Enhancement of Lipid Stability of Frozen Fish by Octopus-Waste Glazing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial OCL and Glazing Systems
2.2. Initial Fresh Horse Mackerel, Freezing, Glazing, and Frozen Storage
2.3. Proximate Analysis of OCL
2.4. Lipid Extraction of Fish Muscle
2.5. Assessment of Lipid Damage of Fish Muscle
2.6. FA Analysis of Fish Muscle
2.7. Statistical Analysis
3. Results and Discussion
3.1. Determination of the Proximate Composition of OCL
3.2. Determination of the Lipid Oxidation Development of Fish Muscle
3.3. Determination of the FA Composition of Fish Muscle
3.4. Determination of the Lipid Hydrolysis Development of Fish Muscle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alizadeh, E.; Chapleau, N.; de Lamballerie, M.; Le-Bail, A. Effect of different freezing processes on the microstructure of Atlantic salmon (Salmo salar) fillets. Innov. Food Sci. Emerg. Technol. 2007, 8, 493–499. [Google Scholar] [CrossRef]
- Rustad, T. Lipid oxidation. In Handbook of Seafood and Seafood Products Analysis; Nollet, L.M., Toldrá, F., Eds.; CRC Press, Francis and Taylor Group: Boca Raton, FL, USA, 2010; pp. 87–95. [Google Scholar]
- Özoğul, Y. Methods for freshness quality and deterioration. In Handbook of Seafood and Seafood Products Analysis; Nollet, L.M., Toldrá, F., Eds.; CRC Press, Francis and Taylor Group: Boca Raton, FL, USA, 2010; pp. 189–214. [Google Scholar]
- Vanhaecke, L.; Verbeke, W.; De Brabander, H. Glazing of frozen fish: Analytical and economical challenges. Anal. Chim. Acta 2010, 672, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Yerlikaya, P.; Gokoglu, N. Inhibition effects of green tea and grape seed extracts on lipid oxidation in bonito fillets during frozen storage. Int. J. Food Sci. Technol. 2010, 45, 252–257. [Google Scholar] [CrossRef]
- Tan, M.; Li, P.; Yu, W.; Wang, J.; Xie, J. Effects of glazing with preservatives on the quality changes of squid during frozen storage. Appl. Sci. 2019, 9, 3847. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yu, W.; Xie, J. Effect of glazing with different materials on the quality of tuna during frozen storage. Foods 2020, 9, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çoban, O. Evaluation of essential oils as a glazing material for frozen rainbow trout (Oncorhynchus mykiss) fillet. J. Food Proc. Preserv. 2013, 37, 759–765. [Google Scholar] [CrossRef]
- Shi, J.; Lei, Y.; Shen, H.; Hong, H.; Yu, X.; Zhu, B.; Luo, Y. Effect of glazing and rosemary (Rosmarinus officinalis) extract on preservation of mud shrimp (Solenocera melantho) during frozen storage. Food Chem. 2019, 272, 604–612. [Google Scholar] [CrossRef]
- Naseri, M.; Abedi, E.; Vafa, S.; Torri, L. Comparative investigation of physico-chemical and sensory properties of glazed and non-glazed frozen rainbow trout (Oncorhynchus mykiss) thawed with different methods by principal component analysis. Iran Agric. Res. 2020, 39, 45–58. [Google Scholar]
- Wang, X.S.; Xie, J. Quality attributes of horse mackerel (Trachurus japonicus) during frozen storage as affected by double-glazing combined with theaflavins. Int. J. Food Prop. 2021, 24, 713–725. [Google Scholar] [CrossRef]
- Gonçalves, A.; Gindri, C. The effect of glaze uptake on storage quality of frozen shrimp. J. Food Eng. 2009, 90, 285–290. [Google Scholar] [CrossRef]
- Soares, N.; Mendes, T.; Vicente, A. Effect of chitosan-based solutions applied as edible coatings and water glazing on frozen salmon preservation—A pilot-scale study. J. Food Eng. 2013, 119, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.; Sotelo, C.G.; Chapela, M.J.; Pérez-Martín, R.I. Towards sustainable and efficient use of fishery resources: Present and future trends. Trends Food Sci. Technol. 2007, 18, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, V. Marine product for health care. In Marine Product for Health Care; Venugopal, V., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 185–214. [Google Scholar]
