Simulated Gastrointestinal Digestion of Nutritive Raw Bars: Assessment of Nutrient Bioavailability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Extraction for Total Polyphenols, Antioxidant Capacity, and B Vitamins Analysis
2.2.1. Solid Samples
2.2.2. Liquid Samples
2.2.3. Total Phenolic Compounds Folin–Ciocalteu
2.2.4. Total Antioxidant Capacity
2.2.5. B Vitamins Analysis
2.3. Total Fibers
2.4. Calorie Content
2.5. Nutritional Parameters Analysis
2.6. SEM Analysis
2.7. Simulated In Vitro Gastrointestinal Digestion of Nutritive Raw Bars
2.8. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okpara, N.; Chauvenet, C.; Grich, K.; Turner-McGrievy, G. “Food Doesn’t Have Power Over Me Anymore!” Self-Efficacy as a Driver for Dietary Adherence Among African American Adults Participating in Plant-Based and Meat-Reduced Dietary Interventions: A Qualitative Study. J. Acad. Nutr. Diet. 2022, 122, 811–824. [Google Scholar] [CrossRef]
- Alae-Carew, C.; Green, R.; Stewart, C.; Cook, B.; Dangour, A.D.; Scheelbeek, P.F. The role of plant-based alternative foods in sustainable and healthy food systems: Consumption trends in the UK. Sci. Total. Environ. 2022, 807, 151041. [Google Scholar] [CrossRef]
- Pang, M.; Trier, C.; Alexon, C.; Johnston, C.S. Daily ingestion of protein bars (with or without added fiber) increased energy intake and body fat mass after one week in healthy adults: A crossover trial. J. Funct. Foods 2023, 104, 105547. [Google Scholar] [CrossRef]
- Ogundijo, D.A.; Tas, A.A.; Onarinde, B.A. Factors influencing the perception and decision-making process of consumers on the choice of healthier foods in the United Kingdom: A systematic review using narrative synthesis. Int. J. Food Sci. Technol. 2022, 57, 881–897. [Google Scholar] [CrossRef]
- Wen, H.; Pookulangara, S.; Josiam, B.M. A comprehensive examination of consumers’ intentions to use food delivery apps. Br. Food J. 2022, 124, 1737–1754. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Investigating the Effect of Consumers’ Knowledge on Their Acceptance of Functional Foods: A Systematic Review and Meta-Analysis. Foods 2022, 11, 1135. [Google Scholar] [CrossRef]
- Abdel-Salam, F.F.; Ibrahim, R.M.; Ali, M.I. Formulation and evaluation of high energy-protein bars as a nutritional supplement for sports athletics. Am. J. Food Technol. 2022, 10, 53–65. [Google Scholar] [CrossRef]
- Manguldar, F.; Derya, B.; Balbinar, S.; Çakir, Ş.; Icyer, N.C.; Cayir, M.; Sentürk, B. Vegan and gluten-free granola bar production with pumpkin. Eur. Food Res. Technol. 2022, 3, 52–57. [Google Scholar] [CrossRef]
- Verma, A.; Singh, D.; Mitra, A. Development of gluten free energy bar and its proximate analysis. Pharma Innov. J. 2022, 11, 569–576. [Google Scholar]
- Kowalska, H.; Masiarz, E.; Ignaczak, A.; Marzec, A.; Hać-Szymańczuk, E.; Salamon, A.; Galus, S. Advances in multigrain snack bar technology and consumer expectations: A review. Food Rev. Int. 2023, 39, 93–118. [Google Scholar] [CrossRef]
- Kiciak, A.; Czaderna, E.; Staśkiewicz, W.; Piątek, M.; Bielaszka, A.; Kardas, M. Assessment of sensory preference and frequency of carbohydrate bar consumption by physically active people. J. Phys. Educ. Sport. 2022, 12, 133–142. [Google Scholar] [CrossRef]
