Impact of Salts Mixtures on the Physicochemical and Sensory Characteristics of Spanish-Style Manzanilla Green Table Olives during Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olives and Experimental Design
2.2. Physicochemical Analysis of Fruits
2.3. Sensory Analysis
2.4. Effect of Mixture Composition on Physicochemical and Sensory Characteristics
2.5. Multivariate Analysis
3. Results
3.1. Effect of the Desalting Operation and Partial Replacement of Salt on the Physicochemical Characteristics of the Product
3.2. Effect of Partial Replacement of Salt on the Physicochemical Characteristics of the Products as Assessed by RSM
3.3. Effect of the Partial Replacement of Salt on the Surface Colour of Olives
3.4. Effect of the Partial Replacement of Salt on the Sensory Profile
3.5. Optimisation
3.6. Multivariate Study of Sensory Attributes, Overall Scoring, and Buying Predisposition
3.6.1. Correlation
3.6.2. Sensory Similarities among Treatments
3.6.3. Study by PLS-R of the Relationship between Sensory Attributes and Overall Score and Buying Predisposition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Olive Council (IOC). Economic Affairs & Promotion Unit. World Table Olive Figures. 2022. Available online: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/#figures (accessed on 25 May 2023).
- Garrido-Fernández, A.; Fernández-Díez, M.J.; Adams, R.M. Table Olive Production and Processing; Chapman & Hall: London, UK, 1997. [Google Scholar]
- López, A.; Garcia, P.; Garrido, A. Multivariate characterisation of table olives according to their mineral nutrient composition. Food Chem. 2008, 106, 369–378. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Yeh, T.-L.; Shih, M.-C.; Tu, Y.-K.; Chien, K.-L. Dietary sodium intake and risk of cardiovascular disease: A systematic review and dose-response, meta-analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- European Parliament; Council of the European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Off. J. Eur. Union 2011, 304, 18–63. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32011R1169 (accessed on 25 May 2023).
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; USDA: Washington, DC, USA, 2020. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 25 May 2023).
- European Commission. Implementation of EU Salt Reduction Framework. Results of Member States survey. In Directorate General Health and Consumers; Publication Office of the European Union: Luxembourg, 2012; ISBN 978-92-79-23821-5. [Google Scholar] [CrossRef]
- Ózay, G.; Borcakly, M. Effect of brine replacement an salt concentrations on the fermentation of naturally black olives. Food Res. Int. 1996, 28, 553–559. [Google Scholar] [CrossRef]
- Tassou, C.C.; Panagou, E.Z.; Katsaboxakis, K.Z. Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiol. 2002, 19, 605–615. [Google Scholar] [CrossRef]
- Kanavouras, A.; Gazouli, M.; Tzouvelekis Leonidas, L.; Petrakis, C. Evaluation of Black Table Olives in Different Brines. Grasas Aceites 2005, 56, 106–115. Available online: http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/download/117/117 (accessed on 25 May 2023). [CrossRef]
- Tassou, C.C.; Katsaboxakis, C.Z.; Georget, D.M.R.; Parker, M.L.; Waldron, K.W.; Smith, A.C.; Panagou, E.Z. Effect of calcium chloride on mechanical properties and microbiological characteristics of cv. Conservolea naturally black olives fermented at different sodium chloride levels. J. Sci. Food Agr. 2007, 87, 1123–1131. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Arroyo-López, F.N.; Durán-Quintana, M.C.; Garrido-Fernández, A. Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different salt mixtures. Food Microbiol. 2010, 27, 403–412. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Hondrodimou, O.; Mallouchos, A.; Nychas, G.-J.E. A study on the implications of NaCl reduction in the fer-mentation profile of Conservolea natural black olives. Food Microbiol. 2011, 28, 1301–1307. [Google Scholar] [CrossRef]
- Bautista Gallego, J.; Arroyo López, F.N.; Romero Gil, V.; Rodríguez Gómez, F.; García García, P.; Garrido Fernández, A. Chloride salt mixtures affect Gordal cv. green Spanish-style table olive fermentation. Food Microbiol. 2011, 28, 1316–1325. [Google Scholar] [CrossRef]
- Moreno-Baquero, J.M.; Bautista-Gallego, J.; Garrido-Fernández, A.; López-López, A. Mineral content and sensory characteristics of Gordal green table olives fermented in chloride salt mixtures. J. Food Sci. 2012, 77, S107–S114. [Google Scholar] [CrossRef] [PubMed]
- Dalloul, L.; Erten, H. Determination of Physicochemcical Properties of Cracked Green cv. Sari Ulak Olives Fermented by Different Chloride Salts. Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yil. 2018. Cilt:35-9. Available online: https://fbe.cu.edu.tr/storage/fbeyedek/makaleler/2017/Determination%20of%20Physicochemical.pdf (accessed on 25 May 2023).