- Shahidi, F. Maximising the Value of Marine By-Products; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Arvanitoyannis, I.S.; Kassaveti, A. Fish industry waste: Treatments, environmental impacts, current and potential uses. Int. J. Food Sci. Technol. 2008, 43, 726–745. [Google Scholar] [CrossRef]
- Rustad, T.; Storro, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Atef, M.; Ojagh, M. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J. Funct. Foods 2017, 35, 673–681. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hur, S.J. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem. 2017, 228, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Tang, X.; Xua, L.; Wanga, S. Antibacterial properties and possible action mechanism of chelating peptides-zinc nanocomposite against Escherichia coli. Food Cont. 2019, 106, 106675. [Google Scholar] [CrossRef]
- Oh, H.S.; Kang, K.T.; Kim, H.S.; Lee, J.H.; Jee, S.J.; Ha, J.H.; Kim, J.J.; Heu, M.S. Food component characteristics of sea-food cooking drips. J. Korean Soc. Food Sci. Nutr. 2007, 36, 595–602. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.J.; Choi, J.I.; Kim, J.H.; Chun, B.S.; Ahn, D.H.; Kwon, J.H.; Kim, Y.J.; Byun, M.W.; Lee, J.W. Effect of electron beam irradiation on the physiological activities of cooking drips from Enteroctopus dofleini. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1190–1195. [Google Scholar] [CrossRef]
- Malga, J.M.; Trigo, M.; Martínez, B.; Aubourg, S.P. Preservative effect on canned mackerel (Scomber colias) lipids by addition of octopus (Octopus vulgaris) cooking liquor in the packaging medium. Molecules 2022, 27, 739. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists International, 16th ed.; AOAC Press: Gaithersburg, MD, USA, 1995; Volume II, p. 870. [Google Scholar]
- Bligh, E.; Dyer, W. A rapid method of total lipid extraction and purification. Canadian J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Herbes, S.E.; Allen, C.P. Lipid quantification of freshwater invertebrates: Method modification for microquantitation. Canadian J. Fish. Aq. Sci. 1983, 40, 1315–1317. [Google Scholar] [CrossRef]
- Chapman, R.; McKay, J. The estimation of peroxides in fats and oils by the ferric thiocyanate method. J. Am. Oil Chem. Soc. 1949, 26, 360–363. [Google Scholar] [CrossRef]
- Vyncke, W. Direct determination of the thiobarbituric acid value in trichloracetic acid extracts of fish as a measure of oxidative rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Piñeiro, C.; González, M.J. Quality loss related to rancidity development during frozen storage of horse mackerel (Trachurus trachurus). J. Am. Oil Chem. Soc. 2004, 81, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Lowry, R.; Tinsley, I. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef]
- Oucif, H.; Ali Mehidi, S.; Aubourg, S.P.; Abi-Ayad, S.M. Antioxidant effect of an aqueous extract of alga Cystoseira stricta during the frozen storage of Atlantic Chub mackerel (Scomber colias). Bulgarian Chem. Com. 2020, 52, 227–233. [Google Scholar]
- Ahn, C.B.; Kim, H.R. Processing of the extract powder using skipjack cooking juice and its taste compounds. Korean J. Food Sci. Technol. 1996, 28, 696–701. [Google Scholar]
- Romotowska, P.; Karlsdóttir, M.; Gudjunsdóttir, M.; Kristinsson, H.; Arason, S. Influence of feeding state and frozen storage temperature on the lipid stability of Atlantic mackerel (Scomber scombrus). Int. J. Food Sci. Technol. 2016, 51, 1711–1720. [Google Scholar] [CrossRef]
