Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits?
Abstract
:1. Introduction
2. Milk Proteins
2.1. Caseins
2.2. Whey Proteins
3. Plant Proteins
3.1. Sources
3.2. Structure and Functionality
4. Protein-Protein Interactions to Modify Food Techno-Functional Properties and Colloidal Properties
4.1. Milk: Plant Proteins Dispersions
4.2. Milk: Plant Proteins Gels
4.2.1. Heat-Induced Milk: Plant Proteins Gels
4.2.2. Acid Induced Milk: Plant Proteins Gels
4.2.3. Gelation Induced by Other Methods
4.3. Mixed Milk: Plant Proteins Emulsions
4.4. Mixed Milk: Plant Proteins Foams
5. Possible Approaches to Improve Dairy-Plant Proteins Interaction and Techno-Functionalities
6. Sensory Attributes of Mixed Systems
7. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clune, S.; Crossin, E.; Verghese, K. Systematic Review of Greenhouse Gas Emissions for Different Fresh Food Categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Matsumiya, K.; Murray, B.S. Soybean Protein Isolate Gel Particles as Foaming and Emulsifying Agents. Food Hydrocoll. 2016, 60, 206–215. [Google Scholar] [CrossRef]
- Bergsma, J. Vegan Cheese Analogue. Patent WO2017150973A1, 1 March 2017. [Google Scholar]
- Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Vodnar, D.C.; Carbonell-Barrachina, Á.A. Spray Drying and Storage of Probiotic-Enriched Almond Milk: Probiotic Survival and Physicochemical Properties. J. Sci. Food Agric. 2020, 100, 3697–3708. [Google Scholar] [CrossRef]
- Schreuders, F.K.G.; Dekkers, B.L.; Bodnár, I.; Erni, P.; Boom, R.M.; van der Goot, A.J. Comparing Structuring Potential of Pea and Soy Protein with Gluten for Meat Analogue Preparation. J. Food Eng. 2019, 261, 32–39. [Google Scholar] [CrossRef]
- Lonnie, M.; Johnstone, A.M. The Public Health Rationale for Promoting Plant Protein as an Important Part of a Sustainable and Healthy Diet. Nutr. Bull. 2020, 45, 281–293. [Google Scholar] [CrossRef]
- Budhathoki, S.; Sawada, N.; Iwasaki, M.; Yamaji, T.; Goto, A.; Kotemori, A.; Ishihara, J.; Takachi, R.; Charvat, H.; Mizoue, T.; et al. Association of Animal and Plant Protein Intake with All-Cause and Cause-Specific Mortality in a Japanese Cohort. JAMA Intern. Med. 2019, 179, 1509–1518. [Google Scholar] [CrossRef]
- Qian, F.; Liu, G.; Hu, F.B.; Bhupathiraju, S.N.; Sun, Q. Association between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2019, 179, 1335–1344. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Plant Proteins as High-Quality Nutritional Source for Human Diet. Trends Food Sci. Technol. 2020, 97, 170–184. [Google Scholar] [CrossRef]
- Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Mezzenga, R. Modification Approaches of Plant-Based Proteins to Improve Their Techno-Functionality and Use in Food Products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Goulding, D.A.; Fox, P.F.; O’Mahony, J.A. Milk Proteins: An Overview. In Milk Proteins: From Expression to Food; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Uluko, H.; Liu, L.; Lv, J.P.; Zhang, S.W. Functional Characteristics of Milk Protein Concentrates and Their Modification. Crit. Rev. Food Sci. Nutr. 2016, 56, 1193–1208. [Google Scholar] [CrossRef] [PubMed]
- Pouliot, Y. Membrane Processes in Dairy Technology-From a Simple Idea to Worldwide Panacea. Int. Dairy J. 2008, 18, 735–740. [Google Scholar] [CrossRef]
- Schmitt, C.; Bovetto, L.; Buczkowski, J.; De Oliveira Reis, G.; Pibarot, P.; Amagliani, L.; Dombrowski, J. Plant Proteins and Their Colloidal State. Curr. Opin. Colloid Interface Sci. 2021, 56, 101510. [Google Scholar] [CrossRef]
- Guyomarc’h, F.; Arvisenet, G.; Bouhallab, S.; Canon, F.; Deutsch, S.M.; Drigon, V.; Dupont, D.; Famelart, M.H.; Garric, G.; Guédon, E.; et al. Mixing Milk, Egg and Plant Resources to Obtain Safe and Tasty Foods with Environmental and Health Benefits. Trends Food Sci. Technol. 2021, 108, 119–132. [Google Scholar] [CrossRef]
