Design of Plant-Based Food: Influences of Macronutrients and Amino Acid Composition on the Techno-Functional Properties of Legume Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Water-Holding Capacity (WHC) and Oil-Holding Capacity (OHC)
2.2.2. Preparation of the Emulsion
2.2.3. Oil Volume Fraction of the Emulsion
2.2.4. Emulsion Activity Index (EAI)
2.2.5. Emulsion Stability (ES)
2.2.6. Foam Capacity (FC)
2.2.7. Foam Stability (FS)
2.2.8. Amino Acid Classifications
2.2.9. Statistical Analysis
3. Results
3.1. Techno-Functional Properties
3.1.1. Water- and Oil-Holding Capacities (WHC/OHC)
3.1.2. Emulsion Activity Index (EAI) and Emulsion Stability (ES)
3.1.3. Foam Capacity (FC) and Foam Stability (FS)
3.2. Correlations of Macronutrients, Amino acid Composition, Steric Structure, and Techno-Functional Properties
3.2.1. Correlations of Macronutrients and Techno-Functional Properties
3.2.2. Correlations between Techno-Functional Properties and Each Amino Acid
3.2.3. Correlations between Techno-Functional Properties and Amino Acid Groups According to Steric Structure
4. Discussion
4.1. Techno-Functional Properties
4.1.1. Water- and Oil-Holding Capacities (WHC/OHC)
4.1.2. Emulsion Activity Index (EAI) and Emulsion Stability (ES)
4.1.3. Foam Capacity (FC) and Foam Stability (FS)
4.2. Correlations of Macronutrients, Amino Acid Composition, Steric Structure, and Techno-Functional Properties
4.2.1. Correlations between Macronutrients and Techno-Functional Properties
4.2.2. Correlations of Techno-Functional Properties and Each Amino Acid
4.2.3. Correlations between Techno-Functional Properties and Amino Acid Groups According to Steric Structure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Retail Scanning Data Nielsen. Smart-Protein-Plant-Based-Food-Sector-Report. Plant-Based Food in Europe. How Big is the Market? 2020. Available online: https://smartproteinproject.eu/plant-based-food-sector-report/ (accessed on 9 October 2023).
- Forsa Study Commissioned by the Federal Ministry of Food and Agriculture. Nutrition Report 2019/2020. Results of a Representative Population Survey. 2020. Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/forsa-ernaehrungsreport-2020-tabellen.pdf?__blob=publicationFile&v=3 (accessed on 9 October 2023).
- Aryee, A.N.A.; Agyei, D.; Udenigwe, C.C. Impact of processing on the chemistry and functionality of food proteins. In Proteins in Food Processing, 2nd ed.; Rickey, Y.Y., Ed.; Elsevier: Amsterdam, The Netherlands; Woodhead Publishing: Cambridge, UK, 2017; pp. 27–45. [Google Scholar]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Wang, J.C.; Kinsella, J.E. Functional properties of novel proteins: Alfalfa leaf protein. J. Food Sci. 1976, 41, 286–292. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Davis, J.P. Food protein functionality: A comprehensive approach. Food Hydrocoll. 2011, 25, 1853–1864. [Google Scholar] [CrossRef]
- Berg, J.M.; Tymoczko, J.L.; Gatto, G.J., Jr.; Stryer, L. Stryer Biochemie, 8th ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2018; pp. 34–41. [Google Scholar]
