Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Co-Cultivation of Escherichia coli with LAB Strains in Milk
2.2. Antifungal Activity against Yeasts
2.3. Yogurt Preparation
2.4. Determination of pH, RP, and Titratable Acidity (TA)
2.5. Determination of the Water-Holding Capacity and Syneresis
2.6. Apparent Viscosity
2.7. Enumeration of Bacteria in Yogurt
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Inhibition of Escherichia coli
3.2. Antifungal Activity against Yeasts
3.3. Physicochemical Characteristics of Yogurt during Fermentation and Storage
3.4. Water-Holding Capacity and Syneresis
3.5. Rheological Characteristics (Viscosity)
3.6. Viability of Bacterial Strains in Yogurt
3.7. Sensory Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Functional Foods; Directorate—General for Research; Directorate E—Biotechnologies, Agriculture, Foods: Brussels, Belgium, 2010.
- Roberfroid, M.B. Global view on functional foods: European perspectives. Br. J. Nutr. 2002, 88, S133–S138. [Google Scholar] [CrossRef] [PubMed]
- Playne, M.J.; Bennett, L.E.; Smithers, G.W. Functional dairy foods and ingredients. Aust. J. Dairy Technol. 2003, 58, 242–264. [Google Scholar]
- Ivanov, I.; Petrov, K.; Lozanov, V.; Hristov, I.; Wu, Z.; Liu, Z.; Petrova, P. Bioactive Compounds Produced by the Accompanying Microflora in Bulgarian Yoghurt. Processes 2021, 9, 114. [Google Scholar] [CrossRef]
- Şanlıdere Aloğlu, H.; Öner, Z. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt. J. Dairy Sci. 2011, 94, 5305–5314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.; Hwang, E.S. Quality Characteristics and Antioxidant Activity of Yogurt Supplemented with Aronia (Aronia melanocarpa) Juice. Prev. Nutr. Food Sci. 2016, 21, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Krastanov, A.; Georgiev, M.; Slavchev, A.; Blazheva, D.; Goranov, B.; Ibrahim, S.A. Design and Volatile Compound Profiling of Starter Cultures for Yogurt Preparation. Foods 2023, 12, 379. [Google Scholar] [CrossRef]
- Tian, H.; Yu, B.; Yu, H.; Chen, C. Evaluation of the synergistic olfactory effects of diacetyl, acetaldehyde, and acetoin in a yogurt matrix using odor threshold, aroma intensity, and electronic nose analyses. J. Dairy Sci. 2020, 103, 7957–7967. [Google Scholar] [CrossRef]
- Simova, E.; Ivanov, G.; Simov, Z. Growth and activity of Bulgarian yogurt starter culture in iron-fortified milk. J. Ind. Microbiol. Biotechnol. 2008, 35, 1109–1115. [Google Scholar] [CrossRef]
- Fisberg, M.; Machado, R. History of yogurt and current patterns of consumption. Nutr. Rev. 2015, 73, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Oyeniran, A.; Gyawali, R.; Aljaloud, S.O.; Krastanov, A.; Ibrahim, S.A. Probiotic Characteristics and Health Benefits of the Yogurt Bacterium Lactobacillus delbrueckii sp. bulgaricus. In Current Issues and Challenges in the Dairy Industry, 1st ed.; Ibrahim, S.A., Zimmerman, T., Gyawali, R., Eds.; IntechOpen: Rijeka, Croatia, 2020; Volume 7, p. 11. [Google Scholar]
- Aryana, K.J.; Olson, D.W. A 100-Year Review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017, 100, 9987–10013. [Google Scholar] [CrossRef] [Green Version]