- Hinderink, E.B.A.; Münch, K.; Sagis, L.; Schroën, K.; Berton-Carabin, C.C. Synergistic Stabilisation of Emulsions by Blends of Dairy and Soluble Pea Proteins: Contribution of the Interfacial Composition. Food Hydrocoll. 2019, 97, 105206. [Google Scholar] [CrossRef]
- Ben-Harb, S.; Panouillé, M.; Huc-Mathis, D.; Moulin, G.; Saint-Eve, A.; Irlinger, F.; Bonnarme, P.; Michon, C.; Souchon, I. The Rheological and Microstructural Properties of Pea, Milk, Mixed Pea/Milk Gels and Gelled Emulsions Designed by Thermal, Acid, and Enzyme Treatments. Food Hydrocoll. 2018, 77, 75–84. [Google Scholar] [CrossRef]
- Foroutan, A.; Guo, A.C.; Vazquez-Fresno, R.; Lipfert, M.; Zhang, L.; Zheng, J.; Badran, H.; Budinski, Z.; Mandal, R.; Ametaj, B.N.; et al. Chemical Composition of Commercial Cow’s Milk. J. Agric. Food Chem. 2019, 67, 4897–4914. [Google Scholar] [CrossRef]
- Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Dairy Science and Technology, 2nd ed.; Taylor & Francis: Abingdon, UK, 2006; Volume 4, ISBN 9780824727635. [Google Scholar]
- Horne, D.S. Casein Micelle Structure and Stability. In Milk Proteins: From Expression to Food; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Edwards, P.J.B.; Jameson, G.B. Structure and Stability of Whey Proteins. In Milk Proteins: From Expression to Food; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Holt, C.; Carver, J.A.; Ecroyd, H.; Thorn, D.C. Invited Review: Caseins and the Casein Micelle: Their Biological Functions, Structures, and Behavior in Foods1. J. Dairy Sci. 2013, 96, 6127–6146. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.G.; Cheng, N.; Kapoor, R.; Meletharayil, G.H.; Drake, M.A. Invited Review: Microfiltration-Derived Casein and Whey Proteins from Milk. J. Dairy Sci. 2021, 104, 2465–2479. [Google Scholar] [CrossRef]
- Carr, A.; Golding, M. Functional Milk Proteins Production and Utilization: Casein-Based Ingredients. In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects, 4th ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. The Caseins: Structure, Stability, and Functionality. In Proteins in Food Processing, 2nd ed.; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Huppertz, T.; Gazi, I.; Luyten, H.; Nieuwenhuijse, H.; Alting, A.; Schokker, E. Hydration of Casein Micelles and Caseinates: Implications for Casein Micelle Structure. Int. Dairy J. 2017, 74, 1–11. [Google Scholar] [CrossRef]
- Hammam, A.R.A.; Martínez-Monteagudo, S.I.; Metzger, L.E. Progress in Micellar Casein Concentrate: Production and Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4426–4449. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.C.; de Paula Ferreira, I.E.; Casanova, F.; Cavallieri, A.L.F.; Lima Nascimento, L.G.; de Carvalho, A.F.; Nogueira Silva, N.F. Colloidal and Acid Gelling Properties of Mixed Milk and Pea Protein Suspensions. Foods 2022, 11, 1383. [Google Scholar] [CrossRef] [PubMed]
- Smithers, G.W. Whey and Whey Proteins-From “Gutter-to-Gold”. Int. Dairy J. 2008, 18, 695–704. [Google Scholar] [CrossRef]
- Farrell, H.M.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the Proteins of Cows’ Milk-Sixth Revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef] [Green Version]
- Guyomarc’h, F.; Famelart, M.H.; Henry, G.; Gulzar, M.; Leonil, J.; Hamon, P.; Bouhallab, S.; Croguennec, T. Current Ways to Modify the Structure of Whey Proteins for Specific Functionalities—A Review. Dairy Sci. Technol. 2015, 95, 795–814. [Google Scholar] [CrossRef]
- Loveday, S.M. Plant Protein Ingredients with Food Functionality Potential. Nutr. Bull. 2020, 45, 321–327. [Google Scholar] [CrossRef]