- Schmidt, H.d.O.; Oliveira, V.R.D. Overview of the Incorporation of Legumes into New Food Options: An Approach on Versatility, Nutritional, Technological, and Sensory Quality. Foods 2023, 13, 2586. [Google Scholar] [CrossRef]
- Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Waehrens, S.S.; Faber, I.; Gunn, L.; Buldo, P.; Bom Frøst, M.; Perez-Cueto, F.J.A. Consumers’ sensory-based cognitions of currently available and ideal plant-based food alternatives: A survey in Western, Central and Northern Europe. Food Qual. Prefer. 2023, 3, 104875. [Google Scholar] [CrossRef]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of Sensory Evaluation in Consumer Acceptance of Plant-Based Meat Analogs and Meat Extenders: A Scoping Review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef]
- Short, E.C.; Kinchla, A.J.; Nolden, A.A. Plant-Based Cheeses: A Systematic Review of Sensory Evaluation Studies and Strategies to Increase Consumer Acceptance. Foods 2021, 4, 725. [Google Scholar] [CrossRef]
- Nwaru, B.I.; Hickstein, L.; Panesar, S.S.; Roberts, G.; Muraro, A.; Sheikh, A. Prevalence of common food allergies in Europe: A systematic review and meta-analysis. Allergy 2014, 8, 992–1007. [Google Scholar] [CrossRef]
- Escobar, N.; Tizado, E.J.; zu Ermgassen, E.K.H.J.; Löfgren, P.; Börner, J.; Godar, J. Spatially-explicit footprints of agricultural commodities: Mapping carbon emissions embodied in Brazil’s soy exports. Glob. Environ. Change 2020, 5, 102067. [Google Scholar] [CrossRef]
- Shrestha, S.; van ‘t Hag, L.; Haritos, V.S.; Dhital, S. Lupin proteins: Structure, isolation and application. Trends Food Sci. Technol. 2021, 116, 928–939. [Google Scholar] [CrossRef]
- Sharan, S.; Zanghelini, G.; Zotzel, J.; Bonerz, D.; Aschoff, J.; Saint-Eve, A.; Maillard, M.-N. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr. Rev. Food Sci. Food Saf. 2021, 20, 401–428. [Google Scholar] [CrossRef]
- Klupšaitė, D.; Juodeikienė, G. Legume: Composition, protein extraction and functional properties. A review. Chem. Technol. 2015, 66, 5–12. [Google Scholar] [CrossRef]
- Keskin, S.O.; Ali, T.M.; Ahmed, J.; Shaikh, M.; Siddiq, M.; Uebersax, M.A. Physico-chemical and functional properties of legume protein, starch, and dietary fiber—A review. Legume Sci. 2022, 4, 1–15. [Google Scholar] [CrossRef]
- Iqbal, A.; Ateeq, N.; Khalil, I.A.; Perveen, S.; Saleemullah, S. Physicochemical characteristics and amino acid profile of chickpea cultivars grown in Pakistan. J. Foodserv. 2006, 2, 94–101. [Google Scholar] [CrossRef]
- Sosulski, F.W.; Sarwar, G. Amino Acid Composition of Oilseed Meals and Protein Isolates. Can. Inst. Food Sci. Technol. J. 1973, 6, 1–5. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Joan, M.G.S.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 12, 1685–1695. [Google Scholar] [CrossRef]
- Beuchat, L.R. Functional and electrophoretic characteristics of succinylated peanut flour protein. J. Agric. Food Chem. 1977, 25, 258–261. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–722. [Google Scholar] [CrossRef]
