Chemical Compositions and Characteristics of Biocalcium from Asian Sea Bass (Lates calcarifer) Scales as Influenced by Pretreatment and Heating Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Effect of Alkaline Pretreatment on Non-Collagenous Protein Removal of Asian Sea Bass Scales
2.3. Effect of Heating Processes on Softening of Scales
2.3.1. Heat Treatment Processes
2.3.2. Textural Property
2.4. Production and Characterization of Biocalcium
2.4.1. Yield
2.4.2. Hydroxyproline Content
2.4.3. Chemical Composition
2.4.4. Calcium and Phosphorus Contents
2.4.5. Color
2.4.6. Mean Particle Size
2.4.7. X-ray Diffraction (XRD)
2.4.8. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Alkaline Pretreatment on Removal of Non-Collagenous Protein from Scales
3.2. Effect of Heating Processes on Softening of Scales
3.2.1. HYP Release from Scales
3.2.2. Textural Property
3.3. Yield, Composition, and Characteristics of Biocalcium
3.3.1. Yield
3.3.2. Hydroxyproline Content
3.3.3. Chemical Composition
3.3.4. Calcium and Phosphorus Contents
3.3.5. Color
3.3.6. Particle Size
3.3.7. X-ray Diffraction (XRD) Diffractograms
3.3.8. Fourier Transform Infrared Spectroscopic (FTIR) Spectra
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cashman, K.D. Calcium intake, calcium bioavailability and bone health. Br. J. Nutr. 2002, 87, S169–S177. [Google Scholar] [CrossRef] [PubMed]
- Benjakul, S.; Mad-Ali, S.; Senphan, T.; Sookchoo, P. Biocalcium powder from precooked skipjack tuna bone: Production and its characteristics. J. Food Biochem. 2017, 41, e12412. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S.; Sae-Leaw, T.; Sookchoo, P.; Kishimura, H.; Suzuki, N.; Kitani, Y. Amino acid composition, volatile compounds and bioavailability of biocalcium powders from salmon frame as affected by pretreatment. J. Aquat. Food Prod. Technol. 2019, 28, 772–780. [Google Scholar] [CrossRef]
- Xiao, J.; Li, X.; Min, X.; Sakaguchi, E. Mannitol improves absorption and retention of calcium and magnesium in growing rats. Nutrition 2013, 29, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.M.M. Chicken eggshell powder as dietary calcium source in biscuits. World J. Dairy Food Sci. 2015, 10, 199–206. [Google Scholar]
- Wijayanti, I.; Prodpran, T.; Sookchoo, P.; Nirmal, N.; Zhang, B.; Balange, A.; Benjakul, S. Textural, rheological and sensorial properties of mayonnaise fortified with Asian sea bass bio-calcium. J. Am. Oil Chem. Soc. 2023, 100, 123–140. [Google Scholar] [CrossRef]
- Pudtikajorn, K.; Sae-Leaw, T.; Yesilsu, A.F.; Sookchoo, P.; Benjakul, S. Process development and characteristics of biocalcium from skipjack tuna (Katsuwonus pelamis) eyeball scleral cartilage. Waste Biomass-Valorization 2023, 1–14. [Google Scholar] [CrossRef]
- Wongrak, G.; Hur, N.; Pyo, I.; Kim, J. The Impact of the EU IUU regulation on the sustainability of the Thai fishing industry. Sustainability 2021, 13, 6814. [Google Scholar] [CrossRef]
- Sae-Leaw, T.; Benjakul, S. Antioxidant activities of hydrolysed collagen from salmon scale ossein prepared with the aid of ultrasound. Int. J. Food Sci. Technol. 2018, 53, 2786–2795. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Schirer, J.; Simpson, A.; Nay, R.; Lin, Y.-S.; Yang, W.; Lopez, M.I.; Li, J.; Olevsky, E.A.; Meyers, M.A. Predation versus protection: Fish teeth and scales evaluated by nanoindentation. J. Mater. Res. 2012, 27, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Wijayanti, I.; Benjakul, S.; Chantakun, K.; Prodpran, T.; Sookchoo, P. Effect of Asian sea bass bio-calcium on textural, rheological, sensorial properties and nutritive value of Indian mackerel fish spread at different levels of potato starch. Int. J. Food Sci. Technol. 2022, 57, 3181–3195. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S.; Sinthusamran, S.; Sae-Leaw, T.; Suzuki, N.; Kitani, Y.; Sookchoo, P. Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from Ssalmon bone. Appl. Sci. 2020, 10, 4141. [Google Scholar] [CrossRef]