- Tan, M.; Nawaz, M.A.; Buckow, R. Functional and Food Application of Plant Proteins–A Review. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Pulses and Food Security: Dietary Protein, Digestibility, Bioactive and Functional Properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Hara-Nishimura, I.; Shimada, T.; Hatano, K.; Takeuchi, Y.; Nishimura, M. Transport of Storage Proteins to Protein Storage Vacuoles Is Mediated by Large Precursor-Accumulating Vesicles. Plant Cell 1998, 10, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Boye, J.; Zare, F.; Pletch, A. Pulse Proteins: Processing, Characterization, Functional Properties and Applications in Food and Feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Gumus, C.E.; Decker, E.A.; McClements, D.J. Impact of Legume Protein Type and Location on Lipid Oxidation in Fish Oil-in-Water Emulsions: Lentil, Pea, and Faba Bean Proteins. Food Res. Int. 2017, 100, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Aachary, A.A.; Thiyam-Hollander, U.; Eskin, M.N.A. Canola/Rapeseed Proteins and Peptides. In Applied Food Protein Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; ISBN 978-1-119-94449-2. [Google Scholar]
- Loveday, S.M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu. Rev. Food Sci. Technol. 2019, 10, 311–339. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, K.; Obadi, M.; Omedi, J.O.; Letsididi, K.S.; Koko, M.; Zaaboul, F.; Siddeeg, A.; Liu, Y. Effect of Sunflower Meal Protein Isolate (SMPI) Addition on Wheat Bread Quality. J. Acad. Ind. Res. 2018, 6, 159–163. [Google Scholar]
- Pereira, J.; Zhou, G.; Zhang, W. Effects of Rice Flour on Emulsion Stability, Organoleptic Characteristics and Thermal Rheology of Emulsified Sausage. J. Food Nutr. Res. 2020, 4, 216–222. [Google Scholar] [CrossRef]
- Akharume, F.U.; Aluko, R.E.; Adedeji, A.A. Modification of Plant Proteins for Improved Functionality: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 198–224. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Chapter 1: Food Protein Structures, Functionality and Product Development. In Food Chemistry, Function and Analysis; Royal Society of Chemistry: London, UK, 2021; Volume 2021. [Google Scholar]
- Roberts, C.J. Protein Aggregation and Its Impact on Product Quality. Curr. Opin. Biotechnol. 2014, 30, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Nicolai, T.; Chassenieux, C. Heat-Induced Gelation of Plant Globulins. Curr. Opin. Food Sci. 2019, 27, 18–22. [Google Scholar] [CrossRef]
- Foegeding, E.A. Food Protein Functionality-A New Model. J. Food Sci. 2015, 80, C2670–C2677. [Google Scholar] [CrossRef]
- Milani, J.M.; Golkar, A. Introductory Chapter: Some New Aspects of Colloidal Systems in Foods. In Some New Aspects of Colloidal Systems in Foods; IntechOpen: London, UK, 2019. [Google Scholar]
- Alrosan, M.; Tan, T.C.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H. Molecular Forces Governing Protein-Protein Interaction: Structure-Function Relationship of Complexes Protein in the Food Industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 4036–4052. [Google Scholar] [CrossRef]
- Pace, C.N.; Treviño, S.; Prabhakaran, E.; Scholtz, J.M.; Franks, F.; Wilson, K.; Daniel, R.M.; Halling, P.J.; Clark, D.S.; Purkiss, A. Protein Structure, Stability and Solubility in Water and Other Solvents. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Shire, S.J.; Shahrokh, Z.; Liu, J. Challenges in the Development of High Protein Concentration Formulations. J. Pharm. Sci. 2004, 93, 1390–1402. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, P.; Chen, Z.; Zhou, X.; Wang, T. Complexation of Rice Proteins and Whey Protein Isolates by Structural Interactions to Prepare Soluble Protein Composites. LWT 2019, 101, 207–213. [Google Scholar] [CrossRef]