- Watanabe, M.; Shimada, A.; Arai, S. Enzymatic Modification of Protein Functionality: Implantation of Potent Amphiphilicity to Succinylated Proteins by Covalent Attachment of Leucine Alkyl Esters. Agric. Biol. Chem. 1981, 45, 1621–1625. [Google Scholar]
- Barac, M.; Cabrilo, S.; Pesic, M.; Stanojevic, S.; Zilic, S.; Macej, O.; Ristic, N. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. Int. J. Mol. Sci. 2010, 11, 4973–4990. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.K.; Karalash, A.; Tyler, R.T.; Warkentin, T.D.; Nickerson, M.T. Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res. Int. 2015, 76, 31–38. [Google Scholar] [CrossRef]
- Berghout, J.A.M.; Boom, R.M.; van der Goot, A.J. The potential of aqueous fractionation of lupin seeds for high-protein foods. Food Chem. 2014, 159, 64–70. [Google Scholar] [CrossRef] [PubMed]
- D’Agostina, A.; Antonioni, C.; Resta, D.; Arnoldi, A.; Bez, J.; Knauf, U.; Wäsche, A. Optimization of a pilot-scale process for producing lupin protein isolates with valuable technological properties and minimum thermal damage. J. Agric. Food Chem. 2006, 54, 92–98. [Google Scholar] [CrossRef]
- El-Adawy, T.A.; Rahma, E.H.; El-Bedawey, A.A.; Gafar, A.F. Nutritional potential and functional properties of sweet and bitter lupin seed protein isolates. Food Chem. 2001, 74, 455–462. [Google Scholar] [CrossRef]
- Rodríguez-Ambriz, S.L.; Martínez-Ayala, A.L.; Millán, F.; Dávila-Ortíz, G. Composition and functional properties of Lupinus campestris protein isolates. Plant Foods Hum. Nutr. 2005, 60, 99–107. [Google Scholar] [CrossRef]
- Taherian, A.R.; Mondor, M.; Labranche, J.; Drolet, H.; Ippersiel, D.; Lamarche, F. Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Res. Int. 2011, 44, 2505–2514. [Google Scholar] [CrossRef]
- Hu, X.-Z.; Cheng, Y.-Q.; Fan, J.-F.; Lu, Z.-H.; Yamaki, K.; Li, L.T. Effects of drying method on physicochemcial and functional properties of soy protein isolates. J. Food Process. Preserv. 2010, 34, 520–540. [Google Scholar] [CrossRef]
- Zayas, J.F. Functionality of Proteins in Food, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 228–259. [Google Scholar]
- Damodaran, S. Amino Acids, Peptides and Proteins. In Fennema’s Food Chemistry, 5th ed.; Damodaran, S., Parkin, K.L., Eds.; CRC: Boca Raton, FL, USA; Press Taylor & Francis Group: Abingdon, UK, 2017; pp. 295–308. [Google Scholar]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Ereifej, K.; Gammoh, S.; Kubow, S.; Tawalbeh, D. Preparation of mayonnaise from extracted plant protein isolates of chickpea, broad bean and lupin flour: Chemical, physiochemical, nutritional and therapeutic properties. J. Food Sci. Technol. 2017, 54, 1395–1405. [Google Scholar] [CrossRef]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 16, 3543–3564. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, T.W.G.; Wanasundara, J.P.D.; Pietrasik, Z.; Shand, P.J. Characterization of chickpea (Cicer arietinum L.) flours and application in low-fat pork bologna as a model system. Food Res. Int. 2010, 43, 617–626. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer-Verlag: Berlin, Germany, 2009; pp. 62–64. [Google Scholar]
