Effect of Conventional Preservatives and Essential Oils on the Survival and Growth of Escherichia coli in Vegetable Sauces: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strain
2.2. Preservatives and Essential Oils
2.3. Salsa Preparation and Inoculation
2.4. Determination of Microbial Contamination
2.5. Sensory Analysis
2.6. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahato, N.; Sharma, K.; Koteswararao, R.; Sinha, M.; Baral, E.R.; Cho, M.H. Citrus Essential Oils: Extraction, Authentication and Application in Food Preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.; Pasha, I.; Jahangir Chughtai, M.F.; Ali, Z.; Bukhari, H.; Zuhair, M. Application of Essential Oils in Food Industry: Challenges and Innovation. J. Essent. Oil Res. 2022, 34, 97–110. [Google Scholar] [CrossRef]
- Perumal, A.B.; Huang, L.; Nambiar, R.B.; He, Y.; Li, X.; Sellamuthu, P.S. Application of Essential Oils in Packaging Films for the Preservation of Fruits and Vegetables: A Review. Food Chem. 2022, 375, 131810. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; Lorenzo-Leal, A.C.; Palou, E.; López-Malo, A. Principles of Sensory Evaluation in Foods Containing Essential Oil. In Essential Oils in Food Processing; Wiley: Hoboken, NJ, USA, 2017; pp. 293–325. [Google Scholar]
- Akomea-Frempong, S.; Skonberg, D.I.; Arya, R.; Perry, J.J. Survival of Inoculated Vibrio spp., Shigatoxigenic Escherichia coli, Listeria Monocytogenes, and Salmonella spp. on Seaweed (Sugar Kelp) during Storage. J. Food Prot. 2023, 87, 100096. [Google Scholar] [CrossRef]
- Bolívar, A.; Saiz-Abajo, M.J.; García-Gimeno, R.M.; Petri-Ortega, E.; Díez-Leturia, M.; González, D.; Vitas, A.I.; Pérez-Rodríguez, F. Cross Contamination of Escherichia coli O157:H7 in Fresh-Cut Leafy Vegetables: Derivation of a Food Safety Objective and Other Risk Management Metrics. Food Control 2023, 147, 109599. [Google Scholar] [CrossRef]
- Kim, S.A.; Rhee, M.S. Highly Enhanced Bactericidal Effects of Medium Chain Fatty Acids (Caprylic, Capric, and Lauric Acid) Combined with Edible Plant Essential Oils (Carvacrol, Eugenol, β-Resorcylic Acid, Trans-Cinnamaldehyde, Thymol, and Vanillin) against Escherichia coli O15. Food Control 2016, 60, 447–454. [Google Scholar] [CrossRef]
- Kendall, M.E.; Mody, R.K.; Mahon, B.E.; Doyle, M.P.; Herman, K.M.; Tauxe, R.V. Emergence of Salsa and Guacamole as Frequent Vehicles of Foodborne Disease Outbreaks in the United States, 1973–2008. Foodborne Pathog. Dis. 2013, 10, 316–322. [Google Scholar] [CrossRef]
- Sousa, M.; Mulaosmanovic, E.; Erdei, A.L.; Bengtsson, M.; Witzgall, P.; Alsanius, B.W. Volatilomes Reveal Specific Signatures for Contamination of Leafy Vegetables with Escherichia coli O157:H7. Food Control 2023, 146, 109513. [Google Scholar] [CrossRef]