- IOC/OT/NC No. 1/2004; Trade Standards Applying to Table Olives. International Olive Council: Madrid, Spain, 2004. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OT-NC1-2004-Eng.pdf (accessed on 25 May 2023).
- Rocha, J.; Borges, N.; Pinho, O. Table olives and health: A review. J. Nutr. Sci. 2020, 9, e57. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.H.; Rejano, L.; Montaño, A. Comparative study on chemical changes in olive juice and brine during green olive fermentation. J. Agr. Food Chem. 2000, 48, 5975–5980. [Google Scholar] [CrossRef] [PubMed]
- Koca, N.; Karadeniz, F.; Burdurlu, H.S. Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem. 2006, 100, 609–615. [Google Scholar] [CrossRef]
- Tijskens, L.; Schijvens, E.; Biekman, E. Modelling the change in colour of broccoli and green beans during blanching. Innov. Food Sci. Emerg. Technol. 2001, 2, 303–313. [Google Scholar] [CrossRef]
- Sánchez Gómez, A.H.; Rejano Navarro, L.; Montaño Asquerino, A. Determinación del color en las aceitunas verdes aderezadas de la variedad Manzanilla. Grasas Aceites 1985, 36, 258–261. [Google Scholar]
- COI/T.GFMO/2011; Guidelines for Testers and Panel Leaders Training in the Sensory Assessment of Table Olives and Panel Management. International Olive Council: Madrid, Spain, 2011. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/T.OT-GFMO-2011-Eng.pdf (accessed on 25 May 2023).
- Stone, H.; Sidel, J.; Oliver, S.; Woolsey, A.; Singleton, R.C. Sensory evaluation by Quantitative Descriptive Analysis. In Descriptive Sensory Analysis in Practice; Gacula, M.C., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2004. [Google Scholar]
- COI/OT/MO No 1/Rev.2 November 2011; Method for the Sensory Analysis of Table Olives. International Olive Council: Madrid, Spain, 2011. Available online: http://www.internationaloliveoil.org/estaticos/view/70-metodos-de-evaluacion (accessed on 25 May 2023).
- COI/OT/MO No 1/Rev. 3/2021; Sensory Analysis of Table Olives. International Olive Council: Madrid, Spain, 2021. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2021/07/COI-OT-MO-1-Rev.3-2021_ENG.pdf (accessed on 25 May 2023).
