The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Drying Experiments
2.3. Rehydration Characteristics
2.3.1. Rehydration Ratio
2.3.2. Water-Holding Capacity
2.4. Bioactive Compounds
2.4.1. Antioxidant Activity (AA)
2.4.2. Total Phenolic Content (TPC)
2.4.3. Beta-Carotene Content
2.5. Experimental Design, Optimization, and Statistical Analysis
3. Results and Discussion
3.1. Drying Time (Dt)
3.2. Rehydration Ratio (RR) and Water-Holding Capacity (WHC)
3.3. Antioxidant Activity (AA-PC) and Total Phenolic Content Changes (TPC-PC)
3.4. Beta-Carotene Content Change (BC-PC)
3.5. Numerical Optimization of the Hybrid Drying Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, M.; Lan, P.; Li, F.; Abad, J.; Zhou, C.; Li, R. Genome Characterization of Sweet Potato Symptomless Virus 1: A Mastrevirus with an Unusual Nonanucleotide Sequence. Arch. Virol. 2017, 162, 2881–2884. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.K.; Sams, S.; Rana, Z.H.; Akhtaruzzaman, M.; Islam, S.N. Minerals, Vitamin C, and Effect of Thermal Processing on Carotenoids Composition in Nine Varieties Orange-Fleshed Sweet Potato (Ipomoea batatas L.). J. Food Compos. Anal. 2020, 92, 103582. [Google Scholar] [CrossRef]
- Makori, S.I.; Mu, T.-H.; Sun, H.-N. Total Polyphenol Content, Antioxidant Activity, and Individual Phenolic Composition of Different Edible Parts of 4 Sweet Potato Cultivars. Nat. Prod. Commun. 2020, 15, 1934578X2093693. [Google Scholar] [CrossRef]
- Truong, V.D.; Avula, R.Y.; Pecota, K.V.; Yencho, G.C. Sweetpotato Production, Processing, and Nutritional Quality. In Handbook of Vegetables and Vegetable Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 811–838. ISBN 978-1-119-09893-5. [Google Scholar]
- Alam, M.K. A Comprehensive Review of Sweet Potato (Ipomoea batatas [L.] Lam): Revisiting the Associated Health Benefits. Trends Food Sci. Technol. 2021, 115, 512–529. [Google Scholar] [CrossRef]
- Ayeleso, T.B.; Ramachela, K.; Mukwevho, E. A Review of Therapeutic Potentials of Sweet Potato: Pharmacological Activities and Influence of the Cultivar. Trop. J. Pharm. Res. 2016, 15, 2751–2761. [Google Scholar] [CrossRef]
- Gao, Z.; Han, M.; Hu, Y.; Li, Z.; Liu, C.; Wang, X.; Tian, Q.; Jiao, W.; Hu, J.; Liu, L.; et al. Effects of Continuous Cropping of Sweet Potato on the Fungal Community Structure in Rhizospheric Soil. Front. Microbiol. 2019, 10, 2269. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lee, B.W.; Lee, H.-U.; Lee, Y.Y.; Kim, M.H.; Lee, J.Y.; Lee, B.K.; Woo, K.S.; Kim, H.-J. Phenolic Compounds and Antioxidant Activity in Sweet Potato after Heat Treatment. J. Sci. Food Agric. 2019, 99, 6833–6840. [Google Scholar] [CrossRef]
- Wang, S.; Nie, S.; Zhu, F. Chemical Constituents and Health Effects of Sweet Potato. Food Res. Int. 2016, 89, 90–116. [Google Scholar] [CrossRef]
- Monteiro, R.L.; de Moraes, J.O.; Domingos, J.D.; Carciofi, B.A.M.; Laurindo, J.B. Evolution of the Physicochemical Properties of Oil-Free Sweet Potato Chips during Microwave Vacuum Drying. Innov. Food Sci. Emerg. Technol. 2020, 63, 102317. [Google Scholar] [CrossRef]
- Oloniyo, R.O.; Omoba, O.S.; Awolu, O.O.; Olagunju, A.I. Orange-fleshed Sweet Potatoes Composite Bread: A Good Carrier of Beta (β)-carotene and Antioxidant Properties. J. Food Biochem. 2021, 45, e13423. [Google Scholar] [CrossRef]