- Mc Clements, D.J. Protein-stabilized emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 305–313. [Google Scholar] [CrossRef]
- Tsai, R.; Cassens, R.G.; Briskey, E.J. The emulsifiying properties of purified muscle proteins. J. Food Sci. 1972, 37, 286–288. [Google Scholar] [CrossRef]
- Amagliani, L.; Schmitt, C. Globular plant protein aggregates for stabilization of food foams and emulsions. Trends Food Sci. Technol. 2017, 67, 248–259. [Google Scholar] [CrossRef]
- Ogunwolu, S.O.; Henshaw, F.O.; Mock, H.-P.; Santros, A.; Awonorin, S.O. Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale L.) nut. Food Chem. 2009, 115, 852–858. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 2, 414–431. [Google Scholar] [CrossRef]
- Dagorn-Scaviner, C.; Gueguen, J.; Lefebvre, J. Emulsifying Properties of Pea Globulins as Related to Their Adsorption Behaviors. J. Food Sci. 1987, 52, 335–341. [Google Scholar] [CrossRef]
- Gravel, A.; Doyen, A. Pulse Globulins 11S and 7S: Origins, Purification Methods, and Techno-functional Properties. J. Agric. Food Chem. 2023, 71, 2704–2717. [Google Scholar] [CrossRef]
- Makri, E.; Papalamprou, E.; Doxastakis, G. Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocoll. 2005, 3, 583–594. [Google Scholar] [CrossRef]
- Kiosseoglou, A.; Doxastakis, G.; Alevisopoulos, S.; Kasapi, S. Physical characterization of thermally induced networks of lupin protein isolates prepared by isoelectric precipitation and dialysis. Int. J. Food Sci. Technol. 1999, 34, 253–263. [Google Scholar] [CrossRef]
- Aluko, R.E.; Mofolasayo, O.A.; Watts, B.M. Emulsifying and foaming properties of commercial yellow pea (Pisum sativum L.) seed flours. J. Agric. Food Chem. 2009, 57, 9793–9800. [Google Scholar] [CrossRef] [PubMed]
- Grasso, N.; Lynch, N.L.; Arendt, E.K.; O’Mahony, J.A. Chickpea protein ingredients: A review of composition, functionality, and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 435–452. [Google Scholar] [CrossRef]
- Morales, R.; Martínez, K.D.; Pizones Ruiz-Henestrosa, V.M.; Pilosof, A.M.R. Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrason. Sonochem. 2015, 26, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Westphal, G.; Gerber, G.; Lipke, B. Proteins—Nutritive and Functional Properties (Translation from German to Englisch); Springer: Berlin/Heidelberg, Germany, 2003; pp. 168–175. [Google Scholar]
- Ghosh, A.K.; Bandyopadhyay, P. Polysaccharide-Protein Interactions and Their Relevance in Food Colloids; Karunaratne, D.N., Ed.; InTech: Houston, TX, USA, 2012. [Google Scholar]
- Lam, R.S.H.; Nickerson, M.T. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chem. 2013, 2, 975–984. [Google Scholar] [CrossRef]
- Padala, S.R.; Williams, P.A.; Phillips, G.O. Adsorption of gum Arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions. J. Agric. Food Chem. 2009, 11, 4964–4973. [Google Scholar] [CrossRef] [PubMed]