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 2nd ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1991. [Google Scholar]
- Lee, J.; Chambers, D.H. Descriptive analysis and US consumer’s acceptability of 6 green tea samples from China, Japan, and Korea. J. Food Sci. 2010, 75, S141–S147. [Google Scholar] [CrossRef]
- Hibbert, B. Chemometric analysis of sensory data in comprehensive chemometrics. In Chemical and Biochemical Data Analysis; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 377–424. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology. Process and Product Optimisation Using Designed Experiments; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Wehrens, R. Chemometrics with R. Multivariate Data Analysis in the Natural Sciences and Life Sciences; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Esposito Vinzi, V. PLS regression, PLS path modelling, and generalised Procrustean analysis: A combined approach for multiblock analysis. J. Chemometr. 2005, 19, 145–153. [Google Scholar] [CrossRef]
- Zinno, P.; Guantario, B.; Perozzi, G.; Pastore, G.; Devirgiliis, C. Impact of NaCl reduction on lactic acid bacteria during the fermentation of Necellara del Belice table olives. Food Microbiol. 2017, 63, 239–247. [Google Scholar] [CrossRef]
- Saúde, C.; Barros, T.; Mateus, T.; Quintas, C.; Pires-Cabral, P. Effect of chloride salts on the sensory and nutritional properties of cracked table olives of the Maçanilha Algarvia cultivar. Food Biosci. 2017, 19, 73–79. [Google Scholar] [CrossRef]
- Jiménez, A.; Heredia, A.; Guillén, R.; Fernández Bolaños, J. Correlation between soaking conditions, cation content of cell wall, and olive firmness during Spanish green olive processing. J. Agric. Food Chem. 1997, 45, 1653–1658. [Google Scholar] [CrossRef]
- García-Serrano, P.; Romero, C.; Medina, E.; García-García, P. Effect of calcium on the preservation of green olives intended for black ripe olive processing under free-sodium chloride conditions. LWT-Food Sci. Technol. 2020, 118, 108870. [Google Scholar] [CrossRef]
- Bansal, S.; Rani, S. Studies on replacement of sodium chloride with potassium chloride in lemon (Citrus limon) pickles. Asian J. Dairy. Foods Res. 2014, 33, 32–36. [Google Scholar] [CrossRef]
- Corral Silvestre, S. Efecto de la Reducción de sal en la Calidad de Embutidos Crudo Curados. Master’s Thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2012. Available online: https://riunet.upv.es/bitstream/handle/10251/27909/Tesis%20M%C3%A1ster-%20Efecto%20de%20la%20reducci%C3%B3n%20de%20sal%20en%20la%20calidad%20de.pdf?sequence=1#:~:text=Los%20resultados%20del%20presente%20estudio,deshidrataci%C3%B3n%20y%20seguridad%20del%20producto (accessed on 25 May 2023).