- Benjakul, S.; Mad-Ali, S.; Sookchoo, P. Characteristics of biocalcium powders from pre-cooked tongol (Thunnus tonggol) and yellowfin (Thunnus albacores) tuna bones. Food Biophys. 2017, 12, 412–421. [Google Scholar] [CrossRef]
- Wijayanti, I.; Benjakul, S.; Sookchoo, P. Preheat-treatment and bleaching agents affect characteristics of bio-calcium from Asian aea aass (Lates calcarifer) backbone. Waste Biomass-Valorization 2021, 12, 3371–3382. [Google Scholar] [CrossRef]
- Qin, D.; Bi, S.; You, X.; Wang, M.; Cong, X.; Yuan, C.; Yu, M.; Cheng, X.; Chen, X.-G. Development and application of fish scale wastes as versatile natural biomaterials. Chem. Eng. J. 2022, 428, 131102. [Google Scholar] [CrossRef]
- Wijayanti, I.; Benjakul, S.; Sookchoo, P. Effect of high pressure heating on physical and chemical characteristics of Asian sea bass (Lates calcarifer) backbone. J. Food Sci. Technol. 2021, 58, 3120–3129. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef]
- Bergman, I.; Loxley, R. Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Anal. Chem. 1963, 35, 1961–1965. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Benjakul, S.; Prodpran, T. Quality changes of shrimp cracker covered with fish gelatin film without and with palm oil incorporated during storage. Int. Aquat. Res. 2016, 8, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2002. [Google Scholar]
- Feist, B.; Mikula, B. Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem. 2014, 147, 302–306. [Google Scholar] [CrossRef]
- Gil-Duran, S.; Arola, D.; Ossa, E. Effect of chemical composition and microstructure on the mechanical behavior of fish scales from Megalops Atlanticus. J. Mech. Behav. Biomed. Mater. 2016, 56, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, S.; Shen, L.; Li, G. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification. J. Leather Sci. Eng. 2020, 2, 19. [Google Scholar] [CrossRef]
- Ichimura, Y. Thermal denaturation of proteins II. Appl. Brief Hitachi High-Tech. Sci. Corp. TA 1991, 54, 1–2. [Google Scholar]
- Chuaychan, S.; Benjakul, S.; Kishimura, H. Characteristics of acid- and pepsin-soluble collagens from scale of seabass (Lates calcarifer). LWT Food Sci. Technol. 2015, 63, 71–76. [Google Scholar] [CrossRef]
- Ikoma, T.; Kobayashi, H.; Tanaka, J.; Walsh, D.; Mann, S. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J. Struct. Biol. 2003, 142, 327–333. [Google Scholar] [CrossRef]
- Barrett, A.H.; Rosenberg, S.; Ross, E.W. Fracture intensity distributions during compression of puffed corn meal extrudates: Method for quantifying fracturability. J. Food Sci. 1994, 59, 617–620. [Google Scholar] [CrossRef]
- de Vrieze, E.; Heijnen, L.; Metz, J.R.; Flik, G. Evidence for a hydroxyapatite precursor in regenerating cyprinid scales. J. Appl. Ichthyol. 2012, 28, 388–392. [Google Scholar] [CrossRef]
- Swamiappan, S.; Ganesan, S.; Sekar, V.; Devaraj, S.; Subramanian, A.; Ponnusamy, V.K.; Kathirvel, P. Effective removal of cationic methylene blue dye using nano-hydroxyapatite synthesized from fish scale bio-waste. Int. J. Appl. Ceram. Technol. 2021, 18, 902–912. [Google Scholar] [CrossRef]
- Barralet, J.; Knowles, J.C.; Best, S.; Bonfield, W. Thermal decomposition of synthesised carbonate hydroxyapatite. J. Mater. Sci. Mater. Med. 2002, 13, 529–533. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphates. J. Mater. Sci. 2007, 42, 1061–1095. [Google Scholar] [CrossRef]
- Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 146, 395–401. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Roles of lipid oxidation and pH on properties and yellow discolouration during storage of film from red tilapia (Oreochromis niloticus) muscle protein. Food Hydrocoll. 2011, 25, 426–433. [Google Scholar] [CrossRef]