- Onabanjo, O.O.; Dickson, I. Nutritional, Functional and Sensory Properties of Biscuit Produced from Wheat-Sweet Potato Composite. J. Food Technol. Res. 2014, 1, 111–121. [Google Scholar] [CrossRef]
- Azzahra, S.; Julianti, E.; Karo-Karo, T. The Effect of Pre-Treatment in Orange-Fleshed Sweet Potato (OFSP) Flour Manufacturing Process on Cake’s Quality. IOP Conf. Ser. Earth Environ. Sci. 2019, 260, 012092. [Google Scholar] [CrossRef]
- Marengo, M.; Amoah, I.; Carpen, A.; Benedetti, S.; Zanoletti, M.; Buratti, S.; Lutterodt, H.E.; Johnson, P.-N.T.; Manful, J.; Marti, A.; et al. Enriching Gluten-Free Rice Pasta with Soybean and Sweet Potato Flours. J. Food Sci. Technol. 2018, 55, 2641–2648. [Google Scholar] [CrossRef]
- Salama, M.; Mu, T.; Sun, H. Influence of Sweet Potato Flour on the Microstructure and Nutritional Quality of Gluten-Free Fresh Noodles. Int. J. Food Sci. Technol. 2021, 56, 3938–3947. [Google Scholar] [CrossRef]
- Gu, C.; Ma, H.; Tuly, J.A.; Guo, L.; Zhang, X.; Liu, D.; Ouyang, N.; Luo, X.; Shan, Y. Effects of Catalytic Infrared Drying in Combination with Hot Air Drying and Freeze Drying on the Drying Characteristics and Product Quality of Chives. LWT 2022, 161, 113363. [Google Scholar] [CrossRef]
- Hasan, M.U.; Malik, A.U.; Ali, S.; Imtiaz, A.; Munir, A.; Amjad, W.; Anwar, R. Modern Drying Techniques in Fruits and Vegetables to Overcome Postharvest Losses: A Review. J. Food Process. Preserv. 2019, 43, e14280. [Google Scholar] [CrossRef]
- Kaveh, M.; Abbaspour-Gilandeh, Y. Impacts of Hybrid (Convective-Infrared-Rotary Drum) Drying on the Quality Attributes of Green Pea. J. Food Process Eng. 2020, 43, e13424. [Google Scholar] [CrossRef]
- Sharma, G.P.; Prasad, S. Optimization of Process Parameters for Microwave Drying of Garlic Cloves. J. Food Eng. 2006, 75, 441–446. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Jahanbakhshi, A.; Golpour, I. Use of Artificial Intelligence for the Estimation of Effective Moisture Diffusivity, Specific Energy Consumption, Color and Shrinkage in Quince Drying. J. Food Process Eng. 2020, 43, e13358. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Ding, Z.; Cheng, J.; Yang, S.; Liu, X. Microwave Airflow Drying of Pecans at Variable Microwave Power. J. Food Process Eng. 2019, 42, e12946. [Google Scholar] [CrossRef]
- Chou, S.K.; Chua, K.J. New Hybrid Drying Technologies for Heat Sensitive Foodstuffs. Trends Food Sci. Technol. 2001, 12, 359–369. [Google Scholar] [CrossRef]
- Kumar, D.; Prasad, S.; Murthy, G.S. Optimization of Microwave-Assisted Hot Air Drying Conditions of Okra Using Response Surface Methodology. J. Food Sci. Technol. 2014, 51, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Tan, L.; Xu, Y.; Yuan, Y.; Dong, J. Optimization of Combined Drying for Lettuce Using Response Surface Methodology. J. Food Process. Preserv. 2016, 40, 1027–1037. [Google Scholar] [CrossRef]
- Shi, Q.; Zheng, Y.; Zhao, Y. Optimization of Combined Heat Pump and Microwave Drying of Yacon (Smallanthus sonchifolius) Using Response Surface Methodology. J. Food Process. Preserv. 2014, 38, 2090–2098. [Google Scholar] [CrossRef]
- Gowen, A.; Abu-Ghannam, N.; Frias, J.; Oliveira, J. Optimisation of Dehydration and Rehydration Properties of Cooked Chickpeas (Cicer arietinum L.) Undergoing Microwave–Hot Air Combination Drying. Trends Food Sci. Technol. 2006, 17, 177–183. [Google Scholar] [CrossRef]
