Structural and Physicochemical Properties of a Chinese Yam Starch–Tea Polyphenol Complex Prepared Using Autoclave-Assisted Pullulanase Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Preparation of the Chinese Yam Starch (CYS)
2.2.2. Preparation of the Modified Starches
2.3. Rapid Visco Analyse Measurements
2.4. Thermal Properties Measurements
2.5. In Vitro Digestion Measurements
2.6. X-ray Diffraction (XRD) Spectral Measurement
2.7. Fourier Transform Infrared (FT-IR) Spectral Measurement
2.8. Scanning Electron Microscopy (SEM)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Pasting Properties
3.2. Thermal Properties
3.3. In Vitro Digestive Properties
3.4. X-ray Diffraction Properties
3.5. FT-IR Spectroscopy Properties
3.6. Morphological Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Z.; Fang, Y.; Cao, Y.; Liao, H.; Nishinari, K.; Phillips, G. Hydrocolloid-food Component Interactions. Food Hydrocoll. 2017, 68, 149–156. [Google Scholar] [CrossRef]
- Chen, X.; Ren, Y.; Cai, Y.; Huang, X.; Zhou, L.; Ai, Y.; Jiang, B. Interactions between Exogenous Free Fatty Acids and Maize Starches Varying in Amylose Content at High Heating Temperatures. Food Hydrocoll. 2023, 143, 108855. [Google Scholar] [CrossRef]
- Qian, S.; Tang, M.; Gao, Q.; Wang, X.; Zhang, J.; Tanokura, M.; Xue, Y. Effects of Different Modification Methods on the Physicochemical and Rheological Properties of Chinese Yam (Dioscorea Opposita Thunb.) Starch. LWT 2019, 116, 108513. [Google Scholar] [CrossRef]
- Shan, N.; Wang, P.; Zhu, Q.; Sun, J.; Zhang, H.; Liu, X.; Cao, T.; Chen, X.; Huang, Y.; Zhou, Q. Comprehensive Characterization of Yam Tuber Nutrition and Medicinal Quality of Dioscorea opposita and D. alata from Different Geographic Groups in China. J. Integr. Agric. 2020, 19, 2839–2848. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Li, L.; Bodjrenou, D.M.; Lu, X.; Zheng, B. Effect of Chlorogenic Acid on Lotus Seed Starch Gelatinization Behavior and Complexation Mode during Microwave Treatment. Food Hydrocoll. 2023, 144, 108925. [Google Scholar] [CrossRef]
- Li, H.; Zhai, F.; Li, J.; Zhu, X.; Guo, Y.; Zhao, B.; Xu, B. Physicochemical Properties and Structure of Modified Potato Starch Granules and their Complex with Tea Polyphenols. Int. J. Biol. Macromol. 2021, 166, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhao, B.; Chen, J.; Chen, L.; Zheng, B. Insight Into the Characterization and Digestion of Lotus Seed Starch-Tea Polyphenol Complexes Prepared under High Hydrostatic Pressure. Food Chem. 2019, 297, 124992. [Google Scholar] [CrossRef]
- Borah, P.K.; Sarkar, A.; Duary, R.K. Water-Soluble Vitamins for Controlling Starch Digestion: Conformational Scrambling and Inhibition Mechanism of Human Pancreatic Alpha-Amylase by Ascorbic Acid and Folic Acid. Food Chem. 2019, 288, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Bian, X.; Luo, S.; Liu, C.; Hu, X. The Starch-Polyphenol Inclusion Complex: Preparation, Characterization and Digestion. Food Biosci. 2023, 53, 102655. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, B.; Tan, C.P.; Ding, L.; Shao, M.; Chen, C.; Fu, X.; Huang, Q. Effect of Rosa Roxburghii Juice on Starch Digestibility: A Focus on the Binding of Polyphenols to Amylose and Porcine Pancreatic α-Amylase by Molecular Modeling. Food Hydrocoll. 2022, 123, 106966. [Google Scholar] [CrossRef]
- Liu, P.; Gao, W.; Zhang, X.; Wu, Z.; Yu, B.; Cui, B. Physicochemical Properties of Pea Starch-Lauric Acid Complex Modified by Maltogenic Amylase and Pullulanase. Carbohydr. Polym. 2020, 242, 116332. [Google Scholar] [CrossRef]