- Neirynck, N.; van der Meeren, P.; Bayarri Gorbe, S.; Dierckx, S.; Dewettinck, K. Improved emulsion stabilizing properties of whey protein isolate by conjugation with pectins. Food Hydrocoll. 2004, 6, 949–957. [Google Scholar] [CrossRef]
- Liu, S.; Elmer, C.; Low, N.H.; Nickerson, M.T. Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes. Food Res. Int. 2010, 2, 489–495. [Google Scholar] [CrossRef]
- Modler, H.W. Functional Properties of Nonfat Dairy Ingredients—A Review. Modification of Products Containing Casein. J. Dairy Sci. 1985, 68, 2195–2205. [Google Scholar] [CrossRef]
- Kathuria, S.V.; Chan, Y.H.; Nobrega, R.P.; Özen, A.; Matthews, C.R. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability. Protein Sci. A Publ. Protein Soc. 2016, 25, 662–675. [Google Scholar] [CrossRef]
- Joshi, M.; Adhikari, B.; Aldred, P.; Panozzo, J.F.; Kasapis, S. Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chem. 2011, 129, 1513–1522. [Google Scholar] [CrossRef]
- Rose, G.D.; Wolfenden, R. Hydrogen Bonding, Hydrophobicity, Packing, and Protein Folding. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 381–415. [Google Scholar] [CrossRef] [PubMed]
- Salmanowicz, B.P. Primary structure and polymorphism of 2S albumins from seeds of Andean lupin (Lupinus mutabilis Sweet) Lupinus mutabilis Sweet). Eur. Food Res. Technol. 1999, 209, 416–422. [Google Scholar] [CrossRef]
- Lim, V.I. Structural Principles of the Globular Organization of Protein Chains. A Stereochemical Theory of Globular Protein Secondary Structure. J. Mol. Biol. 1974, 88, 857–872. [Google Scholar] [CrossRef]
- Stone, A.K.; Avarmenko, N.A.; Warkentin, T.D.; Nickerson, M.T. Functional properties of protein isolates from different pea cultivars. Food Sci. Biotechnol. 2015, 24, 827–833. [Google Scholar] [CrossRef]
Macronutrient | PPI | PPC | LPI | FPC | CPC |
---|---|---|---|---|---|
Carbohydrate (C) | 0.80 | 18.50 | 0.50 | 5.78 | 18.00 |
Fiber (FI) | 2.40 | 5.78 | 4.40 | 3.47 | 15.80 |
Fat (FA) | 4.00 | 6.94 | 3.00 | 6.36 | 9.00 |
Protein (PC) | 81.70 | 47.58 | 91.00 | 57.85 | 42.00 |
Amino Acids | PPI | PPC | LPI | FPC | CPC |
---|---|---|---|---|---|
Ala | 4.30 | 4.42 | 3.37 | 4.70 | 4.51 |
Arg | 8.70 | 8.60 | 11.14 | 9.76 | 8.25 |
Asp | 11.50 | 12.18 | 11.02 | 11.77 | 11.98 |
Cys | 1.00 | 1.36 | 1.35 | 1.25 | 1.38 |
Glu | 16.80 | 17.04 | 23.73 | 17.83 | 16.31 |
Gly | 4.10 | 4.36 | 4.16 | 4.32 | 4.20 |
His | 2.50 | 2.52 | 2.59 | 2.74 | 2.89 |
Ile | 4.50 | 4.40 | 4.39 | 4.25 | 5.93 |
Leu | 8.40 | 7.69 | 7.54 | 7.83 | 7.74 |
Lys | 7.20 | 8.05 | 4.39 | 6.98 | 7.03 |
Met | 1.10 | 1.01 | 0.56 | 0.77 | 1.28 |
Phe | 5.50 | 5.41 | 4.16 | 4.58 | 5.02 |
Pro | 4.50 | 4.42 | 4.27 | 4.58 | 4.41 |
Ser | 5.30 | 5.12 | 4.95 | 5.25 | 5.33 |
Thr | 3.90 | 3.94 | 3.37 | 3.84 | 4.04 |
Trp | 1.00 | 0.94 | 0.90 | 0.89 | 1.09 |
Tyr | 3.80 | 3.77 | 4.16 | 3.58 | 3.71 |
Val | 5.00 | 4.76 | 3.94 | 5.09 | 4.91 |
H | OH | P | +ve | −ve | A | S |
---|---|---|---|---|---|---|
Ala | Ser | Ser | Lys | Asp | Trp | Met |
Gly | Thr | Thr | Arg | Glu | Phe | Cys |
Trp | Tyr | Tyr | His | |||
Phe | Cys | |||||
Val | ||||||
Leu | ||||||
Ile | ||||||
Met | ||||||