- Silva, J.G.S.; Rebellato, A.P.; Dos Santos Carames, E.T.; Greiner, R.; Pallone, J.A.L. In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Res. Int. 2020, 130, 108993. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.I.; Saraiva, J.M.A.; Vicente, A.A.; Moldão-Martins, M. Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Woodhead Publishing: Sawston, UK, 2019; pp. 23–54. [Google Scholar]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548. [Google Scholar] [CrossRef] [Green Version]
- Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food sci. 2021, 4, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Hillman, E.T.; Lu, H.; Yao, T.; Nakatsu, C.H. Microbial ecology along the gastrointestinal tract. Microbes Environ. 2017, 32, 300–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, A.; Etienne-Mesmin, L.; Livrelli, V.; Denis, S.; Blanquet-Diot, S.; Alric, M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 2012, 30, 591–600. [Google Scholar] [CrossRef]
- Bakke, A.M.; Glover, C.; Krogdahl, Å. Feeding, digestion and absorption of nutrients. Fish. Physiol. 2010, 30, 57–110. [Google Scholar]
- Rémond, D.; Shahar, D.R.; Gille, D.; Pinto, P.; Kachal, J.; Peyron, M.A.; Vergères, G. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget 2015, 6, 13858. [Google Scholar] [CrossRef] [Green Version]
- Jahan-Mihan, A.; Luhovyy, B.L.; Khoury, D.E.; Anderson, G.H. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 2011, 3, 574–603. [Google Scholar] [CrossRef] [Green Version]
- Mihaylova, D.; Popova, A.; Goranova, Z.; Doykina, P. Development of Healthy Bonbons Enriched with Lyophilized Peach Powder. Foods 2022, 11, 1580. [Google Scholar] [CrossRef]
- Abraham, K.; Trefflich, I.; Gauch, F.; Weikert, C. Nutritional Intake and Biomarker Status in Strict Raw Food Eaters. Nutrients 2022, 14, 1725. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.D. Nutritional considerations for the vegetarian and dancer. J. Dance Med. Sci. 2018, 22, 44–53. [Google Scholar] [CrossRef]
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Parada, J.; Aguilera, J.M. Food microstructure affects the bioavailability of several nutrients. J. Food Sci. 2007, 72, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, M.G.; Failla, M.L.; Schwartz, S.J. Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and Caco-2 human cell model. J. Agric. Food Chem. 2001, 49, 2082–2089. [Google Scholar] [CrossRef]
- Sousa, R.; Portmann, R.; Recio, I.; Dubois, S.; Egger, L. Comparison of in vitro digestibility and DIAAR between vegan and meat burgers before and after grilling. Food Res. Int. 2023, 166, 112569. [Google Scholar] [CrossRef]
- Sridhar, K.; Bouhallab, S.; Croguennec, T.; Renard, D.; Lechevalier, V. Recent trends in design of healthier plant-based alternatives: Nutritional profile, gastrointestinal digestion, and consumer perception. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef]
- Yusuf, E.H.; Pérez-Jiménez, J. Labels on bars of solid chocolate and chocolate bar sweets in the Polish market: A nutritional approach and implications for the consumer. Food Compost. Anal. 2021, 102, 104029. [Google Scholar] [CrossRef]
- Youssef, J.; Mora, M.; Maiz, E.; Spence, C. Sensory exploration of vegetables combined with a cookery class increases willingness to choose/eat plant-based food and drink. Int. J. Gastron. Food Sci. 2022, 28, 100515. [Google Scholar] [CrossRef]