- Lang, F.; Wen, J.; Wu, Z.; Pan, D.; Wang, L. Evaluation of probiotic yoghurt by the mixed culture with Lactobacillus plantarum A3. Food Sci. Hum. Wellness 2022, 11, 323–331. [Google Scholar] [CrossRef]
- Li, C.; Jihong Song, J.; Kwok, L.; Wang, J.; Dong, Y.; Yu, H.; Hou, Q.; Zhang, H.; Chen, Y. Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage. J. Dairy Sci. 2017, 100, 2512–2525. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Salam, A.M.; Badr, A.N.; Zaghloul, A.H.; Farrag, A.R.H. Functional yogurt aims to protect against the aflatoxin B1 toxicity in rats. Toxicol. Rep. 2020, 7, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Dhawi, F.; El-Beltagi, H.S.; Aly, E.; Hamed, A.M. Antioxidant, Antibacterial Activities and Mineral Content of Buffalo Yogurt Fortified with Fenugreek and Moringa oleifera Seed Flours. Foods 2020, 9, 1157. [Google Scholar] [CrossRef] [PubMed]
- Roumanas, D.; Moatsou, G.; Zoidou, E.; Sakkas, L.; Moschopoulou, E. Effect of Enrichment of Bovine Milk with Whey Proteins on Biofunctional and Rheological Properties of Low Fat Yoghurt type Products. Curr. Res. Nutr. Food Sci. 2016, 4, 105–113. [Google Scholar] [CrossRef]
- Adolfsson, O.; Meydani, S.N.; Russell, R.M. Yogurt and gut function. Am. J. Clin. Nutr. 2004, 80, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, M.; Singer, M.R.; Moore, L.L. Yogurt Consumption Is Associated with Lower Levels of Chronic Inflammation in the Framingham Offspring Study. Nutrients 2021, 13, 506. [Google Scholar] [CrossRef]
- Buendia, J.R.; Li, Y.; Hu, F.B.; Cabral, H.J.; Bradlee, M.L.; Quatromoni, P.A.; Singer, M.R.; Curhan, G.C.; Moore, L.L. Regular Yogurt Intake and Risk of Cardiovascular Disease Among Hypertensive Adults. Am. J. Hypertens. 2018, 31, 557–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.; Lee, Y.J.; Yoo, H.J.; Kim, M.; Chang, Y.; Lee, D.S.; Lee, J.H. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity. Nutrients 2017, 9, 558. [Google Scholar] [CrossRef] [Green Version]
- Hadjimbei, E.; Botsaris, G.; Chrysostomou, S. Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022, 11, 2691. [Google Scholar] [CrossRef]
- Uchida, K.; Shimamura, R.; Ikefuchi, R.; Morikawa, M.; Furihata, M.; Hanaoka, M.; Nose, H.; Masuki, S. Effects of Yogurt Intake on Cardiovascular Strain during Outdoor Interval Walking Training by Older People in Midsummer: A Randomized Controlled Study. Int. J. Environ. Res. Public Health 2022, 19, 4715. [Google Scholar] [CrossRef] [PubMed]
- Benezech, T.; Maingonnat, J.F. Characterization of the rheological properties of yoghurt—A review. J. Food Eng. 1994, 21, 447–472. [Google Scholar] [CrossRef]
- Sodini, I.; Remeuf, F.; Haddad, S.; Corrieu, G. The relative effect of milk base, starter, and process on yogurt texture: A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 113–137. [Google Scholar] [CrossRef]
- Kwasi Kpodo, F.M.; Afoakwa, E.O.; Amoa, B.B.; Budu, A.S.; Saalia, F.K. Effect of ingredient variation on microbial acidification, susceptibility to syneresis, water holding capacity and viscosity of soy-peanut-cow milk yoghurt. J. Nutr. Health Food Eng. 2014, 1, 74–79. [Google Scholar] [CrossRef]