- Youssef, M.E.; Bhnsawy, R.M.E.; Gabal, S. Production of Low-Sodium Pickles for Hypertensive Patients. Middle East J. Agric. Res. 2017, 6, 99–106. Available online: https://www.curresweb.com/mejar/mejar/2017/99-106.pdf (accessed on 25 May 2023).
- Ambra, R.; Lucchetti, S.; Moneta, E.; Peparaio, M.; Nardo, N.; Baiamonte, I.; Di Constanzo, M.G.; Civetelli, E.S.; Pastore, G. Effect of partial substitution of sodium with potassium chloride in the fermenting brine on organoleptic characteristics and bioactive molecules occurrence in table olives debittered using Spanish and Castelvetrano methods. Int. J. Food Sci. Technol. 2017, 52, 662–670. [Google Scholar] [CrossRef]
- Erdogan, M.; Agirman, B.; Boyaci-Gunduz, C.P.; Erten, H. Partial replacement of sodium chloride with other chloride salts for the production of black table olives from cv. Gemlik. Qual. Assur. Saf. Crops Foods 2018, 10, 399–410. [Google Scholar] [CrossRef]
Design Point (Runs) | Chloride Salts in the Mixture (g/L) | ||
---|---|---|---|
KCl | CaCl2 | MgCl2 | |
1 | 5 | 10 | 10 |
2 | 15 | 10 | 0 |
3 | 15 | 0 | 10 |
4 | 5 | 10 | 10 |
5 | 10 | 5 | 10 |
6 | 15 | 5 | 5 |
7 | 8.33 | 8.33 | 8.33 |
8 | 15 | 0 | 10 |
9 | 15 | 10 | 0 |
10 | 13.33 | 3.33 | 8.33 |
11 | 13.33 | 8.33 | 3.33 |
12 | 11.67 | 6.67 | 6.67 |
13 | 10 | 5 | 10 |
14 | 10 | 10 | 5 |
Ic Interval | Panel Evaluation |
---|---|
33.6–30.2 | Excellent |
30.2–26.8 | Good |
26.8–23.7 | Acceptable |
23.7–21.0 | Bad |
<21.0 | Very bad |
Treatment | Brines | Olives | ||||||
---|---|---|---|---|---|---|---|---|
pH | Titratable Acidity (g/L) | Combined Acidity (mEq/L) | Estimated Lact. 3 (g/L) | Lact. (g/L) | Lact. in Pulp Moisture (g/L) | Moisture in Pulp (g/100 g) | Firmness (N/g) | |
Storage product | 3.89 (0.03) | 7.07 (0.17) | 82.5 (1.8) | 14.49 (0.31) | 9.86 (0.07) | 10.63 (0.01) | 69.23 (0.28) | 17.98 (0.17) |
Desalting solution 1 | 3.93 (0.05) | 2.90 (<0.01) | 40.4 (0.5) | 6.54 (0.05) | 1.35 (0.01) | 3.30 (0.01) | 76.00 (0.04) | 13.23 (2.60) |
Run 1 | 3.20 (0.09) | 2.80 (0.40) | 14.2 (1.7) | 4.07 (0.25) | 3.69 (0.22) | 4.13 (0.01) | 74.38 (0.38) | 22.19 (0.14) |
Run 2 | 3.46 (0.03) | 2.60 (<0.01) | 21.5 (2.8) | 4.53 (0.25) | 4.30 (0.02) | 4.38 (0.02) | 74.06 (0.12) | 19.14 (1.26) |
Run 3 | 3.89 (0.01) | 1.50 (<0.01) | 22.1 (0.2) | 3.49 (0.02) | 2.66 (0.11) | 2.55 (0.13) | 73.26 (0.37) | 15.89 (0.27) |
Run 4 | 3.37 (0.03) | 3.00 (0.20) | 20.6 (0.8) | 4.86 (0.27) | 4.18 (0.04) | 4.37 (0.08) | 72.62 (0.70) | 19.98 (0.14) |
Run 5 | 3.30 (0.03) | 3.15 (0.25) | 16.7 (0.5) | 4.65 (0.20) | 4.54 (0.22) | 4.82 (0.05) | 73.94 (0.03) | 19.79 (0.17) |