- Wang, T.; Yue, M.; Xu, P.; Wang, R.; Chen, Z. Toward Water-Solvation of Rice Proteins via Backbone Hybridization by Casein. Food Chem. 2018, 258, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Prakash, S.; Bhandari, B.; Bansal, N. Ultra High Temperature (UHT) Stability of Casein-Whey Protein Mixtures at High Protein Content: Heat Induced Protein Interactions. Food Res. Int. 2019, 116, 103–113. [Google Scholar] [CrossRef]
- Yousefi, N.; Abbasi, S. Food Proteins: Solubility & Thermal Stability Improvement Techniques. Food Chem. Adv. 2022, 1, 100090. [Google Scholar]
- Saricaoglu, F.T. Application of High-Pressure Homogenization (HPH) to Modify Functional, Structural and Rheological Properties of Lentil (Lens Culinaris) Proteins. Int. J. Biol. Macromol. 2020, 144, 760–769. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Xu, L.; Ma, H. An Efficient Ultrasound-Assisted Extraction Method of Pea Protein and Its Effect on Protein Functional Properties and Biological Activities. LWT 2020, 127, 109348. [Google Scholar] [CrossRef]
- Sánchez-Reséndiz, A.; Rodríguez-Barrientos, S.; Rodríguez-Rodríguez, J.; Barba-Dávila, B.; Serna-Saldívar, S.O.; Chuck-Hernández, C. Phosphoesterification of Soybean and Peanut Proteins with Sodium Trimetaphosphate (STMP): Changes in Structure to Improve Functionality for Food Applications. Food Chem. 2018, 260, 299–305. [Google Scholar] [CrossRef]
- Eckert, E.; Han, J.; Swallow, K.; Tian, Z.; Jarpa-Parra, M.; Chen, L. Effects of Enzymatic Hydrolysis and Ultrafiltration on Physicochemical and Functional Properties of Faba Bean Protein. Cereal Chem. 2019, 96, 725–741. [Google Scholar] [CrossRef]
- Yildiz, G.; Ding, J.; Andrade, J.; Engeseth, N.J.; Feng, H. Effect of Plant Protein-Polysaccharide Complexes Produced by Mano-Thermo-Sonication and PH-Shifting on the Structure and Stability of Oil-in-Water Emulsions. Innov. Food Sci. Emerg. Technol. 2018, 47, 317–325. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Kiil, S. Introduction to Colloid and Surface Chemistry. In Introduction to Applied Colloid and Surface Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gunasekaran, S.; Ak, M.M. Dynamic Oscillatory Shear Testing of Foods-Selected Applications. Trends Food Sci. Technol. 2000, 11, 115–127. [Google Scholar] [CrossRef]
- Chihi, M.L.; Sok, N.; Saurel, R. Acid Gelation of Mixed Thermal Aggregates of Pea Globulins and β-Lactoglobulin. Food Hydrocoll. 2018, 85, 120–128. [Google Scholar] [CrossRef]
- Wong, D.; Vasanthan, T.; Ozimek, L. Synergistic Enhancement in the Co-Gelation of Salt-Soluble Pea Proteins and Whey Proteins. Food Chem. 2013, 141, 3913–3919. [Google Scholar] [CrossRef]
- Silva, J.V.C.; Balakrishnan, G.; Schmitt, C.; Chassenieux, C.; Nicolai, T. Heat-Induced Gelation of Aqueous Micellar Casein Suspensions as Affected by Globular Protein Addition. Food Hydrocoll. 2018, 82, 258–267. [Google Scholar] [CrossRef]
- Silva, J.V.C.; Cochereau, R.; Schmitt, C.; Chassenieux, C.; Nicolai, T. Heat-Induced Gelation of Mixtures of Micellar Caseins and Plant Proteins in Aqueous Solution. Food Res. Int. 2019, 116, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.V.C.; Jacquette, B.; Amagliani, L.; Schmitt, C.; Nicolai, T.; Chassenieux, C. Heat-Induced Gelation of Micellar Casein/Plant Protein Oil-in-Water Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 569, 85–92. [Google Scholar] [CrossRef]
- Mession, J.L.; Roustel, S.; Saurel, R. Interactions in Casein Micelle–Pea Protein System (Part I): Heat-Induced Denaturation and Aggregation. Food Hydrocoll. 2017, 67, 229–242. [Google Scholar] [CrossRef]
- Nicolai, T.; Chassenieux, C. Heat-Induced Gelation of Casein Micelles. Food Hydrocoll. 2021, 118, 106755. [Google Scholar] [CrossRef]
- Huppertz, T.; Nieuwenhuijse, H. Constituent Fouling during Heat Treatment of Milk: A Review. Int. Dairy J. 2022, 126, 105236. [Google Scholar] [CrossRef]
- Chihi, M.L.; Mession, J.L.; Sok, N.; Saurel, R. Heat-Induced Soluble Protein Aggregates from Mixed Pea Globulins and β-Lactoglobulin. J. Agric. Food Chem. 2016, 64, 2780–2791. [Google Scholar] [CrossRef]