- Martin, F.; Cachon, R.; Pernin, K.; De Coninck, J.; Gervais, P.; Guichard, E.; Cayot, N. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt. J. Dairy Sci. 2011, 94, 614–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Lucey, J. Formation and Physical Properties of Yogurt. Anim. Biosci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Haque, M.A.; Timilsena, Y.P.; Adhikari, B. Food Proteins, Structure, and Function. Ref. Modul. Food Sci. 2016, 1–8. [Google Scholar] [CrossRef]
- Zayas, J.F. Water Holding Capacity of Proteins. In Functionality of Proteins in Food; Springer: Berlin/Heidelberg, Germany, 1997; Volume 3, pp. 76–133. [Google Scholar] [CrossRef]
- Rani, R.; Unnikrishnan, V.; Dharaiya, C.N.; Singh, B. Factors affecting syneresis in yoghurt: A review. Indian J. Dairy Biosci. 2012, 23, 105–111. [Google Scholar]
- Hoxha, R.; Evstatieva, Y.; Nikolova, D. New lactic acid bacterial strains from traditional fermented foods-bioprotective and probiotic potential. J. Chem. Technol. Metall. 2023, 58, 252–269. [Google Scholar]
- Hoxha, R.; Todorov, D.; Hinkov, A.; Shishkova, K.; Evstatieva, Y.; Nikolova, D. In Vitro Screening of Antiviral Activity of Lactic Acid Bacteria Isolated from Traditional Fermented Foods. Microbiol. Res. 2023, 14, 333–342. [Google Scholar] [CrossRef]
- Fijan, S.; Šulc, D.; Steyer, A. Study of the In Vitro Antagonistic Activity of Various Single-Strain and Multi-Strain Probiotics against Escherichia coli. Int. J. Environ. Res. Public Health 2018, 15, 1539. [Google Scholar] [CrossRef] [Green Version]
- Fayyaz, N.; Shahidi, F.; Roshanak, S. Evaluation of the bioprotectivity of Lactobacillus binary/ternary cultures in yogurt. Food Sci. Nutr. 2020, 8, 5036–5047. [Google Scholar] [CrossRef] [PubMed]
- Missotten, J.A.M.; Goris, J.; Michiels, J.; Van Coillie, E.; Herman, L.; De Smet, S.; Dierick, N.A.; Heyndrickx, M. Screening of isolated lactic acid bacteria as potential beneficial strains for fermented liquid pig feed production. Anim. Feed. Sci. Technol. 2009, 150, 122–138. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Zhang, S.; Uluko, H.; Cui, W.; Lv, J. Potential use of Lactobacillus casei AST18 as a bioprotective culture in yogurt. Food Control 2013, 34, 675–680. [Google Scholar] [CrossRef]
- Parvarei, M.M.; Fazeli, M.R.; Mortazavian, A.M.; Nezhad, S.S.; Ali Mortazavi, S.; Golabchifar, A.A.; Khorshidian, N. Comparative effects of probiotic and paraprobiotic addition on microbiological, biochemical and physical properties of yogurt. Food Res. Int. 2021, 140, 110030. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Yang, B.; Stanton, C.; Ross, R.P.; Zhao, J.; Zhang, H.; Chen, W. Ropy exopolysaccharide-producing Bifidobacterium longum YS108R as a starter culture for fermented milk. Int. J. Food Sci. Technol. 2019, 54, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-Y.; Yoon, K.-S. Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt. Foods 2022, 11, 3799. [Google Scholar] [CrossRef] [PubMed]
- BDS 12:2010; Bulgarian State Standard. Bulgarian Yogurt; Bulgarian Institute for Standardization: Sofia, Bulgaria, 2010.
- BDS 15612:1983; Bulgarian National Standard for Sensory Evaluation of Milk Products. Bulgarian Institute for Standardization: Sofia, Bulgaria, 1983.
- WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/e-coli (accessed on 7 February 2018).