- Stanikowski, P.; Michalak-Majewska, M.; Jabłońska-Ryś, E.; Gustaw, W.; Gruszecki, R. Influence of sous-vide thermal treatment, boiling, and steaming on the colour, texture and content of bioactive compounds in root vegetables. Ukr. Food J. 2021, 10, 77–89. [Google Scholar] [CrossRef]
- Patil, S.P.; Srivastava, A.K. Development and Validation of a Liquid Chromatography Method for the Simultaneous Determination of Eight Water-Soluble Vitamins in Multivitamin Formulations and Human Urine. J. AOAC Int. 2013, 96, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Luo, J.; Xie, Q.; Huang, L.; Shen, D.; Li, G. Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods 2023, 12, 2007. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.L.; Schilken, C.A. Calorie Content of Foods: A Laboratory Experiment Introducing Measuring by Calorimeter. J. Chem. Educ. 1994, 71, 342. [Google Scholar] [CrossRef]
- Zhu, M.; Long, Y.; Chen, Y.; Huang, Y.; Tang, L.; Gan, B.; Xie, J. Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics. J. Food Compost. Anal. 2021, 102, 104055. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, B.C.; Brodkorb, A. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Recio, I. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Silva Lima, D.; Buranelo Egea, M.; de Campos Carvalho Cabassa, I.; Borges de Almeida, A.; Leal de Sousa, T.; de Lima, T.M.; Aparecida Loss, R.; Pinheiro Volp, A.C.; de Vasconcelos, L.G.; Dall’Oglio, E.L.; et al. Technological quality and sensory acceptability of nutritive bars produced with Brazil nut and baru almond coproducts. LWT 2021, 137, 110467. [Google Scholar] [CrossRef]
- Parn, O.J.; Bhat, R.; Yeoh, T.K.; Al-Hassan, A.A. Development of novel fruit bars by utilizing date paste. Food Biosci. 2015, 9, 20–27. [Google Scholar] [CrossRef]
- Powell, L.M.; Schermbeck, R.M.; Chaloupka, F.J. Nutritional content of food and beverage products in television advertisements seen on children’s programming. Child. Obes. 2013, 9, 524–531. [Google Scholar] [CrossRef]
- Ghisalberti, E.L. Propolis: A review. Bee World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef] [Green Version]
- McKay, D. Nutrients and botanicals for erectile dysfunction: Examining the evidence. Altern. Med. Rev. 2004, 9, 4–16. [Google Scholar] [PubMed]
- Stone, M.; Ibarra, A.; Roller, M.; Zangara, A.; Stevenson, E. A pilot investigation into the effect of maca supplementation on physical activity and sexual desire in sportsmen. J. Ethnopharmacol. 2009, 126, 574–576. [Google Scholar] [CrossRef]
- Wijngaard, H.; Brunton, N. The optimization of extraction of antioxidants from apple pomace by pressurized liquids. J. Food Eng. 2010, 98, 291–298. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Aljaloud, S.; Colleran, H.L.; Ibrahim, S.A. Nutritional Value of Date Fruits and Potential Use in Nutritional Bars for Athletes. Food Sci. Nutr. 2020, 11, 463–480. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2007, 55, 10494–10502. [Google Scholar] [CrossRef]
- Gu, J.; Ahn-Jarvis, H.J.; Vodovotz, Y. Development and Characterization of Different Black Raspberry Confection Matrices Designed for Delivery of Phytochemicals. J. Food Sci. 2015, 80, E610–E618. [Google Scholar] [CrossRef]