- Roesch, R.R.; Corredig, M. Heat-Induced Soy-Whey Proteins Interactions: Formation of Soluble and Insoluble Protein Complexes. J. Agric. Food Chem. 2005, 53, 3476–3482. [Google Scholar] [CrossRef] [PubMed]
- McCann, T.H.; Guyon, L.; Fischer, P.; Day, L. Rheological Properties and Microstructure of Soy-Whey Protein. Food Hydrocoll. 2018, 82, 434–441. [Google Scholar] [CrossRef]
- Totosaus, A.; Montejano, J.G.; Salazar, J.A.; Guerrero, I. A Review of Physical and Chemical Protein-Gel Induction. Int. J. Food Sci. Technol. 2002, 37, 589–601. [Google Scholar] [CrossRef]
- Lucey, J.A. Milk Protein Gels. In Milk Proteins: From Expression to Food; Academic Press: Cambridge, MA, USA, 2020; pp. 599–632. [Google Scholar] [CrossRef]
- Grygorczyk, A.; Alexander, M.; Corredig, M. Combined Acid- and Rennet-Induced Gelation of a Mixed Soya Milk-Cow’s Milk System. Int. J. Food Sci. Technol. 2013, 48, 2306–2314. [Google Scholar] [CrossRef]
- Yousseef, M.; Lafarge, C.; Valentin, D.; Lubbers, S.; Husson, F. Fermentation of Cow Milk and/or Pea Milk Mixtures by Different Starter Cultures: Physico-Chemical and Sensorial Properties. LWT 2016, 69, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Zare, F.; Boye, J.I.; Orsat, V.; Champagne, C.; Simpson, B.K. Microbial, Physical and Sensory Properties of Yogurt Supplemented with Lentil Flour. Food Res. Int. 2011, 44, 2482–2488. [Google Scholar] [CrossRef]
- Martin, A.H.; De Los Reyes Jiménez, M.L.; Pouvreau, L. Modulating the Aggregation Behaviour to Restore the Mechanical Response of Acid Induced Mixed Gels of Sodium Caseinate and Soy Proteins. Food Hydrocoll. 2016, 58, 215–223. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, G.; Gao, D.; Wang, L.; Zhang, A.; Wang, X.; Xu, N.; Jiang, L. Improving the Gel Properties of Transgenic Microbial Transglutaminase Cross-Linked Soybean-Whey Mixed Protein by Ultrasonic Pretreatment. Process Biochem. 2020, 91, 104–112. [Google Scholar] [CrossRef]
- Ma, Z.; Li, L.; Wu, C.; Huang, Y.; Teng, F.; Li, Y. Effects of Combined Enzymatic and Ultrasonic Treatments on the Structure and Gel Properties of Soybean Protein Isolate. LWT 2022, 158, 113123. [Google Scholar] [CrossRef]
- Means, A.K.; Grunlan, M.A. Modern Strategies to Achieve Tissue-Mimetic, Mechanically Robust Hydrogels. ACS Macro Lett. 2019, 8, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Jansens, K.J.A.; Rombouts, I.; Grootaert, C.; Brijs, K.; Van Camp, J.; Van der Meeren, P.; Rousseau, F.; Schymkowitz, J.; Delcour, J.A. Rational Design of Amyloid-Like Fibrillary Structures for Tailoring Food Protein Techno-Functionality and Their Potential Health Implications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 84–105. [Google Scholar] [CrossRef] [Green Version]
- Khalesi, H.; Sun, C.; He, J.; Lu, W.; Fang, Y. The Role of Amyloid Fibrils in the Modification of Whey Protein Isolate Gels with the Form of Stranded and Particulate Microstructures. Food Res. Int. 2021, 140, 109856. [Google Scholar] [CrossRef]
- Wu, H.; Nian, Y.; Liu, Y.; Zhang, Y.; Hu, B. Formation of Pea Protein Amyloid Fibrils to Stabilize High Internal Phase Emulsions for Encapsulation of Lutein. J. Funct. Foods 2022, 94, 105110. [Google Scholar] [CrossRef]
- Ge, J.; Sun, C.; Chang, Y.; Sun, M.; Zhang, Y.; Fang, Y. Heat-Induced Pea Protein Isolate Gels Reinforced by Panda Bean Protein Amyloid Fibrils: Gelling Properties and Formation Mechanism. Food Res. Int. 2022, 162, 112053. [Google Scholar] [CrossRef] [PubMed]
- Grygorczyk, A.; Duizer, L.; Lesschaeve, I.; Corredig, M. Gelation of Recombined Soymilk and Cow’s Milk Gels: Effect Ofhomogenization Order and Mode of Gelation on Microstructure Andtexture of the Final Matrix. Food Hydrocoll. 2014, 35, 69–77. [Google Scholar] [CrossRef]
