Microbial and Chemical Characterization of Natural-Style Green Table Olives from the Gordal, Hojiblanca and Manzanilla Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Processing
2.2. Sampling
2.3. Chemical and Microbiological Analyses in Brine
2.3.1. Physicochemical Analyses
2.3.2. Analysis of Sugars, Organic Acids, Ethanol and Glycerol
2.3.3. Analysis of Phenolic Compounds
2.3.4. Analysis of Volatile Compounds
2.3.5. Microbial Counts during Fermentations
2.3.6. Metagenomic Analysis
2.4. Analyses in Olive Fruit
2.4.1. Analyses of Phenolic Compounds
2.4.2. Quality Parameters
2.5. Statistical Analyses
3. Results and Discussion
3.1. Changes in Microbiological Counts and Physicochemical Characteristics during Fermentation
3.2. Changes in Fermentation Substrates and Major End-Products
3.3. Changes in Phenolic Compounds in Brines during Fermentation
3.4. Microbial Communities during Fermentation
3.5. Volatile Compounds
3.6. Polyphenols and Quality Parameters of Final Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ASEMESA (Association of Exporters and Industrialists of Table Olives). Available online: https://asemesa.es/informacion-general-del-sector/ (accessed on 10 October 2022).
- Ministry of Agriculture, Fisheries and Food. Aceituna de Mesa. Superficie y Producción. Available online: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/aceituna.aspx/ (accessed on 11 April 2023).
- Barranco, D.; Fernández-Escobar, R.; Rallo, L. El Cultivo del Olivo, 7th ed.; Ediciones Mundi-Prensa: Madrid, Spain, 2017; pp. 76–81. [Google Scholar]
- International Olive Oil Council (IOOC). Table olive processing. In Technical Handbooks; IOOC: Madrid, Spain, 1990; pp. 17–18. [Google Scholar]
- Montaño, A.; Sánchez, A.H. Chemical composition of fermented green olives. In Olives and Olive Oil in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 99–109. [Google Scholar]
- Heperkan, D. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portilha-Cunha, M.F.; Macedo, A.C.; Malcata, F.X. A review on adventitious lactic acid bacteria from table olives. Foods 2020, 9, 948. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Barba, J.L.; Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Montaño, A. Microbial community and volatilome changes in brines along the spontaneous fermentation of Spanish-style and natural-style green table olives (Manzanilla cultivar). Food Microbiol. 2023, 113, 104286. [Google Scholar] [CrossRef] [PubMed]
- Montaño, A.; Cortés-Delgado, A.; Sánchez, A.H.; Ruiz-Barba, J.L. Production of volatile compounds by wild-type yeasts in a Natural olive-derived culture medium. Food Microbiol. 2021, 98, 103788. [Google Scholar] [CrossRef]
- Vacalluzzo, A.; Pino, A.; De Angelis, M.; Bautista-Gallego, J.; Romeo, F.V.; Foti, P.; Caggia, C.; Randazzo, C.L. Effects of different stress parameters on growth and on oleuropein-degrading abilities of Lactiplantibacillus plantarum strains selected as tailored starter cultures for naturally table olives. Microorganisms 2020, 8, 1607. [Google Scholar] [CrossRef]