Pro |
WHC | OHC | EAI | ES | FC | FS | C | FI | FA | PC | |
---|---|---|---|---|---|---|---|---|---|---|
WHC | 1.00 | 0.33 | 0.14 | 0.30 | 0.42 | 0.00 | −0.60 | −0.40 | −0.59 | 0.63 |
OHC | 1.00 | 0.16 | −0.28 | 0.80 | 0.05 | −0.35 | −0.01 | −0.59 | 0.65 | |
EAI | 1.00 | 0.09 | −0.12 | −0.92 | 0.32 | −0.25 | −0.09 | −0.07 | ||
ES | 1.00 | 0.26 | 0.16 | −0.64 | −0.95 | −0.60 | 0.47 | |||
FC | 1.00 | 0.45 | −0.81 | −0.48 | −0.91 | 0.95 | ||||
FS | 1.00 | −0.62 | −0.07 | −0.28 | 0.41 |
Ala | Arg | Asp | Cys | Glu | Gly | His | Ile | Leu | Lys | Met | Phe | Pro | Ser | Thr | Trp | Tyr | Val | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WHC | −0.22 | −0.10 | −0.44 | −0.87 | −0.05 | −0.80 | −0.53 | −0.15 | 0.83 | −0.05 | 0.18 | 0.41 | 0.06 | 0.21 | −0.05 | 0.21 | 0.25 | 0.06 |
OHC | −0.94 | 0.49 | −0.70 | 0.14 | 0.73 | −0.59 | −0.32 | 0.02 | −0.25 | −0.74 | −0.33 | −0.33 | −0.91 | −0.66 | −0.71 | −0.02 | 0.97 | −0.88 |
EAI | −0.06 | −0.29 | 0.32 | 0.00 | −0.14 | 0.29 | −0.74 | −0.32 | 0.06 | 0.41 | 0.13 | 0.60 | −0.18 | −0.29 | 0.13 | −0.09 | 0.17 | −0.09 |
ES | 0.04 | 0.36 | −0.28 | −0.61 | 0.13 | 0.10 | −0.60 | −0.91 | 0.40 | 0.02 | −0.53 | −0.04 | 0.52 | −0.13 | −0.25 | −0.74 | −0.10 | 0.14 |
FC | −0.92 | 0.82 | −0.97 | −0.18 | 0.88 | −0.61 | −0.42 | −0.41 | −0.07 | −0.89 | −0.71 | −0.58 | −0.58 | −0.68 | −0.92 | −0.44 | 0.88 | −0.80 |
FS | −0.22 | 0.60 | −0.63 | −0.10 | 0.44 | −0.38 | 0.45 | 0.00 | −0.06 | −0.65 | −0.46 | −0.76 | 0.06 | 0.00 | −0.46 | −0.21 | 0.10 | −0.16 |
H | OH | P | +ve | −ve | A | S | |
---|---|---|---|---|---|---|---|
WHC | 0.13 | 0.31 | −0.26 | −0.44 | 0.33 | 0.55 | 0.01 |
OHC | −0.63 | −0.32 | −0.22 | −0.80 | 0.88 | 0.05 | 0.23 |
EAI | 0.04 | 0.11 | 0.10 | 0.17 | 0.46 | 0.67 | 0.36 |
ES | −0.25 | −0.44 | −0.82 | 0.57 | −0.49 | −0.18 | −0.84 |
FC | −0.82 | −0.64 | −0.73 | −0.52 | 0.45 | −0.31 | −0.38 |
FS | −0.36 | −0.41 | −0.46 | −0.19 | −0.37 | −0.77 | −0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langendörfer, L.J.; Avdylaj, B.; Hensel, O.; Diakité, M. Design of Plant-Based Food: Influences of Macronutrients and Amino Acid Composition on the Techno-Functional Properties of Legume Proteins. Foods 2023, 12, 3787. https://doi.org/10.3390/foods12203787
Langendörfer LJ, Avdylaj B, Hensel O, Diakité M. Design of Plant-Based Food: Influences of Macronutrients and Amino Acid Composition on the Techno-Functional Properties of Legume Proteins. Foods. 2023; 12(20):3787. https://doi.org/10.3390/foods12203787
Chicago/Turabian StyleLangendörfer, Lena Johanna, Blerarta Avdylaj, Oliver Hensel, and Mamadou Diakité. 2023. "Design of Plant-Based Food: Influences of Macronutrients and Amino Acid Composition on the Techno-Functional Properties of Legume Proteins" Foods 12, no. 20: 3787. https://doi.org/10.3390/foods12203787
APA StyleLangendörfer, L. J., Avdylaj, B., Hensel, O., & Diakité, M. (2023). Design of Plant-Based Food: Influences of Macronutrients and Amino Acid Composition on the Techno-Functional Properties of Legume Proteins. Foods, 12(20), 3787. https://doi.org/10.3390/foods12203787