- Shao, Y.; Mao, L.; Guan, W.; Wei, X.; Yang, Y.; Xu, F.; Li, Y.; Jiang, Q. Physicochemical and Structural Properties of Low-Amylose Chinese Yam (Dioscorea Opposita Thunb.) Starches. Int. J. Biol. Macromol. 2020, 164, 427–433. [Google Scholar] [CrossRef]
- Chi, C.; Guo, X.; Zhou, Y.; Chen, B.; He, Y. A Facile Method for Isolating Long Branch-Chains of Amylopectin from Starch by Preheating and Pullulanase Treatment. Ind. Crop. Prod. 2023, 191, 115987. [Google Scholar] [CrossRef]
- Liu, G.; Hong, Y.; Gu, Z.; Li, Z.; Cheng, L. Pullulanase Hydrolysis Behaviors and Hydrogel Properties of Debranched Starches from Different Sources. Food Hydrocoll. 2015, 45, 351–360. [Google Scholar] [CrossRef]
- Tu, D.; Ou, Y.; Zheng, Y.; Zhang, Y.; Zheng, B.; Zeng, H. Effects of Freeze-Thaw Treatment and Pullulanase Debranching on the Structural Properties and Digestibility of Lotus Seed Starch-Glycerin Monostearin Complexes. Int. J. Biol. Macromol. 2021, 177, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Hickman, B.E.; Janaswamy, S.; Yao, Y. Autoclave and Β-Amylolysis Lead to Reduced In Vitro Digestibility of Starch. J. Agric. Food Chem. 2009, 57, 7005–7012. [Google Scholar] [CrossRef]
- Li, H.; Gui, Y.; Li, J.; Zhu, Y.; Cui, B.; Guo, L. Modification of Rice Starch Using a Combination of Autoclaving and Triple Enzyme Treatment: Structural, Physicochemical and Digestibility Properties. Int. J. Biol. Macromol. 2020, 144, 500–508. [Google Scholar] [CrossRef]
- Song, W.; Janaswamy, S.; Yao, Y. Structure and in Vitro Digestibility of Normal Corn Starch: Effect of Acid Treatment, Autoclaving, and β-Amylolysis. J. Agric. Food Chem. 2010, 58, 9753–9758. [Google Scholar] [CrossRef]
- Cui, Y.; Han, X.; Huang, X.; Xie, W.; Zhang, X.; Zhang, Z.; Yu, Q.; Tao, L.; Li, T.; Li, S. Effects of Different Sources of Β-Glucan on Pasting, Gelation, and Digestive Properties of Pea Starch. Food Hydrocoll. 2023, 135, 108172. [Google Scholar] [CrossRef]
- Khurshida, S.; Das, M.J.; Deka, S.C.; Sit, N. Effect of Dual Modification Sequence on Physicochemical, Pasting, Rheological and Digestibility Properties of Cassava Starch Modified by Acetic Acid and Ultrasound. Int. J. Biol. Macromol. 2021, 188, 649–656. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Wang, R.; Liu, X.; Zhang, Y.; Zhang, H.; Chi, C. Impact of Long-Term Storage on Multi-Scale Structures and Physicochemical Properties of Starch Isolated from Rice Grains. Food Hydrocoll. 2022, 124, 107255. [Google Scholar] [CrossRef]
- Nawab, A.; Alam, F.; Haq, M.A.; Hasnain, A. Effect of Guar and Xanthan Gums on Functional Properties of Mango (Mangifera Indica) Kernel Starch. Int. J. Biol. Macromol. 2016, 93 Pt A, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kaur, M.; Sandhu, K.S.; Kaur, S.; Nehra, M. Barnyard Millet Starch Cross-Linked at Varying Levels by Sodium Trimetaphosphate (Stmp): Film Forming, Physico-Chemical, Pasting and Thermal Properties. Carbohydr. Polym. Technol. Appl. 2021, 2, 100161. [Google Scholar] [CrossRef]
- Wang, K.; Sui, J.; Gao, W.; Yu, B.; Yuan, C.; Guo, L.; Cui, B.; Abd El-Aty, A.M. Effects of Xanthan Gum and Sodium Alginate on Gelatinization and Gels Structure of Debranched Pea Starch by Pullulanase. Food Hydrocoll. 2022, 130, 107733. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, G.; Wen, P.; Chen, Y.; Yu, Q.; Shen, M.; Xie, J. Effect of Purple Red Rice Bran Anthocyanins on Pasting, Rheological and Gelling Properties of Rice Starch. Int. J. Biol. Macromol. 2023, 247, 125689. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhu, P.; Wang, M. Effects of Konjac Glucomannan on Pasting and Rheological Properties of Corn Starch. Food Hydrocoll. 2019, 89, 234–240. [Google Scholar] [CrossRef]
- Schafranski, K.; Ito, V.C.; Lacerda, L.G. Impacts and Potential Applications: A Review of the Modification of Starches by Heat-Moisture Treatment (Hmt). Food Hydrocoll. 2021, 117, 106690. [Google Scholar] [CrossRef]
- Kim, H.; Huber, K.C. Physicochemical Properties and Amylopectin Fine Structures of A- and B-Type Granules of Waxy and Normal Soft Wheat Starch. J. Cereal Sci. 2010, 51, 256–264. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Xiao, Y.; Cui, B.; Fang, Y.; Guo, L. In Vitro Digestibility of Rice Starch Granules Modified by Beta-Amylase, Transglucosidase and Pullulanase. Int. J. Biol. Macromol. 2019, 136, 1228–1236. [Google Scholar] [CrossRef]
- Liu, R.; Xu, C.; Cong, X.; Wu, T.; Song, Y.; Zhang, M. Effects of Oligomeric Procyanidins on the Retrogradation Properties of Maize Starch with Different Amylose/Amylopectin Ratios. Food Chem. 2017, 221, 2010–2017. [Google Scholar] [CrossRef]
- Xu, J.; Dai, T.; Chen, J.; He, X.; Shuai, X.; Liu, C.; Li, T. Effects of Three Types of Polymeric Proanthocyanidins on Physicochemical and In Vitro Digestive Properties of Potato Starch. Foods 2021, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Yang, W.; Guo, L.; Huang, L.; Li, X.; Gao, W. Preparation and Characterization of Native and Autoclaving-Cooling Treated Pinellia Ternate Starch and its Impact on Gut Microbiota. Int. J. Biol. Macromol. 2021, 182, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Forester, S.C.; Gu, Y.; Lambert, J.D. Inhibition of Starch Digestion by the Green Tea Polyphenol, (−)-Epigallocatechin-3-Gallate. Mol. Nutr. Food Res. 2012, 56, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Flores-Silva, P.C.; Roldan-Cruz, C.A.; Chavez-Esquivel, G.; Vernon-Carter, E.J.; Bello-Perez, L.A.; Alvarez-Ramirez, J. In Vitro Digestibility of Ultrasound-Treated Corn Starch. Starch-Stärke 2017, 69, 1700040. [Google Scholar] [CrossRef]
- Sun, L.; Gidley, M.J.; Warren, F.J. Tea Polyphenols Enhance Binding of Porcine Pancreatic A-Amylase with Starch Granules but Reduce Catalytic Activity. Food Chem. 2018, 258, 164–173. [Google Scholar] [CrossRef]
- Takahama, U.; Hirota, S. Fatty Acids, Epicatechin-Dimethylgallate, and Rutin Interact with Buckwheat Starch Inhibiting its Digestion by Amylase: Implications for the Decrease in Glycemic Index by Buckwheat Flour. J. Agric. Food Chem. 2010, 58, 12431–12439. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, M.; Tan, Z.; Ma, M.; Sui, Z.; Corke, H. Differential Distribution of Surface Proteins/Lipids Between Wheat A- and B-Starch Granule Contributes to their Difference in Pasting and Rheological Properties. Int. J. Biol. Macromol. 2023, 240, 124430. [Google Scholar] [CrossRef]
- Han, F.; Gao, C.; Liu, M.; Huang, F.; Zhang, B. Synthesis, Optimization and Characterization of Acetylated Corn Starch with the High Degree of Substitution. Int. J. Biol. Macromol. 2013, 59, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Boye, J.I. Research Advances on Structural Characterization of Resistant Starch and its Structure-Physiological Function Relationship: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1059–1083. [Google Scholar] [CrossRef]
- Semwal, J.; Meera, M.S. Modification of Sorghum Starch as a Function of Pullulanase Hydrolysis and Infrared Treatment. Food Chem. 2023, 416, 135815. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zheng, B.; Xiao, G.; Chen, L. Synergistic Effect of Extrusion and Polyphenol Molecular Interaction on the Short/Long-Term Retrogradation Properties of Chestnut Starch. Carbohydr. Polym. 2022, 276, 118731. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Zhang, X.; Zhu, C.; Wang, C.; Cheng, Y.; Tang, N. Structural, Physicochemical and Digestive Properties of Rice Starch Modified by Preheating and Pullulanase Treatments. Carbohydr. Polym. 2023, 313, 120866. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shen, M.; Xiao, W.; Li, Y.; Pan, W.; Xie, J. Regulating the Physicochemical and Structural Properties of Different Starches by Complexation with Tea Polyphenols. Food Hydrocoll. 2023, 142, 108836. [Google Scholar] [CrossRef]
Samples | PV (mPa·s) | TV (mPa·s) | BD (mPa·s) | FV (mPa·s) | SB (mPa·s) | PT (°C) |
---|---|---|---|---|---|---|
CYS–TPC | 976.03 ± 2.89 d | 921.27 ± 1.93 c | 55.37 ± 0.67 d | 1024.27 ± 1.37 d | 103.23 ± 1.06 d | 72.63 ± 1.28 c |
CYS(II) | 995.40 ± 2.79 c | 923.13 ± 1.82 c | 72.40 ± 0.92 c | 1090.17 ± 1.63 c | 167.13 ± 1.65 c | 69.58 ± 1.12 d |
CYS(I) | 1080.42 ± 4.11 b | 987.37 ± 2.19 b | 93.53 ± 0.95 b | 1176.17 ± 1.46 b | 189.15 ± 1.16 b | 74.82 ± 1.03 b |
CYS | 1197.20 ± 2.88 a | 1069.33 ± 3.07 a | 128.33 ± 1.34 a | 1579.07 ± 1.55 a | 510.47 ± 1.91 a | 81.94 ± 0.99 a |
Samples | To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | ΔT (°C) |
---|---|---|---|---|---|
CYS–TPC | 55.62 ± 0.95 c | 62.45 ± 0.75 c | 73.31 ± 0.51 c | 5.23 ± 0.19 c | 17.69 ± 0.75 a |
CYS(II) | 54.23 ± 1.11 c | 61.37 ± 0.98 c | 69.23 ± 0.88 d | 4.37 ± 0.21 d | 15.01 ± 0.46 b |
CYS(I) | 70.31 ± 0.48 b | 71.55 ± 0.72 b | 75.22 ± 0.62 b | 13.69 ± 0.12 b | 4.91 ± 0.52 d |
CYS | 74.21 ± 0.72 a | 77.37 ± 0.54 a | 82.05 ± 0.35 a | 15.47 ± 0.13 a | 7.84 ± 0.54 c |
Samples | HR (%) | RDS (%) | SDS (%) | RS (%) | |
---|---|---|---|---|---|
20 min | 120 min | ||||
CYS–TPC | 25.47 ± 0.16 c | 45.08 ± 1.72 c | 22.92 ± 0.14 c | 22.50 ± 1.65 b | 56.25 ± 1.37 a |
CYS(II) | 33.23 ± 0.73 a | 58.36 ± 0.26 a | 29.90 ± 0.66 a | 23.05 ± 0.64 b | 47.05 ± 0.23 c |
CYS(I) | 34.36 ± 0.51 a | 58.22 ± 0.47 a | 30.93 ± 0.46 a | 27.28 ± 0.81 a | 41.79 ± 0.43 d |
CYS | 29.47 ± 1.05 b | 54.74 ± 0.52 b | 26.52 ± 0.94 b | 22.95 ± 1.40 b | 50.53 ± 0.47 b |
Samples | 995 cm−1 | 1022 cm−1 | 1047 cm−1 | R1047/1022 | R1022/995 |
---|---|---|---|---|---|
CYS–TPC | 79.5296 ± 0.5191 c | 75.7965 ± 0.1769 d | 79.9586 ± 0.2591 d | 1.0549 ± 0.003017 a | 0.9531 ± 0.005615 b |
CYS(II) | 83.8199 ± 0.5869 b | 79.4661 ± 0.09897 c | 83.4058 ± 0.1702 c | 1.0496 ± 0.001282 b | 0.9481 ± 0.005579 b |
CYS(I) | 83.1542 ± 0.4042 b | 83.9323 ± 0.1030 b | 84.1725 ± 0.1841 b | 1.0029 ± 0.001713 d | 1.0094 ± 0.004023 a |
CYS | 89.8651 ± 0.3591 a | 90.6462 ± 0.3455 a | 91.7232 ± 0.2093 d | 1.0119 ± 0.001598 c | 1.0087 ± 0.0009833 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Chen, H.; Jiang, X.; Zhou, B.; Guo, Z.; Zeng, H.; Zhang, Y. Structural and Physicochemical Properties of a Chinese Yam Starch–Tea Polyphenol Complex Prepared Using Autoclave-Assisted Pullulanase Treatment. Foods 2023, 12, 3763. https://doi.org/10.3390/foods12203763
Xie S, Chen H, Jiang X, Zhou B, Guo Z, Zeng H, Zhang Y. Structural and Physicochemical Properties of a Chinese Yam Starch–Tea Polyphenol Complex Prepared Using Autoclave-Assisted Pullulanase Treatment. Foods. 2023; 12(20):3763. https://doi.org/10.3390/foods12203763
Chicago/Turabian StyleXie, Sandu, Huiqing Chen, Xinyan Jiang, Bifang Zhou, Zebin Guo, Hongliang Zeng, and Yi Zhang. 2023. "Structural and Physicochemical Properties of a Chinese Yam Starch–Tea Polyphenol Complex Prepared Using Autoclave-Assisted Pullulanase Treatment" Foods 12, no. 20: 3763. https://doi.org/10.3390/foods12203763
APA StyleXie, S., Chen, H., Jiang, X., Zhou, B., Guo, Z., Zeng, H., & Zhang, Y. (2023). Structural and Physicochemical Properties of a Chinese Yam Starch–Tea Polyphenol Complex Prepared Using Autoclave-Assisted Pullulanase Treatment. Foods, 12(20), 3763. https://doi.org/10.3390/foods12203763