Run 6 | 3.35 (0.01) | 2.80 (<0.01) | 17.4 (1.0) | 4.37 (0.09) | 4.94 (0.08) | 4.84 (0.02) | 73.49 (0.44) | 17.26 (0.14) |
Run 7 | 3.26 (0.01) | 3.10 (0.10) | 15.2 (0.1) | 4.69 (0.09) | 3.67 (0.11) | 3.95 (0.06) | 76.11 (0.12) | 16.32 (0.04) |
Run 8 | 3.44 (0.02) | 2.50 (<0.01) | 24.4 (0.3) | 4.69 (0.03) | 5.21 (0.03) | 5.30 (0.10) | 73.91 (0.10) | 15.39 (0.16) |
Run 9 | 3.40 (0.01) | 3.30 (<0.01) | 20.9 (1.0) | 5.18 (0.09) | 5.40 (0.08) | 5.50 (0.13) | 75.05 (0.51) | 18.64 (0.09) |
Run 10 | 3.49 (0.03) | 2.95 (0.05) | 24.2 (1.7) | 5.12 (0.10) | 5.43 (0.11) | 5.45 (0.07) | 74.71 (0.22) | 17.55 (0.10) |
Run 11 | 3.34 (0.03) | 2.65 (0.05) | 22.0 (0.1) | 4.63 (0.06) | 5.67 (0.07) | 5.45 (<0.01) | 73.56 (0.23) | 22.72 (0.04) |
Run 12 | 3.27 (0.02) | 3.25 (0.05) | 20.5 (0.3) | 5.10 (0.02) | 5.63 (0.10) | 5.68 (0.07) | 74.82 (0.04) | 21.41 (0.09) |
Run 13 | 3.31 (0.03) | 2.75 (0.05) | 22.5 (0.4) | 4.78 (0.02) | 5.60 (0.13) | 5.49 (0.15) | 73.40 (0.40) | 22.00 (0.04) |
Run 14 | 3.31 (0.02) | 3.30 (<0.01) | 21.2 (0.1) | 5.20 (0.01) | 5.64 (0.01) | 5.56 (0.07) | 73.97 (0.30) | 20.71 (0.03) |
Control 2 | 3.61 (0.05) | 2.80 (<0.01) | 24.9 (0.2) | 5.04 (0.01) | 4.73 (0.12) | 4.67 (0.16) | 75.60 (0.63) | 15.96 (0.10) |
Treatment | IC | L* | A* | B* | Ch | h | (–a*/b*) |
---|---|---|---|---|---|---|---|
Storage olives | 27.45 (0.36) | 51.20 (0.18) | 4.85 (0.13) | 35.90 (0.67) | 36.23 (0.68) | 82.30 (0.13) | −0.135 (0.005) |
Desalted olives 1 | 25.67 (1.61) | 46.64 (1.44) | 4.58 (0.06) | 31.91 (0.83) | 32.23 (0.81) | 81.83 (0.31) | −0.143 (0.005) |
Run 1 | 25.98 (0.30) | 50.09 (0.07) | 4.76 (0.26) | 34.37 (0.83) | 34.70 (0.86) | 82.12 (0.24) | −0.138 (0.004) |
Run 2 | 25.03 (0.90) | 48.91 (0.57) | 4.63 (0.09) | 31.79 (0.39) | 32.12 (0.39) | 81.72 (0.05) | −0.146 (0.001) |
Run 3 | 25.36 (0.14) | 49.47 (0.27) | 4.60 (0.02) | 33.44 (0.87) | 33.75 (0.86) | 82.17 (0.23) | −0.138 (0.004) |
Run 4 | 26.75 (0.17) | 50.78 (0.78) | 4.66 (0.17) | 34.12 (0.01) | 34.43 (0.31) | 82.22 (0.28) | −0.137 (0.005) |
Run 5 | 25.92 (0.22) | 49.72 (0.42) | 4.88 (0.04) | 33.61 (0.28) | 33.97 (0.29) | 81.74 (0.00) | −0.145 (0.000) |
Run 6 | 24.69 (0.34) | 47.63 (0.03) | 5.50 (0.17) | 32.08 (0.28) | 32.55 (0.30) | 80.28 (0.20) | −0.171 (0.004) |
Run 7 | 25.23 (0.38) | 48.40 (0.46) | 5.13 (0.02) | 31.44 (0.17) | 31.76 (0.12) | 80.70 (0.01) | −0.164 (0.001) |
Run 8 | 27.07 (0.32) | 50.33 (0.25) | 4.75 (0.07) | 34.80 (0.23) | 35.12 (0.24) | 82.23 (0.07) | −0.150 (0.003) |
Run 9 | 25.40 (0.51) | 48.97 (0.16) | 4.92 (0.06) | 32.72 (0.33) | 33.09 (0.34) | 81.45 (0.02) | −0.148 (0.005) |