- Derkach, S.R. Rheology of Emulsions. Adv. Colloid Interface Sci. 2009, 151, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Gallier, S. Nature’s Complex Emulsion: The Fat Globules of Milk. Food Hydrocoll. 2017, 68, 81–89. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, J.; Chen, J.; Wang, Y.; Dong, N.; Hu, C.; Chen, H.; Li, G.; Pan, X.; Wu, C. Preparation and Stabilization of Emulsions Stabilized by Mixed Sodium Caseinate and Soy Protein Isolate. Food Hydrocoll. 2015, 51, 156–165. [Google Scholar] [CrossRef]
- Liang, Y.; Wong, S.S.; Pham, S.Q.; Tan, J.J. Effects of Globular Protein Type and Concentration on the Physical Properties and Flow Behaviors of Oil-in-Water Emulsions Stabilized by Micellar Casein-Globular Protein Mixtures. Food Hydrocoll. 2016, 54, 89–98. [Google Scholar] [CrossRef]
- Le Roux, L.; Mejean, S.; Chacon, R.; Lopez, C.; Dupont, D.; Deglaire, A.; Nau, F.; Jeantet, R. Plant Proteins Partially Replacing Dairy Proteins Greatly Influence Infant Formula Functionalities. LWT 2020, 120, 108891. [Google Scholar] [CrossRef]
- Ho, K.K.H.Y.; Schroën, K.; San Martín-González, M.F.; Berton-Carabin, C.C. Synergistic and Antagonistic Effects of Plant and Dairy Protein Blends on the Physicochemical Stability of Lycopene-Loaded Emulsions. Food Hydrocoll. 2018, 81, 180–190. [Google Scholar] [CrossRef]
- Patel, S.G.; Siddaiah, M. Formulation and Evaluation of Effervescent Tablets: A Review. J. Drug Deliv. Ther. 2018, 8, 296–303. [Google Scholar] [CrossRef]
- Mohanan, A.; Nickerson, M.T.; Ghosh, S. Utilization of Pulse Protein-Xanthan Gum Complexes for Foam Stabilization: The Effect of Protein Concentrate and Isolate at Various PH. Food Chem. 2020, 316, 126282. [Google Scholar] [CrossRef] [PubMed]
- Odelli, D.; Sarigiannidou, K.; Soliani, A.; Marie, R.; Mohammadifar, M.A.; Jessen, F.; Spigno, G.; Vall-llosera, M.; De Carvalho, A.F.; Verni, M.; et al. Interaction between Fish Skin Gelatin and Pea Protein at Air-Water Interface after Ultrasound Treatment. Foods 2022, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.C.; Martha, L.; Casanova, F.; Tavares, G.M. Structural and Foaming Properties of Whey and Soy Protein Isolates in Mixed Systems before and after Heat Treatment. Food Sci. Technol. Int. 2022, 28, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Krentz, A.; García-Cano, I.; Jiménez-Flores, R. Functional, Textural, and Rheological Properties of Mixed Casein Micelle and Pea Protein Isolate Co-Dispersions. JDS Commun. 2022, 3, 85–90. [Google Scholar] [CrossRef]
- Fischer, E.; Cayot, N.; Cachon, R. Potential of Microorganisms to Decrease the “Beany” Off-Flavor: A Review. J. Agric. Food Chem. 2022, 70, 4493–4508. [Google Scholar] [CrossRef]
- Clark, A.J.; Soni, B.K.; Sharkey, B.; Acree, T.; Lavin, E.; Bailey, H.M.; Stein, H.H.; Han, A.; Elie, M.; Nadal, M. Shiitake Mycelium Fermentation Improves Digestibility, Nutritional Value, Flavor and Functionality of Plant Proteins. LWT 2022, 156, 113065. [Google Scholar] [CrossRef]
- Canon, F.; Maillard, M.B.; Famelart, M.H.; Thierry, A.; Gagnaire, V. Mixed Dairy and Plant-Based Yogurt Alternatives: Improving Their Physical and Sensorial Properties through Formulation and Lactic Acid Bacteria Cocultures. Curr. Res. Food Sci. 2022, 5, 665–676. [Google Scholar] [CrossRef]
- Taha, A.; Casanova, F.; Šimonis, P.; Stankevič, V.; Gomaa, M.A.E.; Stirkė, A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022, 11, 1556. [Google Scholar] [CrossRef]
- Giteru, S.G.; Oey, I.; Ali, M.A. Feasibility of Using Pulsed Electric Fields to Modify Biomacromolecules: A Review. Trends Food Sci. Technol. 2018, 72, 91–113. [Google Scholar] [CrossRef]
- Jin, S.; Yin, Y.; Wang, Y. Effects of Combined Pulsed Electric Field and Heat Treatment on Texture Characteristics of Whey Protein Gels. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2013, 44, 142–146. [Google Scholar] [CrossRef]