- Ojo, O.E.; Sowemimo, A.; Ayeni, F.A. Evaluation of Viability of Lactic Acid Bacteria in a Nigerian Commercial Yogurt and its Antagonistic Effects on Selected Strains of Diarrheagenic Escherichia coli. Nig. J. Pharm. Res. 2017, 13, 175–180. [Google Scholar]
- Fitratullah, A.M.N.; Maruddin, F.; Yuliati, F.N.; Prahesti, K.I.; Taufik, M. Addition of red dragon fruit (Hylocereus polyrhizus) on yogurt: Effect on lactic acid content, pH, and the inhibition of Escherichia coli growth. In Proceedings of the IOP Conference Series: Earth and Environmental Science, The 1st International Conference of Interdisciplinary Research on Green Environmental Approach for Sustainable Development (ICROEST), Kota Bau-Bau, Indonesia, 3–4 August 2019; Volume 343, p. 012034. [Google Scholar] [CrossRef]
- Ito, A.; Sato, Y.; Kudo, S.; Susumu, S.; Nakajima, H.; Toba, T. The Screening of Hydrogen Peroxide-Producing Lactic Acid Bacteria and Their Application to Inactivating Psychrotrophic Food-Borne Pathogens. Curr. Microbiol. 2003, 47, 0231–0236. [Google Scholar] [CrossRef]
- Ortiz-Rivera, Y.; Sánchez-Vega, R.; Gutiérrez-Méndez, N.; León-Félix, J.; Acosta-Muñiz, C.; Sepulveda, D.R. Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria. J. Dairy Sci. 2017, 100, 4258–4268. [Google Scholar] [CrossRef] [Green Version]
- Merchán, A.V.; Ruiz-Moyano, S.; Vázquez Hernández, M.; José Benito, M.; Aranda, E.; Rodríguez, A.; Martín, A. Characterization of autochthonal yeasts isolated from Spanish soft raw ewe milk protected designation of origin cheeses for technological application. J. Dairy Sci. 2022, 105, 2931–2947. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Mari, E.; Guerrini, S.; Granchi, L. Selection of Yeast and Lactic Acid Bacteria Strains, Isolated from Spontaneous Raw Milk Fermentation, for the Production of a Potential Probiotic Fermented Milk. Fermentation 2022, 8, 407. [Google Scholar] [CrossRef]
- Maïworé, J.; Tatsadjieu Ngoune, L.; Piro-Metayer, I.; Montet, D. Identification of yeasts present in artisanal yoghurt and traditionally fermented milks consumed in the northern part of Cameroon. Sci. Afr. 2019, 6, 9. [Google Scholar] [CrossRef]
- Belloch, C.; Querol, A.; Barrio, E. Yeasts and Molds-Kluyveromyces spp. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 754–764. [Google Scholar]
- Nikolova, D.; Hoxha, R.; Atanasov, N.; Trifonova, E.; Dobreva, L.; Nemska, V.; Evstatieva, Y.; Danova, S. From Traditional Bulgarian Dairy Products to Functional Foods. In Dairy Processing-From Basics to Advances [Working Title]; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Kurniawati, M.; Nurliyani, N.; Budhijanto, W.; Widodo, W. Isolation and Identification of Lactose-Degrading Yeasts and Characterisation of Their Fermentation-Related Ability to Produce Ethanol. Fermentation 2022, 8, 183. [Google Scholar] [CrossRef]
- Faria-Oliveira, F.; Diniz, R.H.S.; Godoy-Santos, F.; Piló, F.B.; Mezadri, H.; Castro, I.M.; Brandão, R.L. The Role of Yeast and Lactic Acid Bacteria in the Production of Fermented Beverages in South America. In Food Production and Industry, 1st ed.; Eissa, A.H.A., Ed.; IntechOpen: Rijeka, Croatia, 2015; Volume 4. [Google Scholar] [CrossRef] [Green Version]