- Ramírez, E.; Medina, E.; Brenes, M.; Romero, C. Endogenous enzymes involved in the transformation of oleuropein in Spanish table olive varieties. J. Agric. Food Chem. 2014, 62, 9569–9575. [Google Scholar] [CrossRef] [Green Version]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Caggia, C. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol. 2017, 65, 136–148. [Google Scholar] [CrossRef]
- Martorana, A.; Alfonzo, A.; Gaglio, R.; Settanni, L.; Corona, O.; La Croce, F.; Vagnoli, P.; Caruzo, T.; Moschetti, G.; Francesca, N. Evaluation of different conditions to enhance the performances of Lactobacillus pentosus OM13 during industrial production of Spanish-style table olives. Food Microbiol. 2017, 61, 150–158. [Google Scholar] [CrossRef] [Green Version]
- De Castro, A.; Sánchez, A.H.; Cortés-Delgado, A.; López-López, A.; Montaño, A. Effect of Spanish-style processing steps and inoculation with Lactobacillus pentosus starter culture on the volatile composition of cv. Manzanilla green olives. Food Chem. 2019, 271, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Tufariello, M.; Anglana, C.; Crupi, P.; Virtuosi, I.; Fiume, P.; Di Terlizzi, B.; Moselhy, N.; Attay, H.A.; Pati, S.; Logrieco, A.F. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. J. Sci. Food Agric. 2019, 99, 2504–2512. [Google Scholar] [CrossRef]
- Caponio, F.; Difonzo, G.; Calasso, M.; Cosmai, L.; De Angelis, M. Effects of olive leaf extract addition on fermentative and oxidative processes of table olives and their nutritional properties. Food Res. Int. 2019, 116, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Cabello, A.; Rodríguez-Gómez, F.; Morales, M.L.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. Lactic acid bacteria and yeast inocula modulate the volatile profile of Spanish-style green table olive fermentations. Foods 2019, 8, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikrou, T.; Kasimati, K.; Doufexi, I.; Kapsokefalou, M.; Gardeli, C.; Mallouchos, A. Volatile composition of industrially fermented table olives from Greece. Foods 2021, 10, 1000. [Google Scholar] [CrossRef] [PubMed]
- Penland, M.; Pawtowski, A.; Pioli, A.; Maillard, M.-B.; Debaets, S.; Deutsch, S.-M.; Falentin, H.; Mounier, J.; Coton, M. Brine salt concentration reduction and inoculation with autochthonous consortia: Impact on Protected Designation of Origin Nyons black table olive fermentations. Food Res. Int. 2022, 155, 111069. [Google Scholar] [CrossRef]
- Fernández-Díez, M.J.; Castro, R.D.; Fernández, A.G.; Cancho, F.G.; Pellisso, F.G.; Vega, M.N.; Moreno, A.H.; Mosquera, I.M.; Navarro, L.R.; Quintana, M.D.; et al. Biotecnología de la Aceituna de Mesa; CSIC: Madrid, Spain, 1985.
- Casado, F.J.; Montaño, A. Influence of processing conditions on acrylamide content in black ripe olives. J. Agric. Food Chem. 2008, 56, 2021–2027. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.H.; de Castro, A.; Rejano, L.; Montaño, A. Comparative study on chemical changes in olive juice and brine during green olive fermentation. J. Agric. Food Chem. 2000, 48, 5975–5980. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef]
- Aponte, M.; Ventorino, V.; Blaiotta, G.; Volpe, G.; Farina, V.; Avellone, G.; Lanza, C.M.; Moschetti, G. Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiol. 2010, 27, 162–170. [Google Scholar] [CrossRef]