- Dehghannya, J.; Farshad, P.; Khakbaz Heshmati, M. Three-Stage Hybrid Osmotic–Intermittent Microwave–Convective Drying of Apple at Low Temperature and Short Time. Dry. Technol. 2018, 36, 1982–2005. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Simultaneous Application of Microwave Energy and Hot Air to Whole Drying Process of Apple Slices: Drying Kinetics, Modeling, Temperature Profile and Energy Aspect. Heat Mass Transf. 2018, 54, 425–436. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Drying Kinetics of Apricot Halves in a Microwave-Hot Air Hybrid Oven. Heat Mass Transf. 2017, 53, 2117–2127. [Google Scholar] [CrossRef]
- de Souza, A.U.; Corrêa, J.L.G.; Tanikawa, D.H.; Abrahão, F.R.; Junqueira, J.R.d.J.; Jiménez, E.C. Hybrid Microwave-Hot Air Drying of the Osmotically Treated Carrots. LWT 2022, 156, 113046. [Google Scholar] [CrossRef]
- Omari, A.; Behroozi-Khazaei, N.; Sharifian, F. Drying Kinetic and Artificial Neural Network Modeling of Mushroom Drying Process in Microwave-Hot Air Dryer. J. Food Process Eng. 2018, 41, e12849. [Google Scholar] [CrossRef]
- Miraei Ashtiani, S.-H.; Sturm, B.; Nasirahmadi, A. Effects of Hot-Air and Hybrid Hot Air-Microwave Drying on Drying Kinetics and Textural Quality of Nectarine Slices. Heat Mass Transf. 2018, 54, 915–927. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Dehghani, M.R.; Ramaswamy, H.S. Hybrid Microwave-Hot Air Tunnel Drying of Onion Slices: Drying Kinetics, Energy Efficiency, Product Rehydration, Color, and Flavor Characteristics. Dry. Technol. 2022, 40, 966–986. [Google Scholar] [CrossRef]
- Izli, G.; Taskin, O.; Izli, N. Convective, Microwave and Combined Microwave-Convective Drying of Pepino. Erwerbs-Obstbau 2021, 63, 175–184. [Google Scholar] [CrossRef]
- Influence of Three Different Drying Techniques on Persimmon Chips’ Characteristics: A Comparison Study among Hot-Air, Combined Hot-Air-Microwave, and Vacuum-Freeze Drying Techniques–ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0960308519300410?casa_token=00sJR7NRsLwAAAAA:xFbk6g0OX7WKjiwQgl8SzPIrnRsE3EpacWEHnwJ7zLkrML729EtQNS5h3okCpmXLMb9XsM_5FaLn (accessed on 10 April 2023).
- Dehghannya, J.; Kadkhodaei, S.; Heshmati, M.K.; Ghanbarzadeh, B. Ultrasound-Assisted Intensification of a Hybrid Intermittent Microwave–Hot Air Drying Process of Potato: Quality Aspects and Energy Consumption. Ultrasonics 2019, 96, 104–122. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Effects of Hybrid (Microwave-Convectional) and Convectional Drying on Drying Kinetics, Total Phenolics, Antioxidant Capacity, Vitamin C, Color and Rehydration Capacity of Sour Cherries. Food Chem. 2017, 230, 295–305. [Google Scholar] [CrossRef]
- Karaaslan, S.N.; Tunçer, İ.K. Development of a Drying Model for Combined Microwave–Fan-Assisted Convection Drying of Spinach. Biosyst. Eng. 2008, 100, 44–52. [Google Scholar] [CrossRef]
- Horuz, E.; Jaafar, H.J.; Maskan, M. Ultrasonication as Pretreatment for Drying of Tomato Slices in a Hot Air–Microwave Hybrid Oven. Dry. Technol. 2017, 35, 849–859. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Amiripour, M.; Habibi-Najafi, M.B.; Mohebbi, M.; Emadi, B. Optimization of Osmo-Vacuum Drying of Pear (Pyrus communis L.) Using Response Surface Methodology. J. Food Meas. Charact. 2015, 9, 269–280. [Google Scholar] [CrossRef]