- Afzali, S.; Dovom, M.R.E.; Najaf, M.B.H.; Tehrani, M.M. Determination of the anti-yeast activity of Lactobacillus spp. isolated from traditional Iranian cheeses in vitro and in yogurt drink (Doogh). Sci. Rep. 2020, 10, 6291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ström, K.; Sjögren, J.; Broberg, B.; Schnürer, J. Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(l-Phe-l-Pro) and Cyclo(l-Phe-trans-4-OH-l-Pro) and 3-Phenyllactic Acid. Appl. Environ. Microbiol. 2002, 68, 4322–4327. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Huang, L.; Xing, G.; Xu, X.; Tu, C.; Dong, M. Effect of Co-Fermentation with Lactic Acid Bacteria and K. marxianus on Physicochemical and Sensory Properties of Goat Milk. Foods 2020, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Li, Y.; Huang, X.; Du, C.; Huang, D.; Tao, X. The Effect of Co-Fermentation with Lactobacillus plantarum HLJ29L2 and Yeast on Wheat Protein Characteristics in Sourdough and Crackers. Foods 2023, 12, 555. [Google Scholar] [CrossRef]
- Chan, M.Z.A.; Chua, J.Y.; Toh, M.; Liu, S. Survival of probiotic strain Lactobacillus paracasei L26 during co-fermentation with S. cerevisiae for the development of a novel beer beverage. Food Microbiol. 2019, 82, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Lipinska-Zubrycka, L.; Klewicki, R.; Sojka, M.; Bonikowski, R.; Milczarek, A.; Klewicka, E. Anticandidal activity of Lactobacillus spp. in the presence of galactosyl polyols. Microbiol. Res. 2020, 240, 126540. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.S.; Cisneros, M.G. Quality control in yogurt: Alternative parameters for assessment. Eur. Sci. J. 2013, 1, 95–100. [Google Scholar]
- Allgeyer, L.C.; Miller, M.J.; Lee, S.Y. Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. J. Dairy Sci. 2010, 93, 4471–4479. [Google Scholar] [PubMed]
- Kim, S.; Lim, C.H.; Lee, C.; An, G. Optimization of Growth and Storage Conditions for Lactic Acid Bacteria in Yogurt and Frozen Yogurt. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 76–79. [Google Scholar] [CrossRef]
- Mok, C.; Qi, J.; Chen, P.; Ruan, R. NMR Relaxometry of Water in Set Yogurt During Fermentation. Food Sci. Biotechnol. 2008, 17, 895–898. [Google Scholar]
- Hayes, M.; Stanton, C.; Slattery, H.; O’Sullivan, O.; Hill, C.; Fitzgerald, G.F.; Ross, R.P. Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors. Appl. Environ. Microbiol. 2007, 73, 4658–4667. [Google Scholar] [CrossRef] [Green Version]
- Hole, M. Storage Stability.Mechanisms of Degradation. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 5604–5612. [Google Scholar] [CrossRef]
- Dan, T.; Hu, H.; Tian, J.; He, B.; Tai, J.; He, Y. Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt. Molecules 2023, 28, 2123. [Google Scholar] [CrossRef]
- Soni, R.; Jain, N.K.; Shah, V.; Soni, J.; Suthar, D.; Gohel, P. Development of probiotic yogurt: Effect of strain combination on nutritional, rheological, organoleptic and probiotic properties. J. Food Sci Technol. 2020, 57, 2038–2050. [Google Scholar] [CrossRef]
- Nambiar, R.B.; Sellamuthu, P.S.; Perumal, A.B.; Sadiku, E.R.; Phiri, G.; Jayaramudu, J. Characterization of an exopolysaccharide produced by Lactobacillus plantarum HM47 isolated from human breast milk. Process. Biochem. 2018, 73, 15–22. [Google Scholar] [CrossRef]
- Oktavia, H.; Radiati, L.E.; Rosyidi, D. Evaluation of Physicochemical Properties and Exopolysaccharides Production of Single Culture and Mixed Culture in Set Yoghurt. Indones. J. Environ. Sustain. Dev. 2016, 7, 52–59. [Google Scholar]
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [Green Version]