- Medina, E.; Gori, C.; Servili, M.; de Castro, A.; Romero, C.; Brenes, M. Main variables affecting the lactic acid fermentation of table olives. Int. J. Food Sci. Technol. 2010, 45, 1291–1296. [Google Scholar] [CrossRef]
- Alves, M.; Gonçalves, T.; Quintas, C. Microbial quality and yeast population dynamics in cracked green table olives’ fermentations. Food Control 2012, 23, 363–368. [Google Scholar] [CrossRef]
- IOC (International Olive Council). Trade Standard Applying to Table Olives; IOC: Madrid, Spain, 2004; Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OT-NC1-2004-Eng.pdf (accessed on 11 April 2023).
- Sidari, R.; Martorana, A.; De Bruno, A. Effect of brine composition on yeast biota associated with naturally fermented Noceralla messinese table olives. LWT-Food Sci. Technol. 2019, 109, 163–170. [Google Scholar] [CrossRef]
- Max, B.; Salgado, J.M.; Rodríguez, N.; Cortés, S.; Converti, A.; Domínguez, J.M. Biotechnological production of citric acid. Braz. J. Microbiol. 2010, 41, 862–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, S.R.; Rego, A.; Martins, V.M.; Santos-Pereira, C.; Sousa, M.J.; Côrte-Real, M. Regulation of cell death induced by acetic acid in yeasts. Front. Cell Dev. Biol. 2021, 9, 642375. [Google Scholar] [CrossRef]
- Vilela-Moura, A.; Schuller, D.; Mendes-Faia, A.; Silva, R.D.; Chaves, S.R.; Sousa, M.J.; Côrte-Real, M. The impact of acetate metabolism on yeast fermentative performance and wine quality: Reduction of volatile acidity of grape musts and wines. Appl. Microbiol. Biotechnol. 2011, 89, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Procopio, S.; Becker, T. Flavor impacts of glycerol in the processing of yeast fermented beverages: A review. J. Food Sci. Technol. 2015, 52, 7588–7598. [Google Scholar] [CrossRef] [Green Version]
- Maicas, S. The role of yeasts in fermentation processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Ramírez, E.; Brenes, M.; de Castro, A.; Romero, C.; Medina, E. Oleuropein hydrolysis by lactic acid bacteria in natural green olives. LWT-Food Sci. Technol. 2017, 78, 165–171. [Google Scholar] [CrossRef]
- Bleve, G.; Tufariello, M.; Durante, M.; Perbellini, E.; Ramires, F.A.; Grieco, F.; Cappello, M.S.; De Domenico, S.; Mita, G.; Tasioula-Margari, M.; et al. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardò and Leccino table olives. Front. Microbiol. 2014, 5, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleve, G.; Tufariello, M.; Durante, M.; Grieco, F.; Ramires, F.A.; Mita, G.; Tasioula-Margari, M.; Rancesco, A.F. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and development of a protocol for the pre-selection of fermentation starters. Food Microbiol. 2015, 46, 368–382. [Google Scholar] [CrossRef]
- Bencresciuto, G.D.; Mandalà, C.; Migliori, C.A.; Cortellino, G.; Vanoli, M.; Bardi, L. Assesment of starters of lactic acid bacteria and killer yeasts: Selected strains in lab-scale fermentations of table ives (Olea europaea L.) cv. Leccino. Fermentation 2023, 9, 182. [Google Scholar] [CrossRef]
- Romero, C.; Brenes, M.; García, P.; García, A.; Garrido, A. Polyphenol changes during fermentation of naturally black olives. J. Agric. Food Chem. 2004, 52, 1973–1979. [Google Scholar] [CrossRef]