- Šumić, Z.; Tepić, A.; Vidović, S.; Vladić, J.; Pavlić, B. Drying of Shiitake Mushrooms in a Vacuum Dryer and Optimization of the Process by Response Surface Methodology (RSM). J. Food Meas. Charact. 2016, 10, 425–433. [Google Scholar] [CrossRef]
- Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F.; Jideani, V.A. Optimization of Microwave Drying Conditions of Two Banana Varieties Using Response Surface Methodology. Food Sci. Technol. 2015, 35, 438–444. [Google Scholar] [CrossRef]
- Bello, I.; Adeniyi, A.; Mukaila, T.; Hammed, A. Optimization of Soybean Protein Extraction with Ammonium Hydroxide (NH4OH) Using Response Surface Methodology. Foods 2023, 12, 1515. [Google Scholar] [CrossRef] [PubMed]
- Zalazar-Garcia, D.; Román, M.C.; Fernandez, A.; Asensio, D.; Zhang, X.; Fabani, M.P.; Rodriguez, R.; Mazza, G. Exergy, Energy, and Sustainability Assessments Applied to RSM Optimization of Integrated Convective Air-Drying with Pretreatments to Improve the Nutritional Quality of Pumpkin Seeds. Sustain. Energy Technol. Assess. 2022, 49, 101763. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Szumny, A. Optimization and Prediction of the Drying and Quality of Turnip Slices by Convective-Infrared Dryer under Various Pretreatments by RSM and ANFIS Methods. Foods 2021, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Yang, Y.; Wei, H.; Xue, L.; Zhao, M.; Cai, J. Optimization of Combined Microwave and Hot Air Drying Technology for Purple Cabbage by Response Surface Methodology (RSM). Food Sci. Nutr. 2021, 9, 4568–4577. [Google Scholar] [CrossRef]
- Islam Shishir, M.R.; Taip, F.S.; Aziz, N.A.; Talib, R.A.; Hossain Sarker, M.S. Optimization of Spray Drying Parameters for Pink Guava Powder Using RSM. Food Sci. Biotechnol. 2016, 25, 461–468. [Google Scholar] [CrossRef]
- Šumić, Z.; Vakula, A.; Tepić, A.; Čakarević, J.; Vitas, J.; Pavlić, B. Modeling and Optimization of Red Currants Vacuum Drying Process by Response Surface Methodology (RSM). Food Chem. 2016, 203, 465–475. [Google Scholar] [CrossRef]
- Sobowale, S.S.; Agbawodike, J.I.; Kewuyemi, Y.O.; Adebo, O.A. Response Surface Methodology Approach for Predicting Microwave-Convective Drying Characteristics of Sweet Potato Slices. J. Food Process. Preserv. 2022, 46, e16683. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Modelling the Mid-Infrared Drying of Sweet Potato: Kinetics, Mass and Heat Transfer Parameters, and Energy Consumption. Heat Mass Transf. 2018, 54, 2917–2933. [Google Scholar] [CrossRef]
- Giri, S.K.; Prasad, S. Drying Kinetics and Rehydration Characteristics of Microwave-Vacuum and Convective Hot-Air Dried Mushrooms. J. Food Eng. 2007, 78, 512–521. [Google Scholar] [CrossRef]
- Aksoy, A.; Karasu, S.; Akcicek, A.; Kayacan, S. Effects of Different Drying Methods on Drying Kinetics, Microstructure, Color, and the Rehydration Ratio of Minced Meat. Foods 2019, 8, 216. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Composition, Properties and Health Benefits of Indigestible Carbohydrate Polymers as Dietary Fiber: A Review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Bai, T.-Y.; Wang, D.; Fang, X.-M.; Xue, L.-Y.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Dry. Technol. 2019, 37, 301–311. [Google Scholar] [CrossRef]