- Tabasco, R.; Paarup, T.; Janer, C.; Peláez, C.; Requena, T. Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. Int. Dairy J. 2007, 17, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- El-Dein, A.N.; Daba, G.; Mostafa, F.A.; Soliman, T.N.; Awad, G.A.; Farid, M.A.M. Utilization of autochthonous lactic acid bacteria attaining safety attributes, probiotic properties, and hypocholesterolemic potential in the production of a functional set yogurt. Biocatal. Agric. Biotechnol. 2022, 43, 102448. [Google Scholar] [CrossRef]
- Shori, A.B.; Aljohani, G.S.; Al-zahrani, A.J.; Al-sulbi, O.S.; Baba, A.S. Viability of probiotics and antioxidant activity of cashew milk-based yogurt fermented with selected strains of probiotic Lactobacillus spp. LWT 2022, 153, 112482. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Salamoura, C.; Kontogianni, A.; Katsipi, D.; Kandylis, P.; Zakynthinos, G.; Varzakas, T. Effect of Milk Type on the Microbiological, Physicochemical and Sensory Characteristics of Probiotic Fermented Milk. Microorganisms 2019, 7, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coggins, P.C.; Schilling, M.W.; Kumari, S.; Gerrard, P.D. Development of a sensory lexicon for conventional milk yogurt in the United States. J. Sens. Stud. 2008, 23, 671–687. [Google Scholar] [CrossRef]
Strains (w, %) | |||
---|---|---|---|
Yogurt Samples | Commercial Starter Culture (LB Bulgaricum) (w, %) | L. delbrueckii subsp. bulgaricus KZM 2-11-3 | L. plantarum KC 5-12 |
1 | 1 | - | - |
2 | 0.1 | 5 | - |
3 | 0.1 | - | 5 |
4 | 0.1 | 2.5 | 2.5 |
Effect of Growth Inhibition of Yeasts, % | |||
---|---|---|---|
Yeasts | Time for Inhibitory Effect, h | Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 | Lactiplantibacillus plantarum KC 5-12 |
Kluyveromyces marxianus | 72 | 84.5 ± 5.8 | 81.6 ± 5.8 |
Kluyveromyces lactis | 48 | 69.3 ± 1.6 | 62.4 ± 1.4 |
Saccharomyces cerevisiae | 72 | 31.6 ± 2.6 | 68.9 ± 8.0 |
WHC, % | Syneresis, % | |||||||
---|---|---|---|---|---|---|---|---|
Yogurt Samples | Yogurt Samples | |||||||
Storage Time | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
0 day | 36.7 ± 0.02 | 35.1 ± 2.60 | 37.7 ± 3.37 | 35.5 ± 0.20 | 8.6 ± 1.50 | 12.6 ± 0.50 | 10.0 ± 3.25 | 9.4 ± 0.80 |
7 days | 35.8 ± 0.96 | 33.3 ± 0.13 | 35.3 ± 0.74 | 34.3 ± 0.12 | 7.6 ± 0.80 | 12.9 ± 2.70 | 10.2 ± 0.70 | 7.8 ± 0.68 |
14 days | 38.2 ± 0.92 | 36.5 ± 1.26 | 36.7 ± 0.96 | 35.8 ± 1.15 | 7.3 ± 0.95 | 10.0 ± 0.30 | 8.4 ± 0.00 | 9.6 ± 1.44 |
21 days | 36.4 ± 0.89 | 34.3 ± 0.24 | 34.9 ± 0.94 | 34.3 ± 0.52 | 8.6 ± 1.80 | 8.8 ± 1.10 | 8.3 ± 1.20 | 10.3 ± 0.78 |
28 days | 36.7 ± 2.44 | 35.1 ± 2.17 | 37.7 ± 2.13 | 35.5 ± 2.11 | 6.7 ± 1.05 | 9.9 ± 0.85 | 6.7 ± 0.00 | 6.9 ± 3.44 |
Yogurt Samples | Log10 (CFU/g) | ||||
---|---|---|---|---|---|
0 Day | 7 Days | 14 Days | 21 Days | 28 Days | |
1 | 8.55 ± 0.05 | 8.75 ± 0.02 ** | 8.77 ± 0.04 ** | 8.59 ± 0.07 | 8.47 ± 0.10 |
2 | 8.62 ± 0.09 | 8.78 ± 0.07 * | 8.69 ± 0.05 | 8.52 ± 0.04 | 8.41 ± 0.06 * |
3 | 8.81 ± 0.12 | 8.84 ± 0.06 | 8.79 ± 0.05 | 8.71 ± 0.04 | 8.50 ± 0.04 * |
4 | 8.54 ± 0.05 | 8.58 ± 0.22 | 8.61 ± 0.10 | 8.58 ± 0.03 | 8.20 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoxha, R.; Evstatieva, Y.; Nikolova, D. Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties. Foods 2023, 12, 2552. https://doi.org/10.3390/foods12132552
Hoxha R, Evstatieva Y, Nikolova D. Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties. Foods. 2023; 12(13):2552. https://doi.org/10.3390/foods12132552
Chicago/Turabian StyleHoxha, Ramize, Yana Evstatieva, and Dilyana Nikolova. 2023. "Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties" Foods 12, no. 13: 2552. https://doi.org/10.3390/foods12132552