- Zhao, T.; Doyle, M.P.; Besser, R.E. Fate of Enterohemorrhagic Escherichia Coli O157:H7 in Apple Cider with and without Preservatives. Appl. Environ. Microbiol. 1993, 59, 2526–2530. [Google Scholar] [CrossRef]
- Conner, D.E.; Beuchat, L.R. Effects of Essential Oils from Plants on Growth of Food Spoilage Yeasts. J. Food Sci. 1984, 49, 429–434. [Google Scholar] [CrossRef]
- Clavero, M.R.; Beuchat, L.R. Survival of Escherichia Coli O157:H7 in Broth and Processed Salami as Influenced by PH, Water Activity, and Temperature and Suitability of Media for Its Recovery. Appl. Environ. Microbiol. 1996, 62, 2735–2740. [Google Scholar] [CrossRef]
- Jordan, K.N.; Oxford, L.; O’Byrne, C.P. Survival of Low-PH Stress by Escherichia Coli O157:H7: Correlation between Alterations in the Cell Envelope and Increased Acid Tolerance. Appl. Environ. Microbiol. 1999, 65, 3048–3055. [Google Scholar] [CrossRef] [Green Version]
- Betts, G.D. Controlling E. coli O157. Nutr. Food Sci. 2000, 30, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.-J.; Kang, D.-H. Synergistic Effects of 915 MHz Microwave Heating and Essential Oils on Inactivation of Foodborne Pathogen in Hot-Chili Sauce. Int. J. Food Microbiol. 2023, 398, 110210. [Google Scholar] [CrossRef]
- Osaili, T.M.; Hasan, F.; Dhanasekaran, D.K.; Obaid, R.S.; Al-Nabulsi, A.A.; Ayyash, M.; Karam, L.; Savvaidis, I.N.; Holley, R. Effect of Active Essential Oils Added to Chicken Tawook on the Behaviour of Listeria Monocytogenes, Salmonella spp. and Escherichia coli O157:H7 during Storage. Int. J. Food Microbiol. 2021, 337, 108947. [Google Scholar] [CrossRef]
- Karam, L.; Chehab, R.; Osaili, T.M.; Savvaidis, I.N. Antimicrobial Effect of Thymol and Carvacrol Added to a Vinegar-Based Marinade for Controlling Spoilage of Marinated Beef (Shawarma) Stored in Air or Vacuum Packaging. Int. J. Food Microbiol. 2020, 332, 108769. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T.; Patrón-Vázquez, J.A.; Rodríguez-Buenfil, I.; Pacheco, N. Changes in the Physicochemical, Rheological, Biological, and Sensorial Properties of Habanero Chili Pastes Affected by Ripening Stage, Natural Preservative and Thermal Processing. Rev. Mex. Ing. Quim. 2020, 20, 197–214. [Google Scholar] [CrossRef]
- Zamindar, N.; Sadrarhami, M.; Doudi, M. Antifungal Activity of Coriander (Coriandrum sativum L.) Essential Oil in Tomato Sauce. J. Food Meas. Charact. 2016, 10, 589–594. [Google Scholar] [CrossRef]
- Zamindar, N.; Haraji, S.; Doudi, M. Antifungal Effect of Cinnamon Essential Oil on Byssochlamys fulva in Liquid Medium and Tomato Sauce. J. Food Meas. Charact. 2015, 9, 586–591. [Google Scholar] [CrossRef]