- Tironi, V.; Tomás, M.; Añón, M.C. Structural and functional changes in myofibrillar proteins of sea salmon (Pseudopercis semifasciata) by interaction with malondialdehyde (RI). J. Food Sci. 2002, 67, 930–935. [Google Scholar] [CrossRef]
- Méndez, L.; Trigo, M.; Zhang, B.; Aubourg, S.P. Antioxidant effect of octopus by-products in canned horse mackerel (Trachurus trachurus) previously subjected to different frozen storage times. Antioxidants 2022, 11, 2091. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.I.; Kim, Y.J.; Sung, N.Y.; Kim, J.H.; Ahn, D.H.; Chun, B.S.; Cho, K.Y.; Byun, M.W.; Lee, J.W. Investigation on the increase of antioxidant activity of cooking drip from Enteroctopus dofleini by irradiation. J. Korean Soc. Food Sci. Nutr. 2009, 38, 121–124. [Google Scholar] [CrossRef]
- Jao, C.L.; Ko, W.C. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish. Sci. 2002, 68, 430–435. [Google Scholar] [CrossRef]
- Cheong, H.S. Antioxidant effect of histidine containing low molecular weight peptide isolated from skipjack boiled extract. Korean J. Food Cook. Sci. 2007, 23, 221–226. [Google Scholar]
- Oliveira, D.; Bernardi, D.; Drummond, F.; Dieterich, F.; Boscolo, W.; Leivas, C.; Kiatkoski, E.; Waszczynskyj, N. Potential use of tuna (Thunnus albacares) by-product: Production of antioxidant peptides and recovery of unsaturated fatty acids from tuna head. Int. J. Food Eng. 2017, 13, 20150365. [Google Scholar] [CrossRef]
- Li, K.X.; Ding, H.P.; Zhou, X.J.; Zhang, J.; Zhang, H.Q.; Liu, L.P. Antioxidant and deoridizing treatment of tuna steamed juice and development of its flavor salad. Sci. Technol. Food Ind. 2020, 41, 153–160. [Google Scholar]
- Trigo, M.; Rodríguez, A.; Dovale, G.; Pastén, A.; Vega-Gálvez, A.; Aubourg, S.P. The effect of glazing based on saponin-free quinoa (Chenopodium quinoa Willd.) extract on the lipid quality of frozen fatty fish. LWT-Food Sci. Technol. 2019, 98, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Cavonius, L.; Undeland, I. Glazing herring (Clupea harengus) fillets with herring muscle press juice: Effect on lipid oxidation development during frozen storage. Int. J. Food Sci. Technol. 2017, 52, 1229–1237. [Google Scholar] [CrossRef]
- Ezquerra-Brauer, J.M.; Trigo, M.; Torres-Arreola, W.; Aubourg, S.P. Preservative effect of jumbo squid (Dosidicus gigas) skin extract as glazing material during the frozen storage of Atlantic Chub mackerel (Scomber colias). Bulgarian Chem. Com. 2018, 50, 131–137. [Google Scholar]
- Aubourg, S.P.; Trigo, M.; Prego, R.; Cobelo-García, A.; Medina, I. Nutritional and healthy value of chemical constituents obtained from Patagonian squid (Doryteuthis gahi) by-products captured at different seasons. Foods 2021, 10, 2144. [Google Scholar] [CrossRef]
- Uauy, R.; Valenzuela, A. Marine oils: The health benefits of n-3 fatty acids. Nutrition 2000, 16, 680–684. [Google Scholar] [CrossRef]
- Komprda, T. Eicosapentaenoic and docosahexaenoic acids as inflammation-modulating and lipid homeostasis influencing nutraceuticals: A review. J. Funct. Foods 2012, 4, 25–38. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharm. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Kumar, M.; Reddy, C.R.; Jha, B. Algal lipids, fatty acids and sterols. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domínguez, H., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 87–134. [Google Scholar]
- Aubourg, S.P.; Rey-Mansilla, M.; Sotelo, C. Differential lipid damage in various muscle zones of frozen hake (Merluccius merluccius). Z. Lebensm. Unters. Forsch. 1999, 208, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Aubourg, S.P. Fluorescence study of the prooxidant activity of free fatty acids on marine lipids. J. Sci. Food Agric. 2001, 81, 385–390. [Google Scholar] [CrossRef]
