | 0.25 |
Linolenic acid | 0.68 | 9.16 | −0.19 | 0.92 | 0.06 | 0.11 | −0.43 | 15.92 |
TSFA | 0.94 | 17.26 | −0.19 | 0.87 | 0.10 | 0.32 | 0.04 | 0.12 |
TUFA | −0.94 | 17.26 | 0.19 | 0.87 | −0.10 | 0.32 | −0.04 | 0.12 |
Total phenolic content | −0.19 | 0.73 | −0.47 | 5.43 | 0.77 | 20.90 | −0.03 | 0.07 |
Total tannin content | 0.44 | 3.77 | 0.64 | 10.03 | 0.46 | 7.55 | −0.08 | 0.55 |
Total saponin content | −0.09 | 0.16 | 0.04 | 0.04 | 0.41 | 5.97 | 0.16 | 2.16 |
DPPH•-scavenging activity | −0.13 | 0.35 | −0.34 | 2.91 | 0.74 | 19.38 | 0.20 | 3.35 |
ABTS•+-scavenging activity | −0.03 | 0.02 | −0.70 | 12.05 | 0.46 | 7.34 | 0.15 | 1.89 |
Ferric-reducing antioxidant power | 0.08 | 0.13 | 0.04 | 0.05 | 0.90 | 28.55 | −0.04 | 0.11 |
Eigenvalue | 5.11 | 4.02 | 2.85 | 1.18 | ||||
Variability (%) | 30.08 | 23.66 | 16.76 | 6.97 | ||||
Cumulative variance (%) | 30.08 | 53.73 | 70.49 | 77.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-M.; Yoon, H.; Shin, M.-J.; Lee, S.; Yi, J.; Jeon, Y.-a.; Wang, X.; Desta, K.T. Nutrient Levels, Bioactive Metabolite Contents, and Antioxidant Capacities of Faba Beans as Affected by Dehulling. Foods 2023, 12, 4063. https://doi.org/10.3390/foods12224063
Choi Y-M, Yoon H, Shin M-J, Lee S, Yi J, Jeon Y-a, Wang X, Desta KT. Nutrient Levels, Bioactive Metabolite Contents, and Antioxidant Capacities of Faba Beans as Affected by Dehulling. Foods. 2023; 12(22):4063. https://doi.org/10.3390/foods12224063
Chicago/Turabian StyleChoi, Yu-Mi, Hyemyeong Yoon, Myoung-Jae Shin, Sukyeung Lee, Jungyoon Yi, Young-ah Jeon, Xiaohan Wang, and Kebede Taye Desta. 2023. "Nutrient Levels, Bioactive Metabolite Contents, and Antioxidant Capacities of Faba Beans as Affected by Dehulling" Foods 12, no. 22: 4063. https://doi.org/10.3390/foods12224063
APA StyleChoi, Y.-M., Yoon, H., Shin, M.-J., Lee, S., Yi, J., Jeon, Y.-a., Wang, X., & Desta, K. T. (2023). Nutrient Levels, Bioactive Metabolite Contents, and Antioxidant Capacities of Faba Beans as Affected by Dehulling. Foods, 12(22), 4063. https://doi.org/10.3390/foods12224063