- Ozgoren, E.; Isik, F.; Yapar, A. Effect of Jerusalem Artichoke (Helianthus tuberosus L.) Supplementation on Chemical and Nutritional Properties of Crackers. J. Food Meas. Charact. 2019, 13, 2812–2821. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Demiray, E.; Tulek, Y.; Yilmaz, Y. Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes during Hot Air Drying. LWT–Food Sci. Technol. 2013, 50, 172–176. [Google Scholar] [CrossRef]
- Tumer, E.; Tulek, Y. Effects of Dehydrofreezing Conditions on Carrot β-Carotene and Kinetics of β-Carotene Change in Dehydrofrozen Carrots during Storage. Food Sci. Technol. 2021, 42, e70220. [Google Scholar] [CrossRef]
- Demirel, M.; Kayan, B. Application of Response Surface Methodology and Central Composite Design for the Optimization of Textile Dye Degradation by Wet Air Oxidation. Int. J. Ind. Chem. 2012, 3, 24. [Google Scholar] [CrossRef]
- Nkama, I.; Badau, M.; Ukwungwu, M.; Maji, A.; Abo, M.; Fati, K.; Oko, A. Optimization of Rice Parboiling Process for Optimum Head Rice Yield: A Response Surface Methodology (RSM) Approach. Int. J. Agric. For. 2014, 2014, 154–165. [Google Scholar] [CrossRef]
- Elkelawy, M.; Bastawissi, H.A.-E.; Esmaeil, K.K.; Radwan, A.M.; Panchal, H.; Sadasivuni, K.K.; Suresh, M.; Israr, M. Maximization of Biodiesel Production from Sunflower and Soybean Oils and Prediction of Diesel Engine Performance and Emission Characteristics through Response Surface Methodology. Fuel 2020, 266, 117072. [Google Scholar] [CrossRef]
- Golpour, I.; Kaveh, M.; Blanco-Marigorta, A.M.; Marcos, J.D.; Guiné, R.P.F.; Chayjan, R.A.; Khalife, E.; Karami, H. Multi-Response Design Optimisation of a Combined Fluidised Bed-Infrared Dryer for Terebinth (Pistacia atlantica L.) Fruit Drying Process Based on Energy and Exergy Assessments by Applying RSM-CCD Modelling. Sustainability 2022, 14, 15220. [Google Scholar] [CrossRef]
- Aghilinategh, N.; Rafiee, S.; Hosseinpour, S.; Omid, M.; Mohtasebi, S.S. Optimization of Intermittent Microwave–Convective Drying Using Response Surface Methodology. Food Sci. Nutr. 2015, 3, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.; Karim, M.A. Microwave-Convective Drying of Food Materials: A Critical Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. [Google Scholar] [CrossRef]
- Sadeghi, M.; Mirzabeigi Kesbi, O.; Mireei, S.A. Mass Transfer Characteristics during Convective, Microwave and Combined Microwave–Convective Drying of Lemon Slices. J. Sci. Food Agric. 2013, 93, 471–478. [Google Scholar] [CrossRef]
- Horuz, E.; Maskan, M. Hot Air and Microwave Drying of Pomegranate (Punica granatum L.) Arils. J. Food Sci. Technol. 2015, 52, 285–293. [Google Scholar] [CrossRef]
- Maskan, M. Drying, Shrinkage and Rehydration Characteristics of Kiwifruits during Hot Air and Microwave Drying. J. Food Eng. 2001, 48, 177–182. [Google Scholar] [CrossRef]
- Su, D.; Lv, W.; Wang, Y.; Wang, L.; Li, D. Influence of Microwave Hot-Air Flow Rolling Dry-Blanching on Microstructure, Water Migration and Quality of Pleurotus Eryngii during Hot-Air Drying. Food Control 2020, 114, 107228. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of Air-Drying Temperature on Physico-Chemical Properties, Antioxidant Capacity, Colour and Total Phenolic Content of Red Pepper (Capsicum annuum, L. var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Lech, K. The Influence of Different the Drying Methods on Chemical Composition and Antioxidant Activity in Chokeberries. LWT–Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- İncedayi, B.; Tamer, C.E.; Sinir, G.Ö.; Suna, S.; Çopur, Ö.U. Impact of Different Drying Parameters on Color, β-Carotene, Antioxidant Activity and Minerals of Apricot (Prunus armeniaca L.). Food Sci. Technol. 2016, 36, 171–178. [Google Scholar] [CrossRef]