Run 10 | 24.84 (0.09) | 48.54 (0.33) | 4.95 (0.16) | 33.43 (0.15) | 33.80 (0.12) | 81.58 (0.31) | −0.134 (0.003) |
Run 11 | 25.31 (0.62) | 49.60 (0.10) | 4.58 (0.06) | 34.15 (0.38) | 34.46 (0.37) | 82.36 (0.18) | −0.137 (0.004) |
Run 12 | 25.75 (0.57) | 49.94 (0.88) | 4.84 (0.16) | 35.25 (0.14) | 35.58 (0.16) | 82.18 (0.22) | −0.150 (0.004) |
Run 13 | 25.27 (0.32) | 49.06 (0.37) | 4.94 (0.25) | 33.00 (0.96) | 33.64 (0.91) | 81.48 (0.66) | −0.150 (0.012) |
Run 14 | 24.98 (0.25) | 48.79 (0.29) | 5.05 (0.06) | 34.23 (0.56) | 34.60 (0.54) | 81.61 (0.22) | −0.147 (0.004) |
Control 2 | 25.06 (0.06) | 48.31 (0.20) | 5.05 (0.06) | 32.21 (0.44) | 32.60 (0.43) | 81.10 (0.22) | −0.157 (0.004) |
Treatment | Appearance | Smell | Acid | Bitterness | Salty | Hardness | Fibrousness | Crunchiness | Overall Scoring | Buying Predisposition |
---|---|---|---|---|---|---|---|---|---|---|
Run 1 | 6.73 (0.19) | 6.29 (0.20) | 4.97 (0.22) | 6.12 (0.24) | 5.81 (0.20) | 5.89 (0.18) | 5.73 (0.18) | 5.68 (0.21) | 5.82 (0.17) | 5.19 (0.19) |
Run 2 | 7.00 (0.17) | 6.07 (0.19) | 4.57 (0.19) | 4.98 (0.20) | 5.78 (0.19) | 5.85 (0.15) | 5.72 (0.17) | 5.77 (0.17) | 6.20 (0.17) | 5.76 (0.19) |
Run 3 | 6.71 (0.18) | 5.99 (0.20) | 4.80 (0.20) | 5.03 (0.22) | 6.62 (0.18) | 4.91 (0.17) | 4.90 (0.18) | 4.82 (0.18) | 5.89 (0.18) | 5.35 (0.20) |
Run 4 | 6.78 (0.18) | 6.08 (0.18) | 5.20 (0.20) | 6.16 (0.23) | 6.28 (0.17) | 6.17 (0.17) | 5.77 (0.17) | 5.79 (0.19) | 5.80 (0.18) | 5.32 (0.18) |
Run 5 | 7.07 (0.17) | 6.22 (0.18) | 4.93 (0.20) | 5.28 (0.23) | 6.58 (0.18) | 5.56 (0.19) | 5.20 (0.17) | 5.25 (0.19) | 6.14 (0.18) | 5.52 (0.19) |
Run 6 | 6.32 (0.19) | 5.70 (0.19) | 4.30 (0.21) | 4.52 (0.20) | 5.76 (0.17) | 5.39 (0.17) | 5.31 (0.17) | 5.22 (0.19) | 5.92 (0.18) | 5.48 (0.20) |
Run 7 | 6.47 (0.17) | 5.69 (0.19) | 4.34 (0.22) | 5.66 (0.25) | 5.79 (0.21) | 5.64 (0.17) | 5.79 (0.44) | 5.57 (0.18) | 5.48 (0.19) | 5.09 (0.21) |
Run 8 | 6.40 (0.19) | 5.81 (0.18) | 4.81 (0.23) | 4.51 (0.22) | 6.38 (0.16) | 5.35 (0.44) | 4.97 (0.16) | 5.03 (0.18) | 6.06 (0.17) | 5.76 (0.19) |
Run 9 | 6.31 (0.19) | 5.72 (0.19) | 4.92 (0.22) | 5.45 (0.25) | 6.78 (0.16) | 6.06 (0.18) | 5.83 (0.17) | 5.95 (0.19) | 5.88 (0.17) | 5.66 (0.18) |
Run 10 | 6.81 (0.19) | 6.48 (0.20) | 4.80 (0.22) | 4.72 (0.21) | 6.47 (0.16) | 5.71 (0.18) | 5.43 (0.16) | 5.47 (0.18) | 6.59 (0.15) | 6.27 (0.17) |
Run 11 | 6.14 (0.18) | 5.88 (0.18) | 5.03 (0.22) | 4.80 (0.23) | 6.55 (0.16) | 6.03 (0.16) | 5.93 (0.18) | 5.98 (0.17) | 6.32 (0.16) | 6.06 (0.18) |
Run 12 | 6.19 (0.17) | 5.68 (0.17) | 5.07 (0.19) | 5.24 (0.19) | 6.50 (0.16) | 5.69 (0.14) | 5.48 (0.16) | 5.55 (0.16) | 6.04 (0.15) | 5.71 (0.16) |