- Yossa, N.; Patel, J.; Millner, P.; Lo, Y.M. Essential Oils Reduce Escherichia coli O157:H7 and Salmonella on Spinach Leaves. J. Food Prot. 2012, 75, 488–496. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Edelson, S.G. Culturing Enterohemorrhagic Escherichia Coli in the Presence and Absence of Glucose as a Simple Means of Evaluating the Acid Tolerance of Stationary-Phase Cells. Appl. Environ. Microbiol. 1996, 62, 4009–4013. [Google Scholar] [CrossRef] [Green Version]
- Bozik, M.; Nový, P.; Klouček, P. Susceptibility of Postharvest Pathogens to Essential Oils. Sci. Agric. Bohem. 2017, 48, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Božik, M.; Císarová, M.; Tančinová, D.; Kouřimská, L.; Hleba, L.; Klouček, P. Selected Essential Oil Vapours Inhibit Growth of Aspergillus spp. in Oats with Improved Consumer Acceptability. Ind. Crops Prod. 2017, 98, 146–152. [Google Scholar] [CrossRef]
- Elbing, K.L.; Brent, R. Growth of E. Coli in Liquid Medium. Curr. Protoc. Mol. Biol. 2019, 125, e81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eribo, B.; Ashenafi, M. Behavior of Escherichia Coli O157:H7 in Tomato and Processed Tomato Products. Food Res. Int. 2003, 36, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Interscience EasySpiral, ®. EasySpiral ® Pro: Installation Guide and User’s Manual V3; Interscience: Saint Nom, France, 2010. [Google Scholar]
- Osimani, A.; Garofalo, C.; Harasym, J.; Aquilanti, L. Use of Essential Oils against Foodborne Spoilage Yeasts: Advantages and Drawbacks. Curr. Opin. Food Sci. 2022, 45, 100821. [Google Scholar] [CrossRef]
- Kim, S.-S.; Kang, D.-H. Synergistic Effect of Carvacrol and Ohmic Heating for Inactivation of E. coli O157:H7, S. typhimurium, L. Monocytogenes, and MS-2 Bacteriophage in Salsa. Food Control 2017, 73, 300–305. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; et al. Opinion on the Follow-up of the Re-Evaluation of Sorbic Acid (E200) and Potassium Sorbate (E202) as Food Additives. EFSA J. 2019, 17, e05625. [Google Scholar] [CrossRef] [Green Version]
- Vandevijvere, S.; Andjelkovic, M.; De Wil, M.; Vinkx, C.; Huybrechts, I.; Van Loco, J.; Van Oyen, H.; Goeyens, L. Estimate of Intake of Benzoic Acid in the Belgian Adult Population. Food Addit. Contam. Part. A 2009, 26, 958–968. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.H.; Kim, H.W.; Moon, H.; Rhee, M.S. Sodium Chloride Significantly Enhances the Bactericidal Actions of Carvacrol and Thymol against the Halotolerant Species Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. LWT 2020, 122, 109015. [Google Scholar] [CrossRef]
- Ribes, S.; Fuentes, A.; Barat, J.M. Effect of Oregano (Origanum vulgare L. ssp. Hirtum) and Clove (Eugenia spp.) Nanoemulsions on Zygosaccharomyces bailii Survival in Salad Dressings. Food Chem. 2019, 295, 630–636. [Google Scholar] [CrossRef]