- Cocolin, L.; Alessandria, V.; Botta, C.; Gorra, R.; De Filippis, F.; Ercolini, D.; Rantsiou, K. NaOH-debittering induces changes in bacterial ecology during table olives fermentation. PLoS ONE 2013, 8, e69074. [Google Scholar] [CrossRef]
- Medina, E.; Ruiz-Bellido, M.A.; Romero-Gil, V.; Rodríguez-Gómez, F.; Montes-Borrego, M.; Landa, B.B.; Arroyo-López, F.N. Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis. Int. J. Food Microbiol. 2016, 236, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, N.; Marsilio, V. Volatile compounds in table olives (Olea europaea L., Nocellara del Belice cultivar). Food Chem. 2008, 107, 1522–1528. [Google Scholar] [CrossRef]
- Lee, J.-W.; Trinh, C.T. Microbial biosynthesis of lactate esters. Biotechnol. Biofuels 2019, 12, 226. [Google Scholar] [CrossRef] [Green Version]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41, S65–S128. [Google Scholar] [CrossRef] [Green Version]
- Selli, S.; Kelebek, H.; Kesen, S.; Sonmezdag, A.S. GC-MS olfactometric and LC-DAD-ESI-MS/MS characterization of key odorants and phenolic compounds in black dry-salted olives. J. Sci. Food Agric. 2018, 98, 4104–4111. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [Green Version]
- Ciafardini, G.; Zullo, B.A. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 2019, 84, 103250. [Google Scholar] [CrossRef]
- Sánchez, A.H.; Rejano, L.; Montaño, A. Determinación del color en las aceitunas verdes aderezadas de la variedad Manzanilla. Grasas Y Aceites 1985, 36, 258–261. [Google Scholar]
- Sánchez-Gómez, A.H.; García-García, P.; Fernández, A.G. Spanish-style green table olive shelf-life. Int. J. Food Sci. Technol. 2013, 48, 1559–1568. [Google Scholar] [CrossRef]
Gordal | Hojiblanca | Manzanilla | |
---|---|---|---|
60 days | |||
Yeast | 5.6 ± 0.5 a,B | 5.6 ± 0.3 a,B | 5.7 ± 0.2 a,B |
LAB | 6.2 ± 0.4 A | nd | nd |
MAB | 6.1 ± 0.3 b,A | 5.4 ± 0.0 a,B | 5.5 ± 0.0 a,A |
120 days | |||
Yeast | 4.6 ± 0.1 a,A | 5.4 ± 0.1 b,B | 5.5 ± 0.2 b,AB |
LAB | 6.3 ± 0.1 A | nd | nd |
MAB | 6.4 ± 0.2 b,AB | 5.3 ± 0.0 a,B | 5.5 ± 0.3 a,A |
180 days | |||
Yeast | 4.7 ± 0.1 a,A | 5.0 ± 0.0 b,A | 5.3 ± 0.1 c,A |
LAB | 6.7 ± 0.1 B | nd | nd |
MAB | 6.7 ± 0.1 c,B | 4.9 ± 0.1 a,A | 5.2 ± 0.1 b,A |
Gordal | Hojiblanca | Manzanilla | |
---|---|---|---|
30 days | |||
pH | 4.76 ± 0.03 a | 4.74 ± 0.05 a | 4.75 ± 0.04 a |
Titratable acidity (% lactic acid) | 0.13 ± 0.00 a | 0.21 ± 0.00 b | 0.23 ± 0.01 c |
Combined acidity (N) | 0.023 ± 0.000 a | 0.047 ± 0.000 b | 0.047 ± 0.004 b |
Salt content (% NaCl) | 6.52 ± 0.09 b | 5.74 ± 0.23 a | 6.37 ± 0.01 b |
60 days | |||
pH | 3.77 ± 0.03 a | 4.74 ± 0.01 b | 4.70 ± 0.04 b |
Titratable acidity (% lactic acid) | 0.36 ± 0.01 a | 0.36 ± 0.01 a | 0.31 ± 0.04 a |
Combined acidity (N) | 0.030 ± 0.001 a | 0.058 ± 0.000 b | 0.062 ± 0.006 b |
Salt content (% NaCl) | 5.83 ± 0.02 a | - b | 6.14 ± 0.08 b |
120 days | |||
pH | 3.59 ± 0.02 a | 4.68 ± 0.00 b | 4.61 ± 0.04 b |
Titratable acidity (% lactic acid) | 0.72 ± 0.02 c | 0.37 ± 0.00 a | 0.47 ± 0.01 b |
Combined acidity (N) | 0.042 ± 0.001 a | 0.068 ± 0.000 b | 0.071 ± 0.008 b |
Salt content (% NaCl) | - | 5.66 ± 0.06 a | - |
180 days | |||
pH | 3.46 ± 0.00 a | 4.66 ± 0.01 b | 4.61 ± 0.04 b |
Titratable acidity (% lactic acid) | 0.91 ± 0.01 c | 0.34 ± 0.01 a | 0.42 ± 0.02 b |