- Losada, V.; Barros-Velázquez, J.; Aubourg, S.P. Rancidity development in frozen pelagic fish: Influence of slurry ice as preliminary chilling treatment. LWT-Food Sci. Technol. 2007, 40, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Taheri, A. Antioxidative effect of rainbow sardine (Dussumieria acuta) protein hydrolysate on lipid and protein oxidation in black pomfret (Parastromateus niger) fillet by glazing. J. Aq. Food Prod. Technol. 2015, 24, 241–2581. [Google Scholar] [CrossRef]
Frozen Storage Time (Months) | Glazing Condition | |||
---|---|---|---|---|
Control | OCL-10 | OCL-30 | ||
Peroxide value (meq. active oxygen kg−1 lipids) | Initial fresh | 0.46 A (0.15) | 0.46 A (0.15) | 0.46 A (0.15) |
3 | 1.34 abB (0.55) | 0.85 aB (0.11) | 1.51 bC (0.13) | |
6 | 0.91 aAB (0.32) | 0.82 aB (0.18) | 0.96 aB (0.04) | |
TBARS value (mg malondialdehyde kg−1 muscle) | Initial fresh | 0.05 A (0.02) | 0.05 A (0.02) | 0.05 A (0.02) |
3 | 0.74 bB (0.19) | 1.01 bB (0.09) | 0.42 aB (0.07) | |
6 | 1.26 bC (0.11) | 1.10 abB (0.20) | 0.94 aC (0.09) | |
Fluorescence ratio | Initial fresh | 0.52 A (0.04) | 0.52 A (0.04) | 0.52 A (0.04) |
3 | 2.02 bB (0.64) | 1.09 aB (0.17) | 1.01 aB (0.07) | |
6 | 2.25 bB (0.17) | 1.25 aB (0.28) | 1.35 aB (0.43) | |
FFA (mg kg−1 muscle) | Initial fresh | 20.0 A (4.1) | 20.0 A (4.1) | 20.0 A (4.1) |
3 | 570.2 aB (87.3) | 523.8 aB (64.6) | 507.0 aB (65.3) | |
6 | 1357.2 aC (98.3) | 1364.0 aC (92.9) | 1211.9 aC (85.5) |
FA Group *** | Frozen Storage Time (Months) | Glazing Condition | ||
---|---|---|---|---|
Control | OCL-10 | OCL-30 | ||
STFA | Initial fresh | 33.98 A (0.10) | 33.98 A (0.10) | 33.98 B (0.10) |
3 | 34.15 aAB (0.88) | 33.64 aA (1.42) | 33.28 aB (1.31) | |
6 | 36.06 bB (1.48) | 34.62 bA (0.88) | 28.52 aA (1.15) | |
MUFA | Initial fresh | 20.77 B (4.26) | 20.77 B (4.26) | 20.77 B (4.26) |
3 | 21.16 aB (2.24) | 20.46 aB (2.35) | 18.90 aB (6.24) | |
6 | 10.18 aA (1.61) | 8.99 aA (0.98) | 9.23 aA (0.91) | |
PUFA | Initial fresh | 45.25 A (4.36) | 45.25 A (4.36) | 45.25 A (4.36) |
3 | 44.89 aA (2.99) | 44.90 aA (2.04) | 47.83 aA (7.47) | |
6 | 53.77 aB (3.03) | 56.39 aB (1.85) | 62.24 bB (2.02) | |
Total ω3 FA | Initial fresh | 42.36 A (4.42) | 42.36 A (4.42) | 42.36 A (4.42) |
3 | 42.05 aA (3.22) | 41.98 aA (1.93) | 45.00 aAB (7.44) | |
6 | 50.18 aB (3.50) | 53.09 aB (1.92) | 58.70 bB (2.12) |
FA Ratio | Frozen Storage Time (Months) | Glazing Condition | ||
---|---|---|---|---|
Control | OCL-10 | OCL-30 | ||
Polyene index | Initial fresh | 1.78 AB (0.16) | 1.78 A (0.16) | 1.78 A (0.16) |
3 | 1.80 aA (0.12) | 1.78 aA (0.12) | 1.92 aAB (0.33) | |
6 | 2.00 aB (0.16) | 2.19 abB (0.15) | 2.32 bB (0.09) | |
Total ω3/Total ω6 | Initial fresh | 14.72 A (1.88) | 14.72 A (1.88) | 14.72 A (1.88) |
3 | 14.95 aA (2.40) | 14.37 aA (0.79) | 15.94 aA (2.64) | |
6 | 14.23 aA (2.66) | 16.18 aA (1.62) | 16.58 aA (1.14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez, L.; Zhang, B.; Aubourg, S.P. Enhancement of Lipid Stability of Frozen Fish by Octopus-Waste Glazing. Foods 2023, 12, 2298. https://doi.org/10.3390/foods12122298
Méndez L, Zhang B, Aubourg SP. Enhancement of Lipid Stability of Frozen Fish by Octopus-Waste Glazing. Foods. 2023; 12(12):2298. https://doi.org/10.3390/foods12122298
Chicago/Turabian StyleMéndez, Lucía, Bin Zhang, and Santiago P. Aubourg. 2023. "Enhancement of Lipid Stability of Frozen Fish by Octopus-Waste Glazing" Foods 12, no. 12: 2298. https://doi.org/10.3390/foods12122298
APA StyleMéndez, L., Zhang, B., & Aubourg, S. P. (2023). Enhancement of Lipid Stability of Frozen Fish by Octopus-Waste Glazing. Foods, 12(12), 2298. https://doi.org/10.3390/foods12122298