Development of a Ready-to-Eat Fish Product Enriched with Fish Oil Entrapped in a κ-Carrageenan Egg White Fish Protein Hydrolysate Dry Powder
Abstract
:1. Introduction
- (i)
- to obtain and characterize different dry powders composed of κ-carrageenan, egg white and fish protein hydrolysate to encapsulate fish oil, by both spray drying and heat drying at different temperatures;
- (ii)
- to study the effect of the addition of selected dry powders (spray-dried and heat-dried) on the development and properties of a ready-to-eat fish product, using a mixture of fish mince from three examples of undervalued lean, fatty and semi-fatty fish species, seeking a balanced composition in terms of fat content and protein functionality.
2. Materials and Methods
2.1. Preparation of Fish Mince
2.2. Proximate Composition
2.3. Gelling Properties
2.4. Entrapment of Fish Oil
2.5. Properties of Dry Powders
2.6. Preparation of the Ready-to-Eat (RTE) Product
2.7. Shear Strength and Water Holding Capacity (WHC)
2.8. Colour Parameters
2.9. Lipid Fractionation and Fatty Acid Composition
2.10. Microbiological Analyses
2.11. Sensory Analysis
2.12. Statistical Analyses
3. Results and Discussion
3.1. Properties of Dry Powders
3.2. Properties of Fish Mince
3.3. Preparation of the RTE Product
3.4. Microbiological Analyses
3.5. Compositional Properties of the RTE Product
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022; Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2022; 151p. [Google Scholar]
- McCarthy, I.D.; Cant, J.; Marriott, A.L. Population biology of grey gurnard (Eutrigla gurnardus (L.); Triglidae) in the coastal waters of Northwest Wales. J. Appl. Ichthyol. 2018, 34, 896–905. [Google Scholar] [CrossRef]
- Ferraris, F.; Iacoponi, F.; Raggi, A.; Baldi, F.; Fretigny, M.; Mantovani, A.; Cubadda, F. Essential and toxic elements in sustainable and underutilized seafood species and derived semi-industrial ready-to-eat products. Food Chem. Toxicol. 2021, 154, 112331. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Huang, Y.C. Rheological properties of HPMC enhanced surimi analyzed by small- and large-strain tests—II: Effect of water content and ingredients. Food Hydrocoll. 2008, 22, 313–322. [Google Scholar] [CrossRef]
- Hoque, M.S.; Roy, S.; Mukit, S.S.; Rahman, M.B.; Akter, S. Effects of Pangasius (Pangasius hypophthalmus) and Skipjack Tuna (Sarda orientalis) mince blend on the quality of fish products: Ways to utilize resources and nutrition in Bangladesh. Food Sci. Nutr. 2021, 9, 6642–6652. [Google Scholar] [CrossRef]
- Tokay, F.G.; Alp, A.C.; Yerlikaya, P. Production and shelf life of restructured fish meat binded by microbial transglutaminase. LWT-Food Sci. Technol. 2021, 152, 112369. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Martin Xavier, K.A.; Layana, P.; Balange, A.K.; Nayak, B.B. Chitosan hydrogel inclusion in fish mince based emulsion sausages: Effect of gel interaction on functional and physicochemical qualities. Int. J. Biol. Macromol. 2019, 134, 1063–1069. [Google Scholar] [CrossRef]
- Hentati, F.; Barkallah, M.; Ben Atitallah, A.; Dammak, M.; Louati, I.; Pierre, G.; Fendri, I.; Attia, H.; Michaud, P.; Abdelkafi, S. Quality characteristics and functional and antioxidant capacities of algae-fortified fish burgers prepared from common barbel (Barbus barbus). BioMed Res. Int. 2019, 2019, 2907542. [Google Scholar] [CrossRef] [Green Version]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Ojha, S.; Rustad, T.; Tiwari, B. Influence of high-pressure processing on quality attributes of haddock and mackerel minces during frozen storage, and fishcakes prepared thereof. Innov. Food Sci. Emerg. Technol. 2020, 59, 102236. [Google Scholar] [CrossRef]
- Perez-Palacios, T.; Ruiz-Carrascal, J.; Solomando, J.C.; de-la-Haba, F.; Pajuelo, A.; Antequera, T. Recent Developments in the Microencapsulation of Fish Oil and Natural Extracts: Procedure, Quality Evaluation and Food Enrichment. Foods 2022, 11, 3291. [Google Scholar] [CrossRef]
- Marín-Peñalver, D.; Alemán, A.; Montero, M.P.; Gómez-Guillén, M.C. Entrapment of natural compounds in spray-dried and heat-dried iota-carrageenan matrices as functional ingredients in surimi gels. Food Funct. 2021, 12, 2137–2147. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef] [PubMed]
- Bealer, E.J.; Onissema-Karimu, S.; Rivera-Galletti, A.; Francis, M.; Wilkowski, J.; Salasde la Cruz, D.; Hu, X. Protein-polysaccharide composite materials: Fabrication and applications. Polymers 2020, 12, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.-Q.; Wang, H.-O.; Wang, F.-W.; Du, Y.-L.; Xiao, J.-X. Maillard reaction in protein—Polysaccharide coacervated microcapsules and its effects on microcapsule properties. Int. J. Biol. Macromol. 2020, 155, 1194–1201. [Google Scholar] [CrossRef]