Combined acidity (N) | 0.048 ± 0.000 a | 0.072 ± 0.000 b | 0.073 ± 0.008 b |
Salt content (% NaCl) | 5.56 ± 0.01 a | 5.58 ± 0.06 a | 5.98 ± 0.18 b |
Gordal | Hojiblanca | Manzanilla | |
---|---|---|---|
30 days | |||
hydroxytyrosol | 190 ± 1 a,A | 410 ± 7 b,A | 428 ± 6 b,A |
tyrosol | 49 ± 0 a,A | 46 ± 4 a,A | 69 ± 1 b,A |
verbascoside | 4 ± 5 a,A | 93 ± 12 c,A | 67 ± 4 b,A |
oleuropein | nd | 80 ± 1 a,A | 521 ± 60 b,A |
60 days | |||
hydroxytyrosol | 295 ± 5 a,B | 583 ± 16 b,B | 654 ± 1 b,B |
tyrosol | 68 ± 2 a,B | 56 ± 3 a,B | 118 ± 9 b,B |
verbascoside | 17 ± 2 a,B | 168 ± 4 c,B | 123 ± 4 b,B |
oleuropein | nd | 105± 12 a,A | 1298 ± 107 b,B |
120 days | |||
hydroxytyrosol | 403 ± 4 a,C | 854 ± 7 b,C | 912 ± 10 c,C |
tyrosol | 94 ± 1 a,C | 82 ± 1 a,C | 145 ± 7 b,C |
verbascoside | 30 ± 2 a,C | 280 ± 12 c,C | 212 ± 30 b,C |
oleuropein | nd | 105 ± 14 a,A | 2262 ± 31 b,C |
180 days | |||
hydroxytyrosol | 471 ± 12 a,D | 973 ± 16 b,D | 1004 ± 37 b,D |
tyrosol | 107 ± 1 a,D | 103 ± 2 a,D | 139 ± 4 b,C |
verbascoside | 43 ± 2 a,D | 346 ± 7 c,D | 197 ± 10 b,C |
oleuropein | nd | 93 ± 17 a,A | 2044 ± 97 b,C |
Gordal | Hojiblanca | Manzanilla | ||||
---|---|---|---|---|---|---|
Volatile compounds a | Mean | SD | Mean | SD | Mean | SD |
Acids | ||||||
Acetic acid | 338 b | 24 | 72 a | 7 | 100 a | 15 |
Isobutanoic acid | 9.3 | 0.8 | nd | nd | ||
Butanoic acid | 11.6 b | 0.1 | nd | 4.6 a | 0.6 | |
2-Methylbutanoic acid | 97 b | 19 | 45 a | 5 | 23.8 a | 0.3 |
Hexanoic acid | 13 a | 1 | nd | 50 b | 4 | |
Octanoic acid | nd | nd | 24 | 5 | ||
Nonanoic acid | 12 a | 11 | 3.7 a | 0.8 | 6 a | 2 |
Hydrocinnamic acid | 8.6 | 0.5 | nd | nd | ||
Alcohols | ||||||
Ethanol | 1572 b | 113 | 1047 a | 87 | 1461 b | 59 |
1-Propanol | nd | 5.1 a | 0.5 | 15.9 b | 0.4 | |
2-Methyl-3-buten-2-ol | 11 | 1 | nd | nd | ||
Isobutanol | 59 a | 20 | 313 b | 59 | 71 a | 6 |
1-Butanol | nd | nd | 5.2 | 0.2 | ||
Isopentanol | 465 a | 70 | 1067 b | 108 | 1205 b | 104 |
3-Methyl-3-buten-1-ol | 8 | 1 | nd | nd | ||
1-Pentanol | nd | 3.5 | 0.0 | nd | ||
Prenol | 17 a | 4 | 6.4 a | 0.4 | nd | |
3-Methyl-1-pentanol | nd | nd | 4.9 | 0.7 | ||
1-Hexanol | 38 a | 9 | 94 b | 2 | 30 a | 1 |
(Z)-3-Hexen-1-ol | 191 b | 42 | 188 b | 7 | 33.5 a | 0.9 |
1-Heptanol | 5 a | 2 | 10.1 b | 0.7 | 14.2 c | 0.7 |
2-Ethyl-1-hexanol | 6.0 a | 0.9 | nd | 5 a | 2 | |
6-Hepten-1-ol | nd | 4.3 | 0.1 | nd | ||
2,3-Butanediol | 19 | 2 | nd | nd | ||
1-Octanol | 11 b | 2 | 6.9 a | 0.0 | 7.9 ab | 0.4 |
1-Nonanol | nd | 5.1 | 0.4 | nd | ||
Benzyl alcohol | 210 b | 32 | 138 b | 32 | 14 a | 3 |
Phenylethyl alcohol | 454 b | 29 | 357 ab | 47 | 279 a | 37 |
3,3,6-Trimethyl-4,5-heptadien-2-ol | 11.2 | 0.1 | nd | nd | ||
Carbonyl compounds | ||||||
2-Methylbutanal | nd | 7.3 a | 0.8 | 5 a | 1 | |
3-Methylbutanal | 5.5 a | 0.1 | 11 b | 2 | 4 a | 2 |
3-Pentanone | 6.4 a | 0.7 | 4.1 a | 0.6 | nd | |
Acetoin | 7.9 | 1.2 | nd | nd | ||
Nonanal | 6 a | 1 | 20 b | 5 | 5.2 a | 0.8 |
Benzaldehyde | 8.6 a | 0.0 | 5.0 a | 0.6 | 15 a | 6 |
3-Methylbenzaldehyde | 40 b | 5 | nd | 10 a | 3 | |
Benzeneacetaldehyde | nd | 13.7 | 0.5 | nd | ||
Esters | ||||||
Methyl acetate | 22 b | 3 | 11.2 a | 0.5 | 11.0 a | 0.4 |
Ethyl Acetate | 634 b | 70 | 216 a | 1 | 303 a | 15 |