- Theron, M.M.; Lues, J.F.R. Organic Acids and Food Preservation; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420078435. [Google Scholar]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. In Vitro Evaluation of the Antimicrobial Activity of Eugenol, Limonene, and Citrus Extract against Bacteria and Yeasts, Representative of the Spoiling Microflora of Fruit Juices. J. Food Prot. 2010, 73, 888–894. [Google Scholar] [CrossRef]
- Horváth, G.; Kovács, K.; Kocsis, B.; Kustos, I. Effect of Thyme (Thymus vulgaris L.) Essential Oil and Its Main Constituents on the Outer Membrane Protein Composition of Erwinia Strains Studied with Microfluid Chip Technology. Chromatographia 2009, 70, 1645–1650. [Google Scholar] [CrossRef]
- Beristain-Bauza, S.C.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial Activity and Physical Properties of Protein Films Added with Cell-Free Supernatant of Lactobacillus Rhamnosus. Food Control 2016, 62, 44–51. [Google Scholar] [CrossRef]
- Kim, W.-J.; Kim, S.-H.; Kang, D.-H. Combination Effect of 915 MHz Microwave Heating and Carvacrol for Inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in Hot Chili Sauce. Food Control 2021, 121, 107578. [Google Scholar] [CrossRef]
- Ceylan, E.; Fung, D.Y.C.; Sabah, J.R. Antimicrobial Activity and Synergistic Effect of Cinnamon with Sodium Benzoate or Potassium Sorbate in Controlling Escherichia coli O157:H7 in Apple Juice. J. Food Sci. 2004, 69, FMS102–FMS106. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of Natural Antimicrobials in Food Preservation: Recent Views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
Treatment | Value |
---|---|
without treatment (pH 4.58) | - |
without treatment (pH 4.6) | - |
heat treatment | 90 °C 1 min |
heat treatment | 90 °C 1 min |
citric acid (pH 32) | 145 g/L |
citric acid (pH 352) | 86 g/L |
lime juice (pH 365) | 135 mL/L |
lime juice (pH 383) | 90 mL/L |
lime juice (pH 414) | 45 mL/L |
sucrose | 300 g/L |
sucrose | 600 g/L |
sodium benzoate | 1 g/L |
sodium chloride | 100 g/L |
sorbic acid | 715 mg/L |
thyme essential oil | 512 μL/L |
thyme essential oil | 256 μL/L |
thyme essential oil | 128 μL/L |
thyme essential oil | 64 μL/L |
thyme essential oil | 32 μL/L |
lemongrass essential oil | 512 μL/L |
lemongrass essential oil | 256 μL/L |
lemongrass essential oil | 128 μL/L |
lemongrass essential oil | 64 μL/L |
lemongrass essential oil | 32 μL/L |
oregano essential oil | 512 μL/L |
oregano essential oil | 256 μL/L |
oregano essential oil | 128 μL/L |
oregano essential oil | 64 μL/L |
oregano essential oil | 32 μL/L |
Method of Treatment |
---|
without treatment |
heat treatment 90 °C 1 min |
sodium benzoate 1000 mg/L |
sodium chloride 100 g/L |
citric acid pH 3.2 |
citric acid pH 3.52 |
lemongrass essential oil 512 μL/L |
thyme essential oil 512 μL/L |
* | Day 1 | Day 3 | Day 5 | Day 7 | Day 10 | Day 15 |
---|---|---|---|---|---|---|