Run 13 | 6.62 (0.19) | 5.71 (0.20) | 5.02 (0.22) | 5.16 (0.20) | 6.27 (0.17) | 5.59 (0.17) | 5.43 (0.17) | 5.57 (0.17) | 5.99 (0.16) | 5.63 (0.17) |
Run 14 | 6.46 (0.17) | 5.58 (0.18) | 4.89 (0.20) | 5.56 (0.22) | 6.50 (0.20) | 6.16 (0.16) | 5.88 (0.17) | 6.00 (0.16) | 5.91 (0.16) | 5.52 (0.18) |
Control 1 | 6.50 (0.18) | 5.79 (0.18) | 4.49 (0.21) | 4.07 (0.18) | 5.91 (0.17) | 4.36 (0.15) | 4.38 (0.05) | 4.45 (0.17) | 6.04 (0.19) | 5.73 (0.19) |
Appearance | Smell | Acid | Bitterness | Salty | Hardness | Fibrousness | Crunchiness | Overall Scoring | Buying Predisposition | |
Appearance | 1 | 0.652 * | 0.04 | 0.3 | −0.168 | −0.095 | −0.211 | −0.211 | 0.034 | −0.252 |
Smell | 0.652 * | 1 | 0.281 | 0.167 | 0.038 | 0.083 | −0.023 | −0.037 | 0.469 | 0.193 |
Acid | 0.04 | 0.281 | 1 | 0.432 | 0.656 * | 0.530 * | 0.365 | 0.468 | 0.247 | 0.191 |
Bitterness | 0.3 | 0.167 | 0.432 | 1 | 0.002 | 0.625 * | 0.601 * | 0.550 * | −0.547 * | −0.633 * |
Salty | −0.168 | 0.038 | 0.656 * | 0.002 | 1 | 0.248 | 0.118 | 0.218 | 0.362 | 0.405 |
Hardness | −0.095 | 0.083 | 0.530 * | 0.625 * | 0.248 | 1 | 0.950 * | 0.966 * | 0.058 | 0.072 |
Fibrousness | −0.211 | −0.023 | 0.365 | 0.601 * | 0.118 | 0.950 * | 1 | 0.979 * | −0.038 | 0.012 |
Crunchiness | −0.211 | −0.037 | 0.468 | 0.550 * | 0.218 | 0.966 * | 0.979 * | 1 | 0.064 | 0.124 |
Overall scoring | 0.034 | 0.469 | 0.247 | −0.547 * | 0.362 | 0.058 | −0.038 | 0.064 | 1 | 0.929 * |
Buying predisposition | −0.252 | 0.193 | 0.191 | −0.633 * | 0.405 | 0.072 | 0.012 | 0.124 | 0.929 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-López, A.; Moreno-Baquero, J.M.; Garrido-Fernández, A. Impact of Salts Mixtures on the Physicochemical and Sensory Characteristics of Spanish-Style Manzanilla Green Table Olives during Packaging. Foods 2023, 12, 3561. https://doi.org/10.3390/foods12193561
López-López A, Moreno-Baquero JM, Garrido-Fernández A. Impact of Salts Mixtures on the Physicochemical and Sensory Characteristics of Spanish-Style Manzanilla Green Table Olives during Packaging. Foods. 2023; 12(19):3561. https://doi.org/10.3390/foods12193561
Chicago/Turabian StyleLópez-López, Antonio, José María Moreno-Baquero, and Antonio Garrido-Fernández. 2023. "Impact of Salts Mixtures on the Physicochemical and Sensory Characteristics of Spanish-Style Manzanilla Green Table Olives during Packaging" Foods 12, no. 19: 3561. https://doi.org/10.3390/foods12193561
APA StyleLópez-López, A., Moreno-Baquero, J. M., & Garrido-Fernández, A. (2023). Impact of Salts Mixtures on the Physicochemical and Sensory Characteristics of Spanish-Style Manzanilla Green Table Olives during Packaging. Foods, 12(19), 3561. https://doi.org/10.3390/foods12193561