- Mbondo, N.N.; Owino, W.O.; Ambuko, J.; Sila, D.N. Effect of Drying Methods on the Retention of Bioactive Compounds in African Eggplant. Food Sci. Nutr. 2018, 6, 814–823. [Google Scholar] [CrossRef]
Factor Code | Name | Unit | Coded/Actual Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
A | Drying temperature | °C | 50 | 60 | 70 |
B | Microwave power | W | 0 | 90 | 180 |
Run | Independent Variables | Responses | ||||||
---|---|---|---|---|---|---|---|---|
DT (°C) | MW (W) | Dt (min) | RR | WHC | AA-PC (%) | TPC-PC (%) | BC-PC (%) | |
4 | 50 | 0 | 177 | 3.14 | 35.01 | 5.58 | −54.61 | −84.61 |
13 | 50 | 90 | 71 | 3.30 | 34.50 | 25.74 | −26.27 | −80.47 |
7 | 50 | 180 | 51 | 3.35 | 32.90 | 50.59 | −21.65 | −85.74 |
9 | 60 | 0 | 122 | 3.09 | 40.06 | 27.15 | −50.45 | −80.78 |
1 | 60 | 90 | 58 | 3.24 | 38.74 | 26.48 | −34.47 | −79.89 |
2 | 60 | 90 | 61 | 3.30 | 35.52 | 26.69 | −32.86 | −79.84 |
3 | 60 | 90 | 57 | 3.19 | 39.58 | 31.49 | −33.81 | −78.49 |
5 | 60 | 90 | 60 | 3.24 | 36.91 | 33.67 | −34.91 | −76.75 |
6 | 60 | 90 | 58 | 3.24 | 37.90 | 30.92 | −31.11 | −78.51 |
12 | 60 | 180 | 42 | 3.15 | 32.18 | 43.33 | −25.82 | −83.83 |
8 | 70 | 0 | 100 | 3.18 | 41.84 | 17.72 | −39.03 | −82.80 |
11 | 70 | 90 | 56 | 3.17 | 41.65 | 15.35 | −29.14 | −80.25 |
10 | 70 | 180 | 37 | 2.95 | 28.44 | 32.31 | −27.28 | −85.59 |
Source | Sum of Squares (SSS) | Df | Mean Square | F Value | p Value | |
---|---|---|---|---|---|---|
Transform: Inverse | ||||||
Model | 0.0004 | 5 | 0.0001 | 216.89 | <0.0001 ** | Significant |
A-Drying temperature | 0.0000 | 1 | 0.0000 | 106.66 | <0.0001 ** | |
B-Microwave power | 0.0004 | 1 | 0.0004 | 958.81 | <0.0001 ** | |
AB | 2.355 × 10−6 | 1 | 2.355 × 10−6 | 6.24 | 0.0411 * | |
A2 | 1.553 × 10−6 | 1 | 1.553 × 10−6 | 4.11 | 0.0821 | |
B2 | 1.422 × 10−6 | 1 | 1.422 × 10−6 | 3.77 | 0.0934 | |
Residual | 2.642 × 10−6 | 7 | 3.774 × 10−7 | |||
Lack of Fit | 1.752 × 10−6 | 3 | 5.841 × 10−7 | 2.63 | 0.1870 | Not significant |
Pure Error | 8.898 × 10−7 | 4 | 2.225 × 10−7 | |||
Cor. Total | 0.0004 | 12 |
Response: Rehydration Ratio | ||||||
---|---|---|---|---|---|---|
Source | SSS | Df | Mean Square | F Value | p Value | |
Transform: None | ||||||
Model | 0.1166 | 5 | 0.0233 | 16.50 | 0.0009 ** | Significant |
A-Drying temperature | 0.0408 | 1 | 0.0408 | 28.90 | 0.0010 ** | |
B-Microwave power | 0.0003 | 1 | 0.0003 | 0.2002 | 0.6681 | |
AB | 0.0492 | 1 | 0.0492 | 3.79 | 0.0006 ** | |
A2 | 0.0008 | 1 | 0.0008 | 0.5643 | 0.4770 | |
B2 | 0.0251 | 1 | 0.0251 | 17.76 | 0.0040 ** | |
Residual | 0.0099 | 7 | 0.0014 | |||
Lack of Fit | 0.0023 | 3 | 0.0008 | 0.4152 | 0.7519 | Not significant |
Pure Error | 0.0075 | 4 | 0.0019 | |||
Cor. Total | 0.1265 | 12 | ||||
Response: Water-Holding Capacity | ||||||
Source | SSS | Df | Mean Square | F value | p value | |
Transform: None | ||||||
Model | 163.74 | 5 | 32.75 | 9.38 | 0.0052 ** | Significant |
A-Drying temperature | 15.12 | 1 | 15.12 | 4.33 | 0.0759 | |
B-Microwave power | 91.17 | 1 | 91.17 | 26.13 | 0.0014 ** | |