- Onwulata, C. Encapsulated and Powdered Foods; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Pudtikajorn, K.; Sae-Leaw, T.; Buamard, N.; Zhou, A.; Ma, L.; Benjakul, S. Characterisation of fish tofu fortified with skipjack tuna (Katsuwonus pelamis) eyeball scleral cartilage biocalcium. Int. J. Food Sci. Technol. 2022, 57, 6711–6721. [Google Scholar] [CrossRef]
- Londoño-Restrepo, S.M.; Jeronimo-Cruz, R.; Millán-Malo, B.M.; Rivera-Muñoz, E.M.; Rodriguez-García, M.E. Effect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci. Rep. 2019, 9, 5915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccirillo, C.; Silva, M.F.; Pullar, R.C.; da Cruz, I.B.; Jorge, R.; Pintado, M.E.; Castro, P.M.L. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater. Sci. Eng. C 2013, 33, 103–110. [Google Scholar] [CrossRef] [PubMed]
Parameters | Samples | |||||
---|---|---|---|---|---|---|
B10-BC | B20-BC | B30-BC | HP10-BC | HP20-BC | HP30-BC | |
Yield (%, dry weight basis) | 85.47 ± 0.05 * c | 83.74 ± 5.19 c | 72.87 ± 3.75 b | 68.53 ± 1.36 b | 58.56 ± 3.26 a | 60.33 ± 1.46 a |
Hydroxyproline content (mg/g dry sample) | 42.86 ± 0.67 d | 39.58 ± 0.43 c | 38.92 ± 0.34 c | 31.93 ± 0.57 b | 27.93 ± 0.42 a | 26.52 ± 0.16 a |
Moisture content (%, wet weight basis) | 7.37 ± 0.22 d | 6.38 ± 0.18 c | 6.63 ± 0.26 c | 5.45 ± 0.35 b | 4.83 ± 0.26 a | 4.60 ± 0.04 a |
Protein content (%, dry weight basis) | 51.35 ± 0.19 f | 50.41 ± 1.03 f | 48.95 ± 0.94 e | 39.98 ± 0.93 c | 35.88 ± 1.33 b | 27.82 ± 0.09 a |
Fat content (%, dry weight basis) | 0.28 ± 0.02 b | 0.22 ± 0.01 a | 0.23 ± 0.02 a | 0.29 ± 0.02 b | 0.21 ± 0.01 a | 0.21 ± 0.01 a |
Ash content (%, dry weight basis) | 43.61 ± 0.85 a | 46.72 ± 0.4 b | 48.17 ± 0.07 c | 57.59 ± 0.34 d | 67.37 ± 0.14 e | 69.69 ± 0.14 f |
Calcium (Ca) content (%, dry weight basis) | 17.09 ± 0.16 a | 17.84 ± 0.28 b | 18.37 ± 0.18 c | 23.57 ± 0.44 d | 25.36 ± 0.88 e | 26.13 ± 0.73 e |
Phosphorus (P) content (%, dry weight basis) | 10.75 ± 0.21 a | 11.21 ± 0.06 b | 12.18 ± 0.05 c | 14.67 ± 0.10 d | 15.85 ± 0.25 e | 16.16 ± 0.26 f |
Ca/P mole ratio | 1.23 | 1.23 | 1.17 | 1.24 | 1.24 | 1.25 |
Parameters | Samples | |||||
---|---|---|---|---|---|---|
B10-BC | B20-BC | B30-BC | HP10-BC | HP20-BC | HP30-BC | |
L* | 95.77 ± 0.12 * b | 96.59 ± 0.10 e | 96.42 ± 0.07 d | 95.94 ± 0.11 c | 95.72 ± 0.05 b | 95.47 ± 0.09 a |
a* | -0.25 ± 0.04 c | -0.34 ± 0.06 c | -0.27 ± 0.02 c | -0.42 ± 0.08 b | -0.30 ± 0.08 c | -0.51 ± 0.03 a |
b* | 5.27 ± 0.08 c | 4.47 ± 0.09 a | 4.90 ± 0.09 b | 5.47 ± 0.11 c | 5.91 ± 0.25 d | 6.70 ± 0.07 e |
ΔE* | 5.83 ± 0.01 ab | 5.68 ± 0.08 a | 5.90 ± 0.06 ab | 6.06 ± 0.07 c | 6.36 ± 0.22 d | 6.92 ± 0.04 e |
Mean particle size (μm) | 42.50 ± 0.87 g | 35.57 ± 1.23 f | 32.50 ± 1.01 e | 24.63 ± 0.42 d | 16.07 ± 0.65 b | 13.77 ± 0.25 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilsuwan, K.; Pomtong, S.; Chedosama, A.; Sookchoo, P.; Benjakul, S. Chemical Compositions and Characteristics of Biocalcium from Asian Sea Bass (Lates calcarifer) Scales as Influenced by Pretreatment and Heating Processes. Foods 2023, 12, 2695. https://doi.org/10.3390/foods12142695
Nilsuwan K, Pomtong S, Chedosama A, Sookchoo P, Benjakul S. Chemical Compositions and Characteristics of Biocalcium from Asian Sea Bass (Lates calcarifer) Scales as Influenced by Pretreatment and Heating Processes. Foods. 2023; 12(14):2695. https://doi.org/10.3390/foods12142695
Chicago/Turabian StyleNilsuwan, Krisana, Saowakon Pomtong, Afeefah Chedosama, Pornsatit Sookchoo, and Soottawat Benjakul. 2023. "Chemical Compositions and Characteristics of Biocalcium from Asian Sea Bass (Lates calcarifer) Scales as Influenced by Pretreatment and Heating Processes" Foods 12, no. 14: 2695. https://doi.org/10.3390/foods12142695
APA StyleNilsuwan, K., Pomtong, S., Chedosama, A., Sookchoo, P., & Benjakul, S. (2023). Chemical Compositions and Characteristics of Biocalcium from Asian Sea Bass (Lates calcarifer) Scales as Influenced by Pretreatment and Heating Processes. Foods, 12(14), 2695. https://doi.org/10.3390/foods12142695