- Cho, Y.H.; Shim, H.K.; Park, J. Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross-linked proteins. J. Food Sci. 2003, 68, 2717–2723. [Google Scholar] [CrossRef]
- Fathi, M.; Martín, T.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol. 2014, 39, 18–39. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Pérez-García, S.; Alemán, A.; Vázquez, J.A.; Montero, M.P. The role of the drying method on fish oil entrapment in a fish muscle protein—κ-carrageenan—Fish protein hydrolysate wall matrix and the properties of colloidal dispersions. Food Hydrocoll. 2022, 131, 107799. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Chi, Y.; Ma, Z.; Geng, X.; Chi, Y. Effect of dry heating on egg white powder influencing water mobility and intermolecular interactions of its gels. J. Sci. Food Agric. 2021, 101, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.A.; Uresti, R.M.; Velazquez, G.; Vázquez, M. Food hydrocolloids as additives to improve the mechanical and functional properties of fish products: A review. Food Hydrocoll. 2011, 25, 1842–1852. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Calvo, M.M.; Alvarez-Acero, I.; Montero, P.; Gómez-Guillén, M.C. Characterization and storage stability of astaxanthin esters, fatty acid profile and α-tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient. Food Chem. 2017, 216, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Guillén, M.C.; Montero, P.; Hurtado, O.; Borderías, A.J. Biological characteristics affect the quality of farmed atlantic salmon and smoked muscle. J. Food Sci. 2000, 65, 53–60. [Google Scholar] [CrossRef]
- Pascual-Silva, C.; Alemán, A.; Montero, M.P.; Gómez-Guillén, M.C. Extraction and characterization of Argentine red shrimp (Pleoticus muelleri) phospholipids as raw material for liposome production. Food Chem. 2022, 374, 131766. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Ruiz, G.; Velasco, J.; Dobarganes, C. Evaluation of oxidation in dried microencapsulated fish oils by a combination of adsorption and size exclusion chromatography. Eur. Food Res. Technol. 2000, 211, 13–18. [Google Scholar] [CrossRef]
- Alemán, A.; González, F.; Arancibia, M.Y.; López-Caballero, M.E.; Montero, P.; Gómez-Guillén, M.C. Comparative study between film and coating packaging based on shrimp concentrate obtained from marine industrial waste for fish sausage preservation. Food Control 2016, 70, 325–332. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Solval, K.M.; Alfaro, L.; Zhang, J.; Chotiko, A.; Brandao Delgado, J.L.; Chouljenko, A.; Bankston, D.; Bechtel, P.J.; Sathivel, S. Effect of blueberry extract from blueberry pomace on the microencapsulated fish oil. J. Food Process. Preserv. 2015, 39, 199–206. [Google Scholar] [CrossRef]
- Annamalai, J.; Abubacker, Z.A.; Lakshmi, N.M.; Unnikrishnan, P. Microencapsulation of fish oil using fish protein hydrolysate, maltodextrin, and gum Arabic: Effect on structural and oxidative stability. J. Aquat. Food Prod. Technol. 2020, 29, 293–306. [Google Scholar] [CrossRef]
- Unnikrishnan, P.; Puthenveetil Kizhakkethil, B.; Annamalai, J.; Ninan, G.; Aliyamveetil Abubacker, Z.; Chandragiri Nagarajarao, R. Tuna red meat hydrolysate as core and wall polymer for fish oil encapsulation: A comparative analysis. J. Food Sci. Technol. 2019, 56, 2134–2146. [Google Scholar] [CrossRef]
- Marín-Peñalver, D.; Alemán, A.; Montero, P.; Gómez-Guillén, M.C. Gelling properties of hake muscle with addition of freeze-thawed and freeze-dried soy phosphatidylcholine liposomes protected with trehalose. LWT Food Sci. Technol. 2018, 98, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Lanier, T.C.; Yongsawatdigul, J.; Carvajal-Rondanelli, P. Surimi Gelation Chemistry. In Surimi and Surimi Seafood; Park, J.W., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 101–140. [Google Scholar]
- Chen, H.; Chiu, E.; Huang, J. Color and Gel-forming Properties of Horse Mackerel (Trachurus Japonicus) as Related to Washing Conditions. J. Food Sci. 1997, 62, 985–991. [Google Scholar] [CrossRef]
- Díaz-Rubio, M.E.; Serrano, J.; Borderias, J.; Saura-Calixto, F. Technological effect and nutritional value of dietary antioxidant fucus fiber added to fish mince. J. Aquat. Food Prod. Technol. 2011, 20, 295–307. [Google Scholar] [CrossRef]
- López-Caballero, M.E.; Gómez-Guillén, M.C.; Pérez-Mateos, M.; Montero, P. A chitosan–gelatin blend as a coating for fish patties. Food Hydrocoll. 2005, 19, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djoussé, L.; Engler, M.B.; Kris-Etherton, P.M.; Mozaffarian, D.; Siscovick, D.S.; Lichtenstein, A.H. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018, 138, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Giménez, B.; Gómez-Guillén, M.C.; Pérez-Mateos, M.; Montero, P.; Márquez-Ruiz, G. