Aloe barbadensis Based Bioactive Edible Film Improved Lipid Stability and Microbial Quality of the Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Media
2.2. Preparation of the Film and A. vera Extract
2.3. Preparation of the Kalari
2.4. Physico-Mechanical Characteristics
2.5. Antioxidant Potential
2.5.1. Total Flavonoid and Total Phenolic Contents
2.5.2. ABTS and DPPH Radical Scavenging Activities
2.6. Microbiological Analysis
2.6.1. Microbial Counts
2.6.2. Minimum Inhibitory Concentration (MIC) and Disc Agar Diffusion Method
2.7. pH, Moisture (%), and Lipid Oxidation
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physico-Mechanical Properties
3.2. Antioxidant Potential of the Films
3.3. Lipid Stability of the Cheese Samples
3.4. Microbiological Characteristics
3.4.1. Disc Agar Diffusion Test
3.4.2. Minimum Inhibitory Concentration (MIC)
3.4.3. Microbial Counts
3.5. pH and Moisture Content
3.6. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.M.M.; Sant’Ana, A.S.; Bavisetty, S.C.B. Sustainable preservation of cheese: Advanced technologies, physicochemical properties and sensory attributes. Trends Food Sci. Technol. 2022, 129, 306–326. [Google Scholar]
- Rinaldi, S.; Palocci, G.; Di Giovanni, S.; Iacurto, M.; Tripaldi, C. Chemical characteristics and oxidative stability of buffalo mozzarella cheese produced with fresh and frozen curd. Molecules 2021, 26, 1405. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, M.; Warner, R.D.; Fang, Z.X. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Cont. 2020, 110, 107018. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.V.; Hasan, M.; Mangaraj, S.; Pravitha, M.; Verma, D.K.; Srivastav, P.P. Trends in edible packaging films and its prospective future in food: A review. Appl. Food Res. 2022, 2, 100118. [Google Scholar]
- Ahmed, S.R.; Pathak, V.; Bhat, Z.F.; Bukhari, S.A.A. Effect of sorbic acid on the storage quality of kaladhi-an acid coagulated milk product. J. Food Sci. Technol. 2014, 51, 4040–4046. [Google Scholar] [CrossRef] [Green Version]
- Shori, A.B.; Yong, Y.S.; Baba, A.S. Effects of medicinal plants extract enriched cheese with fish collagen on proteolysis and in vitro angiotensin-I converting enzyme inhibitory activity. LWT-Food Sci. Technol. 2022, 159, 113218. [Google Scholar] [CrossRef]
- Kaur, S.; Kumar, S.; Bhat, Z.F.; Kumar, A. Effect of pomegranate seed powder, grape seed extract and tomato powder on the quality characteristics of chicken nuggets. Nutr. Food Sci. 2015, 45, 583–594. [Google Scholar] [CrossRef]
- Waithaka, P.N.; Gathuru, E.M.; Githaiga, B.M.; Kazungu, R.Z. Antimicrobial properties of Aloe vera, Aloe volkensii and Aloe secundiflora from Egerton university. Acta Sci. Microbiol. 2018, 1, 6–10. [Google Scholar]
- Radha, M.H.; Laxmipriya, N.P. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J. Trad. Compl. Med. 2015, 5, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Hussain, F. Chemical composition and biochemical activity of Aloe vera (Aloe barbadensis Miller) leaves. Int. J. Chem. Biochem. Sci. 2013, 3, 29–33. [Google Scholar]
- Leitgeb, M.; Kupnik, K.; Knez, Ž.; Primožič, M. Enzymatic and antimicrobial activity of biologically active samples from Aloe arborescens and Aloe barbadensis. Biology 2021, 10, 765. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, K.; Kumar, S.; Bhat, Z.F.; Naqvi, Z.; Jayawardena, R. Functionalization of carrageenan based edible film using phytochemicals from Aloe vera for improved lipid oxidative and microbial stability of frozen dairy products. Food Biosci. 2021, 43, 101336. [Google Scholar] [CrossRef]
- Bukhari, S.A.A.; Pathak, V.; Bhat, Z.F.; Ahmed, S.R. Effect of ambient storage on the quality characteristics of kaladhi-an acid coagulated milk product. Am. J. Food Technol. 2012, 7, 192–203. [Google Scholar] [CrossRef]
- APHA. Compendium of Methods for the Microbiological Examination of Foods, 2nd ed.; Speck, M.L., Ed.; American Public Health Association: Washington, DC, USA, 1984. [Google Scholar]
- Jamwal, A.; Kumar, S.; Bhat, Z.F.; Kumar, A.; Kaur, S. The quality and storage stability of chicken patties prepared with different additives. Nutr. Food Sci. 2015, 45, 728–739. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Kibret, M.; Abera, B. Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. Afr. Health Sci. 2011, 11 (Suppl. S1), S40–S45. [Google Scholar] [CrossRef] [Green Version]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. Calpain activity, myofibrillar protein profile and physicochemical properties of beef Semimembranosus and Biceps femoris from culled dairy cows during ageing. J. Food Process. Preser. 2018, 42, e13835. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.D.A. Pulsed electric field operates enzymatically by causing early activation of calpains in beef during ageing. Meat Sci. 2019, 153, 144–151. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Zhang, C.; Show, P.L.; Du, A.; Fu, J.C.; Kumar, V.A. Preparation and characterization of curdlan/polyvinyl alcohol/ thyme essential oil blending film and its application to chilled meat preservation. Carbohydr. Polym. 2020, 247, 116670. [Google Scholar] [CrossRef]
- Darmawati, E.; Fadhila, A.N. Aloe vera L. powder processing using spray drying method for coating material of agriculture products. IOP Conf. Ser. Earth Environ. Sci. 2020, 542, 012003. [Google Scholar] [CrossRef]
- Saricaoglu, F.T.; Tural, S.; Gul, O.; Turhan, S. High pressure homogenization of mechanically deboned chicken meat protein suspensions to improve mechanical and barrier properties of edible films. Food Hydrocoll. 2018, 84, 135–145. [Google Scholar] [CrossRef]
- Hęś, M.; Dziedzic, K.; Górecka, D.; Jędrusek-Golińska, A.; Gujska, E. Aloe vera (L.) Webb.: Natural sources of antioxidants—A review. Plant Foods Hum. Nutr. 2019, 74, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Royani, A.; Hanafi, M.; Julistiono, H.; Manaf, A. The total phenolic and flavonoid contents of Aloe vera and Morinda citrifolia extracts as antibacterial material against Pseudomonas aeruginosa. Mater. Today Proc. 2022; in press. [Google Scholar] [CrossRef]
- Nejatzadeh-Barandozi, F. Antibacterial activities and antioxidant capacity of Aloe vera. Biorg. Med. Chem. Lett. 2013, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.; Chatli, M.K.; Singh, R.; Mehta, N.; Kumar, P. Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Sci. Technol. 2016, 96, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, G.M.; Mahajan, R.T. Comparative antioxidant activity of twenty traditional Indian medicinal plants and its correlation with total flavonoid and phenolic content. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 105–111. [Google Scholar]
- Ray, A.; Gupta, S.D.; Ghosh, S. Evaluation of anti-oxidative activity and UV absorption potential of the extracts of Aloe vera L. gel from different growth periods of plants. Indust. Crops Prod. 2013, 49, 712–719. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Salehabadi, A.; Nafchi, A.M.; Oladzadabbasabadi, N.; Jafari, S.M. Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Sci. Technol. 2021, 116, 218–231. [Google Scholar] [CrossRef]