Methyl butanoate | nd | 3.7 | 0.3 | nd | ||
Isobutyl acetate | nd | 6.2 | 0.1 | nd | ||
Ethyl butanoate | 15 | 1 | nd | nd | ||
Methyl 2-methylbutanoate | nd | 5.5 b | 0.4 | 3.9 a | 0.1 | |
Ethyl 2-methylbutanoate | 18 b | 3 | 8.1 a | 0.1 | nd | |
Ethyl 3-methylbutanoate | 24 b | 2 | 6.6 a | 0.6 | 3.8 a | 0.3 |
Isopentyl acetate | 15 a | 4 | 22.1 a | 0.7 | 18 a | 1 |
Ethyl hexanoate | 8.6 b | 0.3 | 3 a | 2 | 9 b | 1 |
(Z)-3-Hexenyl acetate | nd | 24.3 | 0.6 | nd | ||
Methyl lactate | 11 | 3 | nd | nd | ||
Ethyl lactate | 445 | 54 | nd | nd | ||
Ethyl octanoate | nd | 10 a | 5 | 8 a | 1 | |
Ethyl 2-hydroxy-4-methylpentanoate | 35 | 4 | nd | nd | ||
Methyl 2,5-dimethyl-3-furoate | nd | 36 a | 25 | 208 a | 114 | |
Ethyl 2,4-dimethyl-3-furoate | nd | nd | 11 | 9 | ||
Diethyl succinate | 19 | 1 | nd | nd | ||
2-Phenylethyl acetate | 7 a | 1 | 8.6 a | 0.4 | nd | |
Methyl hydrocinnamate | 9.3 | 0.1 | nd | nd | ||
Ethyl hydrocinnamate | 125 | 11 | nd | nd | ||
Ethyl (Z)-cinnamate | 12 | 2 | nd | nd | ||
Other compounds | ||||||
Dimethyl sulfide | nd | 4.8 a | 0.6 | 17 b | 2 | |
3-Ethylpyridine | nd | 4.8 a | 0.8 | 6.1 a | 0.7 | |
o-Guaiacol | nd | 14 | 3 | nd | ||
Creosol | 273 | 13 | nd | nd | ||
Phenol | nd | 3.2 | 0.7 | nd | ||
4-Ethylphenol | 159 | 51 | nd | nd |
Gordal | Hojiblanca | Manzanilla | |
---|---|---|---|
Phenolic compounds (mg/kg) | |||
Hydroxytyrosol | 501 ± 24 a | 969 ± 40 b | 969 ± 51 b |
Tyrosol | 132 ± 5 a | 190 ± 8 c | 162 ± 3 b |
Verbascoside | 152 ± 14 a | 1348 ± 66 c | 735 ± 44 b |
Oleuropein | 637 ± 6 a | 729 ± 77 a | 4823 ± 355 b |
Total phenols b | 4021 ± 187 a | 6160 ± 97 b | 8427 ± 399 c |
Color parameters | |||
Color index i | 34.8 ± 0.2 c | 24.8 ± 0.5 a | 30.9 ± 1.1 b |
L* | 51.9 ± 0.5 b | 45.4 ± 1.0 a | 45.3 ± 0.7 a |
a* | 7.1 ± 0.4 b | 5.2 ± 0.4 a | 7.7 ± 0.3 b |
b* | 35.6 ± 0.4 b | 26.4 ± 1.0 a | 27.9 ± 1.5 a |
Chroma | 36.3 ± 0.3 b | 26.9 ± 0.9 a | 28.9 ± 1.5 a |
Hue angle | 78.5 ± 0.8 b | 78.7 ± 1.1 b | 74.4 ± 0.4 a |
Firmness (N/g) | 48.9 ± 0.3 a | 57.4 ± 0.3 b | 54.4 ± 4.8 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Barba, J.L.; Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Montaño, A. Microbial and Chemical Characterization of Natural-Style Green Table Olives from the Gordal, Hojiblanca and Manzanilla Cultivars. Foods 2023, 12, 2386. https://doi.org/10.3390/foods12122386
Ruiz-Barba JL, Sánchez AH, López-López A, Cortés-Delgado A, Montaño A. Microbial and Chemical Characterization of Natural-Style Green Table Olives from the Gordal, Hojiblanca and Manzanilla Cultivars. Foods. 2023; 12(12):2386. https://doi.org/10.3390/foods12122386
Chicago/Turabian StyleRuiz-Barba, José Luis, Antonio Higinio Sánchez, Antonio López-López, Amparo Cortés-Delgado, and Alfredo Montaño. 2023. "Microbial and Chemical Characterization of Natural-Style Green Table Olives from the Gordal, Hojiblanca and Manzanilla Cultivars" Foods 12, no. 12: 2386. https://doi.org/10.3390/foods12122386
APA StyleRuiz-Barba, J. L., Sánchez, A. H., López-López, A., Cortés-Delgado, A., & Montaño, A. (2023). Microbial and Chemical Characterization of Natural-Style Green Table Olives from the Gordal, Hojiblanca and Manzanilla Cultivars. Foods, 12(12), 2386. https://doi.org/10.3390/foods12122386