AB | 31.94 | 1 | 31.94 | 9.15 | 0.0192 * | |
A2 | 0.9237 | 1 | 0.9237 | 0.2647 | 0.6228 | |
B2 | 17.79 | 1 | 17.79 | 5.10 | 0.0585 | |
Residual | 24.43 | 7 | 3.49 | |||
Lack of Fit | 14.41 | 3 | 4.80 | 1.92 | 0.2684 | Not significant |
Pure Error | 10.02 | 4 | 2.51 | |||
Cor. Total | 188.16 | 12 |
Response: Antioxidant Activity Change | ||||||
---|---|---|---|---|---|---|
Source | SSS | Df | Mean Square | F Value | p Value | |
Transform: None | ||||||
Model | 1547.29 | 5 | 309.46 | 46.12 | <0.0001 ** | Significant |
A-Drying temperature | 45.54 | 1 | 45.54 | 6.79 | 0.0352 * | |
B-Microwave power | 326.05 | 1 | 326.05 | 48.59 | 0.0002 ** | |
AB | 960.07 | 1 | 960.07 | 143.08 | <0.0001 ** | |
A2 | 208.15 | 1 | 208.15 | 31.02 | 0.0008 ** | |
B2 | 64.40 | 1 | 64.40 | 9.60 | 0.0174 * | |
Residual | 46.97 | 7 | 6.71 | |||
Lack of Fit | 7.21 | 3 | 2.40 | 0.2416 | 0.8636 | Not significant |
Pure Error | 39.77 | 4 | 9.94 | |||
Cor. Total | 1594.26 | 12 | ||||
Response: Total Phenolic Content Change | ||||||
Source | SSS | df | Mean Square | F value | p value | |
Transform: None | ||||||
Model | 1040.77 | 5 | 208.15 | 37.77 | <0.0001 ** | Significant |
A-Drying temperature | 8.35 | 1 | 8.35 | 1.52 | 0.2580 | |
B-Microwave power | 801.34 | 1 | 801.34 | 145.40 | <0.0001 ** | |
AB | 112.47 | 1 | 112.47 | 20.41 | 0.0027 ** | |
A2 | 47.92 | 1 | 47.92 | 8.70 | 0.0214 * | |
B2 | 108.39 | 1 | 108.39 | 19.67 | 0.0030 ** | |
Residual | 38.58 | 7 | 5.51 | |||
Lack of Fit | 29.46 | 3 | 9.82 | 4.30 | 0.0962 | Not significant |
Pure Error | 9.12 | 4 | 2.28 | |||
Cor. Total | 1079.35 | 12 |
Source | SSS | Df | Mean Square | F Value | p Value | |
---|---|---|---|---|---|---|
Transform: Inverse | ||||||
Model | 92.72 | 5 | 18.54 | 17.21 | 0.0008 ** | Significant |
A-Drying temperature | 0.7921 | 1 | 0.7921 | 0.7353 | 0.4196 | |
B-Microwave power | 8.10 | 1 | 8.10 | 7.52 | 0.0289 * | |
AB | 0.6889 | 1 | 0.6889 | 0.6395 | 0.4502 | |
A2 | 11.15 | 1 | 11.15 | 10.36 | 0.0147 * | |
B2 | 43.19 | 1 | 43.19 | 40.10 | 0.0004 ** | |
Residual | 7.54 | 7 | 1.08 | |||
Lack of Fit | 0.9421 | 3 | 0.3140 | 0.1904 | 0.8979 | Not significant |
Pure Error | 6.60 | 4 | 1.65 | |||
Cor. Total | 100.26 | 12 |
Name | Goal | Lower Limit | Upper Limit | Importance Level | Predicted |
---|---|---|---|---|---|
A: DT | In range | 50 | 70 | 3 | 54.36 °C |
B: MW | In range | 0 | 180 | 3 | 101.97 W |
Dt | Minimize | 177 | 37 | 3 | 61.76 min |
RR | Maximize | 2.95 | 3.35 | 3 | 3.29 |
WHC | Maximize | 28.44 | 41.84 | 3 | 36.56 |
AA-PC | Maximize | 5.58 | 50.59 | 3 | 31.03% |
TPC-PC | Maximize | −54.61 | −21.65 | 3 | −30.50% |
BC-PC | Maximize | −85.74 | −76.75 | 3 | −79.64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tüfekçi, S.; Özkal, S.G. The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM). Foods 2023, 12, 3003. https://doi.org/10.3390/foods12163003
Tüfekçi S, Özkal SG. The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM). Foods. 2023; 12(16):3003. https://doi.org/10.3390/foods12163003
Chicago/Turabian StyleTüfekçi, Senem, and Sami Gökhan Özkal. 2023. "The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM)" Foods 12, no. 16: 3003. https://doi.org/10.3390/foods12163003
APA StyleTüfekçi, S., & Özkal, S. G. (2023). The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM). Foods, 12(16), 3003. https://doi.org/10.3390/foods12163003