- Costa, M.J.; Maciel, L.C.; Teixeira, J.A.; Vicente, A.A.; Cerqueira, M.A. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Res. Int. 2018, 107, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.T.; Garcia, A.V.; Martinez-Abad, A.; Vilaplana, F.; Jimenez, A.; Garrigos, M.C. Physicochemical and functional properties of active fish gelatin-based edible films added with Aloe vera gel. Foods 2020, 7, 1248. [Google Scholar] [CrossRef]
- Mathews, S.; Ngoma, L.; Gashe, B.; Mpuchane, S. Assessment of pathogenic bacteria from ice cream and ice pop sold in Gaborone, Botswana. Stud. Ethno-Med. 2013, 7, 195–203. [Google Scholar] [CrossRef]
- Prasad, S.D.; Goda, P.C.; Reddy, K.S.; Kumar, C.S.; Hemadri, M.; Reddy, D.S.R. Evaluation of antimicrobial efficacy of neem and Aloe vera leaf extracts in comparison with 3% sodium hypochlorite and 2% chlorhexidine against E. faecalis and C. albicans. J. Dr. NTR Univ. Health Sci. 2016, 5, 104–110. [Google Scholar]
- Kumar, S.; Jakhar, D.S.; Singh, R. Evaluating antimicrobial activity of Aloe vera plant extract in human life. Biomed. J. Sci. Tech. Res. 2017, 1, 1854–1856. [Google Scholar] [CrossRef] [Green Version]
- Stanley, M.C.; Ifeanyi, O.E.; Eziokwu, O.G. Antimicrobial effects of Aloe vera on some human pathogens. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 1022–1028. [Google Scholar]
- Trmčić, A.; Chauhan, K.; Kent, D.J.; Ralyea, R.D.; Martin, N.H.; Boor, K.J.; Wiedmann, M. Coliform detection in cheese is associated with specific cheese characteristics, but no association was found with pathogen detection. J. Dairy Sci. 2016, 99, 6105–6120. [Google Scholar] [CrossRef]
- Quispe, C.; Villalobos, M.; Bórquez, J.; Simirgiotis, M. Chemical composition and antioxidant activity of Aloe vera from the pica oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. J. Chem. 2018, 2018, 6123850. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Zaharioudakis, K.; Georgopoulos, S.; Asimakopoulos, G.; Aktypis, A.; Proestos, C.; Karakassides, A.; Avgeropoulos, A. The increase of soft cheese shelf-life packaged with edible films based on novel hybrid nanostructures. Gels 2022, 8, 539. [Google Scholar] [CrossRef]
- Cadwallader, K.R.; Singh, T.K. Flavours and off-flavours in milk and dairy products. In Advanced Dairy Chemistry; Springer: Berlin/Heidelberg, Germany, 2009; Volume 3, pp. 631–690. [Google Scholar] [CrossRef]
Treatments | Storage Period (Days) | ||
---|---|---|---|
0 | 14 | 28 | |
Total phenolic content [Gallic acid equivalents (mg/g)] | |||
T1 | 2.88 ± 0.12 Ac | 1.20 ± 0.14 Ab | 0.84 ± 0.16 Aa |
T2 | 39.93 ± 1.04 Bc | 25.86 ± 1.02 Bb | 20.50 ± 1.06 Ba |
Total flavonoid content [Quercetin equivalents (mg/g)] | |||
T1 | 0.19 ± 0.78 Ac | 0.13 ± 0.75 Ab | 0.05 ± 0.70 Aa |
T2 | 11.71 ± 1.60 Bc | 6.73 ± 1.65 Bb | 4.34 ± 1.55 Ba |
DPPH radical scavenging activity (%) | |||
T1 | 3.56 ± 0.34 Ac | 1.03 ± 0.08 Ab | 1.07 ± 0.01 Aa |
T2 | 34.64 ± 0.42 BBC | 26.20 ± 0.40 Bb | 20.47 ± 0.04 Ba |
ABTS radical scavenging activity (%) | |||
T1 | 4.24 ± 0.55 Ab | 3.20 ± 0.39 Aab | 2.04 ± 0.44 Aa |
T2 | 40.56 ± 0.40 Bc | 35.48 ± 0.64 Bb | 25.3 ± 0.59 Ba |
Treatments | Storage Period (Days) | ||
---|---|---|---|
0 | 14 | 28 | |
FFA (% oleic acid) | |||
C | 0.0571 ± 0.009 a | 0.0721 ± 0.002 Bb | 0.0984 ± 0.001 Bc |
T1 | 0.0567 ± 0.008 a | 0.0715 ± 0.004 Bb | 0.0974 ± 0.006 Bc |
T2 | 0.0564 ± 0.007 a | 0.0690 ± 0.004 Ab | 0.0880 ± 0.002 Ac |
TBARS (mg malondialdehyde/kg) | |||