- Rodrigues, R.M.; Martins, A.J.; Ramos, O.L.; Malcata, F.X.; Teixeira, J.A.; Vicente, A.A.; Pereira, R.N. Influence of Moderate Electric Fields on Gelation of Whey Protein Isolate. Food Hydrocoll. 2015, 43, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Oey, I.; Everett, D.W. Thermal Properties of Milk Fat, Xanthine Oxidase, Caseins and Whey Proteins in Pulsed Electric Field-Treated Bovine Whole Milk. Food Chem. 2016, 207, 34–42. [Google Scholar] [CrossRef]
- Subaşı, B.G.; Jahromi, M.; Casanova, F.; Capanoglu, E.; Ajalloueian, F.; Mohammadifar, M.A. Effect of Moderate Electric Field on Structural and Thermo-Physical Properties of Sunflower Protein and Sodium Caseinate. Innov. Food Sci. Emerg. Technol. 2021, 67, 102593. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Mo, H. Effects of Pulsed Electric Fields on Physicochemical Properties of Soybean Protein Isolates. LWT 2007, 40, 1167–1175. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.J.; Jiang, W.; Qian, J.Y. Effect of Pulsed Electric Field on Functional and Structural Properties of Canola Protein by Pretreating Seeds to Elevate Oil Yield. LWT 2017, 84, 73–81. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Zhang, Y.; Yang, X.; Du, J.; Yu, D.; Xie, F. Effect of Moderate Electric Fields on the Structural and Gelation Properties of Pea Protein Isolate. Innov. Food Sci. Emerg. Technol. 2022, 77, 102959. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M.; Barbosa-Canovas, G.V.; Lelieveld, H.L. High Pressure Processing of Food: Principles, Technology and Application; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Queirós, R.P.; Saraiva, J.A.; da Silva, J.A.L. Tailoring Structure and Technological Properties of Plant Proteins Using High Hydrostatic Pressure. Crit. Rev. Food Sci. Nutr. 2018, 58, 1538–1556. [Google Scholar] [CrossRef]
- Sim, S.Y.J.; Hua, X.Y.; Henry, C.J. A Novel Approach to Structure Plant-Based Yogurts Using High Pressure Processing. Foods 2020, 9, 1126. [Google Scholar] [CrossRef]
- Kumar, P.K.; Sivabalan, S.; Parhi, A.; Sablani, S.S. Modification of Pea Protein Isolate Functionality by Freeze–Thaw Cycling. J. Food Meas. Charact. 2022, 16, 162–170. [Google Scholar] [CrossRef]
- Li, X.; Ye, C.; Tian, Y.; Pan, S.; Wang, L. Effect of Ohmic Heating on Fundamental Properties of Protein in Soybean Milk. J. Food Process Eng. 2018, 41, e12660. [Google Scholar] [CrossRef]
- Sarigiannidou, K.; Odelli, D.; Jessen, F.; Mohammadifar, M.A.; Ajalloueian, F.; Vall-llosera, M.; Carvalho, A.F.; Casanova, F. Interfacial Properties of Pea Protein Hydrolysate: The Effect of Ionic Strength. SSRN Electron. J. 2022, 6, 76. [Google Scholar] [CrossRef]
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022, 11, 875. [Google Scholar] [CrossRef]
- Harper, A.R.; Dobson, R.C.J.; Morris, V.K.; Moggré, G.J. Fermentation of Plant-Based Dairy Alternatives by Lactic Acid Bacteria. Microb. Biotechnol. 2022, 15, 1404–1421. [Google Scholar] [CrossRef] [PubMed]
Component | Proportion (%) |
---|---|
Water | 85–87 |
Lipids | 3.8–5.5 |
Lactose | 4.8–5.0 |
Proteins | 2.9–3.5 |
Plant Source | Physicochemical Properties | Functionality |
---|---|---|
Soy, almond, rice | Hydrophilicity; surface charge; hydrogen bonding | Solubility |
Soy, pea, lentils, beans | Aggregative behavior after thermal and pH denaturation; electrostatic and hydrophobic interactions; disulfide bonding | Gelling |
Soy, pea, faba, sunflower, pumpkin | Surface tension; interfacial film forming ability; amphipathic behavior | Emulsifying |
Potato, pea, lentils, chickpea | Surface tension; interfacial film forming ability; amphipathic behavior | Foaming |
Mixed Dispersions | Functionalities | Reference |
---|---|---|
Milk/Pea | Antagonistic effect on protein solubility | Ben-Harb et al., (2018) [18] |