without treatment (pH 4.58) | ND | ND | 7.11 ± 0.05 a | 6.99 ± 0.08 a | 6.77 ± 0.1 a | 6.19 ± 0.05 a |
without treatment (pH 4.6) | ND | 7.14 ± 0.05 a | 6.98 ± 0.03 ab | 6.83 ± 0.06 ab | 6.6 ± 0.05 ab | 6.12 ± 0.03 ab |
heat treatment | 2.78 ± 0.03 | 2.08 ± 0 | 1.78 ± 0 e | ND | ND | ND |
heat treatment | 3.54 ± 0.02 | 2.68 ± 0 | 1.78 ± 0 e | ND | ND | ND |
citric acid (pH 3.2) | 5.73 ± 0.05 a | 3.28 ± 0.03 | 2.47 ± 0.1 c | 2.00 ± 0.03 c | 1.78 ± 0.2 | ND |
citric acid (pH 3.52) | ND | 6.97 ± 0.03 b | 6.4 ± 0.09 d | 5.97 ± 0.03 d | 5.22 ± 0.04 c | 3.15 ± 0.04 c |
sodium benzoate | ND | 6.97 ± 0.07 bdfghijk | 6.36 ± 0.04 dgk | 6.06 ± 0.04 defir | 5.32 ± 0.08 co | 2.77 ± 0.06 |
sorbic acid | ND | ND | 6.99 ± 0.06 abhjmps | 6.65 ± 0.05 bjlmopq | 6.27 ± 0.06 dgikln | 5.77 ± 0.07 fij |
lime juice (pH 3.65) | ND | 6.99 ± 0.07 bdf | 6.52 ± 0.03 dfgk | 6.27 ± 0.09 efi | 5.83 ± 0.03 eh | 4.54 ± 0.03 g |
lime juice (pH 3.83) | ND | 7.08 ± 0.05 abfg | 6.63 ± 0.08 fgkl | 6.44 ± 0.05 eij | 6.11 ± 0.04 di | 5.22 ± 0.05 |
lime juice (pH 4.14) | ND | ND | 7.02 ± 0.03 abhjm | 6.91 ± 0.08 abghk | 6.59 ± 0.05 bfj | 5.94 ± 0.04 efh |
sucrose 60% | 5.76 ± 0.03 a | 5.19 ± 0.09 | 4.99 ± 0.04 i | 4.87 ± 0.08 | 4.72 ± 0.07 | 3.98 ± 0.03 |
sucrose 30% | ND | 5.93 ± 0.03 e | 5.75 ± 0.04 | 5.27 ± 0.04 | 5.02 ± 0.03 c | 4.26 ± 0.03 |
sodium chloride | 4.34 ± 0.03 | 3.59 ± 0.04 | 2.62 ± 0.04 c | 2.11 ± 0.07 c | ND | ND |
LG 32 | ND | ND | 7.09 ± 0.03 abh | 6.99 ± 0.05 abg | 6.54 ± 0.03 f | 5.95 ± 0.04 e |
LG 64 | ND | ND | 7.04 ± 0.05 abhj | 6.91 ± 0.07 abh | 6.45 ± 0.03 bg | 5.83 ± 0.03 ef |
LG 128 | ND | 6.75 ± 0.05 c | 6.53 ± 0.08 df | 6.27 ± 0.07 e | 6.18 ± 0.1 d | 5.49 ± 0.08 d |
LG 256 | ND | 6.87 ± 0.03 bcd | 6.49 ± 0.03 dfg | 6.03 ± 0.07 def | 5.82 ± 0.08 e | 4.91 ± 0.07 |
LG 512 | ND | 5.82 ± 0.04 e | 5.14 ± 0.05 i | 3.68 ± 0.03 | ND | ND |
O 32 | ND | ND | 7.06 ± 0.04 abhjp | 6.93 ± 0.05 abghlmn | 6.67 ± 0.07 abfjm | 6.2 ± 0.04 bk |
O 64 | ND | ND | 7.01 ± 0.04 abhjpr | 6.9 ± 0.07 abgklmnp | 6.61 ± 0.04 abfgjlm | 5.99 ± 0.03 ehijl |
O 128 | ND | 7.02 ± 0.07 bfgh | 6.76 ± 0.06 n | 6.73 ± 0.07 bhkl | 6.37 ± 0.04 dfgk | 5.86 ± 0.04 efhi |
O 256 | ND | 6.99 ± 0.08 bfghi | 6.78 ± 0.03 lno | 6.72 ± 0.08 bhklm | u6.41 ± 0.03 bfgjkl | 5.89 ± 0.03 efhij |
O512 | ND | 6.85 ± 0.05 bcdfij | 6.74 ± 0.09 lnoq | 6.66 ± 0.09 bhijklo | 5.96 ± 0.03 ehi | 4.56 ± 0.07 g |
TH 32 | ND | ND | 7.03 ± 0.05 abhjmprstv | 6.89 ± 0.06 abghklmnopqs | 6.79 ± 0.08 abjm | 6.23 ± 0.06 abk |
TH 64 | ND | ND | 6.97 ± 0.04 abhjmprstv | 6.84 ± 0.06 bghklmnopq | 6.38 ± 0.07 dfgklnpq | 5.98 ± 0.04 ehijlm |
TH 128 | ND | 7.15 ± 0.05 ahl | 6.94 ± 0.05 bhjmoprst | 6.83 ± 0.08 abgklmnopqs | 6.22 ± 0.03 diklnp | 5.97 ± 0.03 ehijlm |
TH 256 | ND | 7.07 ± 0.03 abfhikl | 6.85 ± 0.06 bnoqrst | 6.71 ± 0.09 bklmnopqs | 6.27 ± 0.09 dgiklnpq | 5.57 ± 0.03 d |