- Luna-Sosa, B.; Martínez-Ávila, G.C.G.; Rodríguez-Fuentes, H.; Azevedo, A.G.; Pastrana, L.M.; Rojas, R.; Cerqueira, M.A. Pectin-Based Films Loaded with Hydroponic Nopal Mucilages: Development and Physicochemical Characterization. Coatings 2020, 10, 467. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R.; Minekus, M. Influence of food matrix on in vitro bioaccessibility of polyphenols. J. Agric. Food Chem. 2014, 62, 7232–7242. [Google Scholar]
- Hatta, H.; Kim, M.; Yamamoto, H.; Nomura, Y. Release of vitamin B1 during the gastric digestion of various foods as assessed by HPLC. J. Nutr. Sci. Vitaminol. 2001, 47, 131–135. [Google Scholar]
- Watanabe, F.; Abe, K.; Fujita, T.; Goto, M.; Hiemori, M.; Nakano, Y. Effects of various food factors on the bioavailability of thiamin and its phosphate esters. J. Nutr. Sci. Vitaminol. 2003, 49, 415–420. [Google Scholar]
- Çatak, J.; Gizlici, M.N. The effect of in vitro simulated gastrointestinal digestive system on the biodegradation of B group vitamins in bread. Heliyon 2022, 8, e11061. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wu, X.; Zhao, T.; Zhao, J.; Li, F.; Zou, Y.; Mao, G.; Yang, L. In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Res. Int. 2012, 46, 76–82. [Google Scholar] [CrossRef]
- Hernández-Maldonado, L.M.; Blancas-Benítez, F.J.; Zamora-Gasga, V.M.; Cárdenas-Castro, A.P.; Tovar, J.; Sáyago-Ayerdi, S.G. In Vitro Gastrointestinal Digestion and Colonic Fermentation of High Dietary Fiber and Antioxidant-Rich Mango (Mangifera indica L.) “Ataulfo”-Based Fruit Bars. Nutrients 2019, 11, 1564. [Google Scholar] [CrossRef] [Green Version]
Name of Ingredients | Description |
---|---|
Dates | Country of origin Iran, 500 g package |
Almond flour | Country of origin USA, 250 g package |
Maca root powder | 100% Lepidium meyenii root fine powder. Country of origin Peru, 200 g package |
Ginger powder | 100% Zingiber officinale root fine powder. Country of origin China, 200 g package |
Aronia powder | 100% organic powder obtained from aronia fruits (shell fragments, pulp, and seeds) dried and finely ground. Country of origin Romania, 200 g package |
Pollen | 100% raw polyfloral pollen. Country of origin Romania, 100 g package |
Propolis extract | Hydroglyceric propolis extract, with a minim of 12 mg/mL polyphenols content (60%), vegetal glycerin 20%, and purified water 20%. Country of origin Romania, 20 mL package |
Astragalus powder | 100% Astragalus membranaceus root fine powder. Country of origin China |
Cacao powder | Cacao powder with a minimum of 20% cacao butter. Country of origin non-UE, 200 g package |
Name of Ingredients | Recipe 1 (%) R1 | Recipe 2 (%) R2 | Recipe 3 (%) R3 | Recipe 4 (%) R4 |
---|---|---|---|---|
Dates | 48.6 | 48.6 | 48.6 | 48.6 |
Almond flour | 34.7 | 34.7 | 34.7 | 34.7 |
Maca root powder | 0.7 | 0 | 4.2 | 0 |
Ginger powder | 0 | 2 | 0 | 5 |
Aronia powder | 0 | 10 | 12.5 | 0 |
Pollen | 15 | 0 | 0 | 5 |
Propolis extract | 0 | 0 | 0 | 5 |
Astragalus powder | 0 | 0 | 0 | 1.7 |
Cacao powder | 1 | 4.7 | 0 | 0 |
Nutrient | Recipe 1 | Recipe 2 | Recipe 3 | Recipe 4 |
---|---|---|---|---|
Protein (%) | 12.13 ± 1.1 | 9.99 ± 0.8 | 9.72 ± 0.8 | 9.83 ± 0.7 |
Total lipids (%) | 18.77 ± 1.1 | 19.37 ± 1.1 | 18.56 ± 1.2 | 18.26 ± 1.1 |
Total sugars (%) | 51.11 ± 2.4 | 44.98 ± 2.2 | 45.40 ± 2.1 | 47.14 ± 2.2 |
Total fiber (%) | 6.67 ± 0.3 | 11.86 ± 0.8 | 13.86 ± 0.9 | 6.43 ± 0.3 |