C | 0.272 ± 0.016 a | 0.670 ± 0.012 Bb | 1.113 ± 0.013 Bc |
T1 | 0.267 ± 0.012 a | 0.660 ± 0.015 Bb | 1.105 ± 0.017 Bc |
T2 | 0.264 ± 0.008 a | 0.570 ± 0.010 Ab | 0.980 ± 0.009 Ac |
Peroxide value (meq/kg) | |||
C | 0.214 ± 0.008 a | 0.480 ± 0.004 Bb | 0.589 ± 0.007 Bc |
T1 | 0.210 ± 0.013 a | 0.472 ± 0.010 Bb | 0.580 ± 0.016 Bc |
T2 | 0.208 ± 0.017 a | 0.380 ± 0.006 Ab | 0.490 ± 0.012 Ac |
Treatments | Storage Period (Days) | ||
---|---|---|---|
0 | 14 | 28 | |
Total plate count (log10 cfu/g) | |||
C | 2.28 ± 0.024 a | 3.45 ± 0.030 Bb | 3.60 ± 0.021 Bc |
T1 | 2.26 ± 0.034 a | 3.36 ± 0.040 Bb | 3.54 ± 0.028 Bc |
T2 | 2.23 ± 0.036 a | 2.50 ± 0.039 Ab | 2.70 ± 0.024 Ac |
Psychrophilic count (log10 cfu/g) | |||
C | ND | 2.50 ± 0.012 Ba | 2.80 ± 0.014 Bb |
T1 | ND | 2.43 ± 0.020 Ba | 2.75 ± 0.011 Bb |
T2 | ND | 1.70 ± 0.018 Aa | 1.85 ± 0.09 Ab |
Yeast and mold count (log10 cfu/g) | |||
C | ND | 1.92 ± 0.057 Ba | 2.80 ± 0.036 Bb |
T1 | ND | 1.84 ± 0.050 Ba | 2.74 ± 0.035 Bb |
T2 | ND | 0.84 ± 0.049 Aa | 1.80 ± 0.034 Ab |
pH | |||
C | 4. 96 ± 0.023 c | 4.80 ± 0.018 Bb | 5.40 ± 0.020 Ba |
T1 | 4.90 ± 0.016 c | 4.75 ± 0.023 Bb | 5.34 ± 0.025 Ba |
T2 | 4.89 ± 0.018 c | 4.55 ± 0.022 Ab | 5.20 ± 0.024 Aa |
Moisture (%) | |||
C | 32.14 ± 0.028 a | 31.40 ± 0.030 Bb | 30.30 ± 0.035 Bc |
T1 | 32.18 ± 0.025 a | 31.50 ± 0.028 Ab | 30.40 ± 0.030 Ac |
T2 | 32.21 ± 0.035 a | 31.63 ± 0.032 Ab | 30.52 ± 0.028 Ac |
Treatments | Storage Period (Days) | ||
---|---|---|---|
0 | 14 | 28 | |
Color and appearance | |||
C | 7.50 ± 0.067 c | 6.40 ± 0.059 Bb | 5.50 ± 0.042 Ba |
T1 | 7.55 ± 0.042 c | 6.48 ± 0.040 Bb | 5.57 ± 0.036 Ba |
T2 | 7.59 ± 0.050 c | 7.20 ± 0.055 Ab | 6.50 ± 0.059 Aa |
Flavor | |||
C | 7.60 ± 0.043 c | 6.60 ± 0.048 Bb | 5.60 ± 0.039 Ba |
T1 | 7.64 ± 0.044 c | 6.68 ± 0.040 Bb | 5.66 ± 0.038 Ba |
T2 | 7.68 ± 0.042 c | 7.40 ± 0.036 Ab | 6.62 ± 0.040 Aa |
Texture | |||
C | 7.62 ± 0.024 c | 6.50 ± 0.021 Bb | 5.65 ± 0.028 Ba |
T1 | 7.65 ± 0.026 c | 6.57 ± 0.024 Bb | 5.71 ± 0.022 Ba |
T2 | 7.69 ± 0.028 c | 7.43 ± 0.025 Ab | 6.65 ± 0.026 Aa |
Juiciness | |||
C | 7.61 ± 0.066 c | 6.40 ± 0.060 Bb | 5.55 ± 0.058 Ba |
T1 | 7.64 ± 0.042 c | 7.48 ± 0.044 Ab | 6.64 ± 0.040 Aa |
T2 | 7.66 ± 0.033 c | 7.55 ± 0.032 Ab | 6.74 ± 0.038 Aa |
Overall acceptability | |||
C | 7.40 ± 0.038 c | 6.50 ± 0.034 Bb | 5.40 ± 0.036 Ba |
T1 | 7.45 ± 0.040 c | 6.57 ± 0.039 Bb | 5.46 ± 0.034 Ba |
T2 | 7.49 ± 0.040 c | 7.46 ± 0.040 Ab | 6.85 ± 0.043 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouser, F.; Kumar, S.; Bhat, H.F.; Hassoun, A.; Bekhit, A.E.-D.A.; Bhat, Z.F. Aloe barbadensis Based Bioactive Edible Film Improved Lipid Stability and Microbial Quality of the Cheese. Foods 2023, 12, 229. https://doi.org/10.3390/foods12020229
Kouser F, Kumar S, Bhat HF, Hassoun A, Bekhit AE-DA, Bhat ZF. Aloe barbadensis Based Bioactive Edible Film Improved Lipid Stability and Microbial Quality of the Cheese. Foods. 2023; 12(2):229. https://doi.org/10.3390/foods12020229
Chicago/Turabian StyleKouser, Firdous, Sunil Kumar, Hina F. Bhat, Abdo Hassoun, Alaa El-Din A. Bekhit, and Zuhaib F. Bhat. 2023. "Aloe barbadensis Based Bioactive Edible Film Improved Lipid Stability and Microbial Quality of the Cheese" Foods 12, no. 2: 229. https://doi.org/10.3390/foods12020229
APA StyleKouser, F., Kumar, S., Bhat, H. F., Hassoun, A., Bekhit, A. E.-D. A., & Bhat, Z. F. (2023). Aloe barbadensis Based Bioactive Edible Film Improved Lipid Stability and Microbial Quality of the Cheese. Foods, 12(2), 229. https://doi.org/10.3390/foods12020229