TH 512 | ND | 6.85 ± 0.05 bcdfik | 6.59 ± 0.07 fgklq | 6.25 ± 0.07 efijr | 5.33 ± 0.04 o | 3.25 ± 0.03 c |
Treatment | Descriptors (Mean ± SD) * | |||
---|---|---|---|---|
Pleasantness of Aroma (%) | Pleasantness of Taste (%) | Intensity of Pungency (%) | Overall Rating (%) | |
without treatment | 64.29 ± 14.0 ab | 51.58 ± 14.4 ab | 41.92 ± 22.8 a | 49.54 ± 17.0 abc |
heat treatment | 45.50 ± 18.7 ab | 49.96 ± 19.9 abc | 37.83 ± 22.4 a | 49.21 ± 19.8 abc |
sodium chloride | 69.42 ± 19.7 ab | 28.58 ± 22.4 ac | 34.29 ± 19.5 a | 30.42 ± 20.5 bc |
TH 512 µL/L | 41.42 ± 19.0 a | 21.46 ± 11.2 c | 43.54 ± 19.1 a | 23.79 ± 11.0 b |
LG 512 µL/L | 53.58 ± 25.2 ab | 40.46 ± 22.9 abc | 53.00 ± 15.4 a | 45.25 ± 20.5 abc |
citric acid pH 3.2 | 61.42 ± 14.7 ab | 55.21 ± 20.7 ab | 53.29 ± 19.1 a | 58.96 ± 19.7 a |
citric acid pH 3.52 | 70.42 ± 11.3 b | 62.25 ± 18.0 ab | 50.83 ± 19.3 a | 68.04 ± 18.0 a |
sodium benzoate | 64.46 ± 17.1 ab | 55.00 ± 19.3 ab | 44.08 ± 22.6 a | 58.17 ± 17.1 ac |
Without Treatment | Heat Treatment | Sodium Chloride | TH 512 µL/L | LG 512 µL/L | Citric Acid pH 3.2 | Citric Acid pH 3.52 | Sodium Benzoate | |||
---|---|---|---|---|---|---|---|---|---|---|
54 | 54 | 39 | 22 | 48 | 67 | 77 | 71 | |||
without treatment | 54 | 0 | 15 | 32 | 6 | −13 | −23 | −17 | −23 | |
heat treatment | 54 | 0 | 15 | 32 | 6 | −13 | −23 | −17 | −17 | |
sodium chloride | 39 | −15 | 0 | 17 | −9 | −28 | −38 | −32 | −17 | |
TH 512 µL/L | 22 | −32 | −17 | 0 | −26 | −45 | −55 | −49 | −32 | |
LG 512 µL/L | 48 | −6 | 9 | −26 | 0 | −19 | −29 | −23 | −49 | |
citric acid pH 32 | 67 | 13 | 28 | 45 | 19 | 0 | −10 | −4 | −23 | |
citric acid pH 352 | 77 | 23 | 38 | 55 | 29 | 10 | 0 | 6 | −4 | |
sodium benzoate | 71 | 17 | 32 | 49 | 23 | 4 | −6 | 0 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanková, K.; Lupoměská, P.; Nový, P.; Všetečka, D.; Klouček, P.; Kouřimská, L.; Hlebová, M.; Božik, M. Effect of Conventional Preservatives and Essential Oils on the Survival and Growth of Escherichia coli in Vegetable Sauces: A Comparative Study. Foods 2023, 12, 2832. https://doi.org/10.3390/foods12152832
Hanková K, Lupoměská P, Nový P, Všetečka D, Klouček P, Kouřimská L, Hlebová M, Božik M. Effect of Conventional Preservatives and Essential Oils on the Survival and Growth of Escherichia coli in Vegetable Sauces: A Comparative Study. Foods. 2023; 12(15):2832. https://doi.org/10.3390/foods12152832
Chicago/Turabian StyleHanková, Kateřina, Petra Lupoměská, Pavel Nový, Daniel Všetečka, Pavel Klouček, Lenka Kouřimská, Miroslava Hlebová, and Matěj Božik. 2023. "Effect of Conventional Preservatives and Essential Oils on the Survival and Growth of Escherichia coli in Vegetable Sauces: A Comparative Study" Foods 12, no. 15: 2832. https://doi.org/10.3390/foods12152832