Calories (kcal) | 453.68 ± 10.1 | 457.16 ± 9.7 | 461.11 ± 11.2 | 425.87 ± 10.4 |
Raw Bars | TPC mg GAE/kg | TEAC µg/g echiv. Trolox | B1 µg/g | B3 µg/g | B6 µg/g |
---|---|---|---|---|---|
Recipe 1 | 926.32 ± 18.15 | 2620 ± 23.64 | 5.83 ± 0.37 | 33.66 ± 5.47 | 19.22 ± 3.36 |
Recipe 2 | 749.1 ± 14.23 | 2010 ± 25.67 | 3.12 ± 0.17 | 19.08 ± 3.55 | 21.22 ± 4.07 |
Recipe 3 | 489.45 ± 8.49 | 1390 ± 15.67 | 2.66 ± 0.08 | 18.63 ± 3.12 | 19.67 ± 3.94 |
Recipe 4 | 844.23 ± 16.34 | 2390 ± 25.87 | 2.33 ± 0.07 | 21.31 ± 4.39 | 17.77 ± 3.11 |
p-value | 2.0206 × 10−9 | 1.7693 × 10−11 | 1.3155 × 10−7 | 0.007365 | 0.5628 |
Simulated Fluid | TPC mg GAE/kg | TEAC µg/mL Trolox | B1 µg/g | B3 µg/g | B6 µg/g |
---|---|---|---|---|---|
R1 SSF | 185.07 ± 10.87 | 129.45 ± 9.21 | 2.42 ± 0.14 | 15.59 ± 0.94 | 7.08 ± 0.67 |
R1 SGF | 71.92 ± 4.47 | 61.27 ± 5.14 | 1.56 ± 0.09 | 9.86 ± 0.74 | 5.92 ± 0.54 |
R1 SIF | 48.19 ± 2.37 | 49.68 ± 3.67 | 1.24 ± 0.07 | 8.14 ± 0.67 | 5.89 ± 0.55 |
R2 SSF | 184.42 ± 11.68 | 138.77 ± 11.34 | 1.52 ± 0.08 | 6.45 ± 0.51 | 8.94 ± 0.71 |
R2 SGF | 109.35 ± 8.67 | 81.74 ± 6.93 | 0.82 ± 0.06 | 5.83 ± 0.48 | 5.4 ± 0.48 |
R2 SIF | 96.51 ± 8.07 | 75.71 ± 6.37 | 0.59 ± 0.02 | 5.74 ± 0.46 | 5.35 ± 0.48 |
R3 SSF | 171.69 ± 8.99 | 116.09 ± 9.07 | 1.08 ± 0.08 | 7.9 ± 0.68 | 9.71 ± 0.82 |
R3 SGF | 108.27 ± 7.85 | 95.75 ± 8.74 | 0.93 ± 0.09 | 5.24 ± 0.49 | 5.25 ± 0.41 |
R3 SIF | 55.74 ± 4.71 | 42.54 ± 3.43 | 0.62 ± 0.05 | 5.1 ± 0.46 | 4.34 ± 0.39 |
R4 SSF | 102.01 ± 8.67 | 100.61 ± 9.07 | 1.02 ± 0.09 | 7.75 ± 0.71 | 6.36 ± 0.61 |
R4 SGF | 94.79 ± 9.13 | 89.27 ± 7.34 | 0.67 ± 0.04 | 6.12 ± 0.51 | 5.07 ± 0.47 |
R4 SIF | 80.55 ± 7.59 | 80.696 ± 7.08 | 0.42 ± 0.02 | 6.27 ± 0.57 | 4.72 ± 0.39 |
p-value | 9.4615 × 10−7 | 0.0001494 | 1.810 × 10−5 | 8.098 × 10−14 | 6.8123 × 10−11 |
Recipe | Recovery (%) | ||||
---|---|---|---|---|---|
Total Phenols | Antioxidant Capacity | B1 | B3 | B6 | |
Recipe 1 | 34.2–36.2 | 8.7–10.4 | 87.4–90.3 | 99.2–99.8 | 96.1–99.2 |
Recipe 2 | 50.1–53.7 | 13.1–15.5 | 91.1–95.3 | 92.3–95.7 | 90.7–93.4 |
Recipe 3 | 67.4–69.4 | 16.9–19.4 | 97.4–98.9 | 96.1–98.9 | 97.4–99.3 |
Recipe 4 | 31.7–34.5 | 10.2–12.7 | 89.7–92.6 | 91.4–96.8 | 89.7–92.1 |
TPC mg GAE/L | TEAC µg/mL Echiv Trolox | B1 | B3 | B6 | |
---|---|---|---|---|---|
TPC mg GAE/L | 1 | ||||
TEAC µg/mL echiv Trolox | 0.950 | 1 | |||
B1 | 0.566 | 0.493 | 1 | ||
B3 | 0.423 | 0.356 | 0.884 | 1 | |
B6 | 0.804 | 0.734 | 0.521 | 0.334 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dordai, L.; Simedru, D.; Cadar, O.; Becze, A. Simulated Gastrointestinal Digestion of Nutritive Raw Bars: Assessment of Nutrient Bioavailability. Foods 2023, 12, 2300. https://doi.org/10.3390/foods12122300
Dordai L, Simedru D, Cadar O, Becze A. Simulated Gastrointestinal Digestion of Nutritive Raw Bars: Assessment of Nutrient Bioavailability. Foods. 2023; 12(12):2300. https://doi.org/10.3390/foods12122300
Chicago/Turabian StyleDordai, Lucian, Dorina Simedru, Oana Cadar, and Anca Becze. 2023. "Simulated Gastrointestinal Digestion of Nutritive Raw Bars: Assessment of Nutrient Bioavailability" Foods 12, no. 12: 2300. https://doi.org/10.3390/foods12122300
APA StyleDordai, L., Simedru, D., Cadar, O., & Becze, A. (2023). Simulated Gastrointestinal Digestion of Nutritive Raw Bars: Assessment of Nutrient Bioavailability. Foods, 12(12), 2300. https://doi.org/10.3390/foods12122300