Whey/Rice | Improved solubility with pH shift | Wang et al., (2019) [52] |
Caseinates/Rice | Improved solubility with pH shift | Wang et al., (2018) [53] |
Milk/Soy | Higher viscosities of the dispersions with decreased coagulation | Singh et al., (2019) [54] |
Mixed Heat-Induced Gel | Functionalities | Reference |
---|---|---|
Caseins/Pea/soy | No interaction in the gel formation and presence of distinct phases | Silva et. al., 2018 [66] |
Whey/Pea | Increased gelation temperature; modulation of gel structure and rheological properties; increased gel stiffness; increased gel homogeneity at isoelectric pH | Wong et. al., 2013 [64] |
Whey/Soy | Formation of aggregates with disulfide bonds; reduced gel strength | Corredig et. al., 2015 [87] |
Mixed Acid-induced gel | ||
Whey/Pea | Decreased gelation pH; decreased gel stiffness; no interactions | Chihi et. al., 2018 [63] |
Milk/Pea | Faster gelation; increased acidity; increased syneresis; decreased gel firmness | Yousseef et. al., 2016 [77] |
Milk/Lentil | Similar syneresis and rheological behavior to milk control | Zare et. al., 2011 [78] |
Enzymatic gel | ||
Whey/Soy | Increased gel hardness; optimal water holding capacity; decreased rheological properties | Cui et. al., 2020 [80] |
Mixed Emulsions | Functionalities | Reference |
---|---|---|
Caseins/Soy | Improved stability; small droplet sizes | Ji et. al., 2015 [90] |
Milk/Pea | High stability; small droplet sizes; dense interfacial layer | Hinderink et. al., 2019 [17] |
Milk/Pea/soy | Reduced droplet sizes and improved heat-stability | Liang et. al., 2016 [91] |
Milk/Faba | Overall optimal stability; decreased solubility; larger particle sizes | Le Roux et. al., 2020 [92] |
Caseins/Soy | Enhanced encapsulation ability for vitamin a and lycopene | Ho et. al., 2018 [93] |
Protein | Effects on Functionality | References |
---|---|---|
Whey Protein Isolate (WPI) | Improved gelling properties of WPI when treated with an intensity lower than 45 kV/cm. However, weaker gel strengths compared to heat-treated gels. | Jin et al., 2013; Rodrigues et al., 2015 [104,105] |
Caseins and WPI | Increased rate of unfolding proteins and their surface hydrophobicity | Sharma et al., 2016; Subasi et al., 2021 [106,107] |
Soy protein isolate (SPI) | Decreased solubility and surface hydrophobicity | Li et al., 2007 [108] |
Canola protein | Improved solubility, foaming and emulsifying properties | Zhang et al., 2017 [109] |
Sunflower protein | Reduced interfacial tension at protein/water interface | Subasi et al., 2021 [107] |
Pea protein isolate (PPI) | Increased surface hydrophobicity and gelling properties | Chen et al., 2022 [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima Nascimento, L.G.; Odelli, D.; Fernandes de Carvalho, A.; Martins, E.; Delaplace, G.; Peres de sá Peixoto Júnior, P.; Nogueira Silva, N.F.; Casanova, F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023, 12, 2385. https://doi.org/10.3390/foods12122385
Lima Nascimento LG, Odelli D, Fernandes de Carvalho A, Martins E, Delaplace G, Peres de sá Peixoto Júnior P, Nogueira Silva NF, Casanova F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods. 2023; 12(12):2385. https://doi.org/10.3390/foods12122385
Chicago/Turabian StyleLima Nascimento, Luis Gustavo, Davide Odelli, Antônio Fernandes de Carvalho, Evandro Martins, Guillaume Delaplace, Paulo Peres de sá Peixoto Júnior, Naaman Francisco Nogueira Silva, and Federico Casanova. 2023. "Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits?" Foods 12, no. 12: 2385. https://doi.org/10.3390/foods12122385
APA StyleLima Nascimento, L. G., Odelli, D., Fernandes de Carvalho, A., Martins, E., Delaplace, G., Peres de sá Peixoto Júnior, P., Nogueira Silva, N. F., & Casanova, F. (2023). Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods, 12(12), 2385. https://doi.org/10.3390/foods12122385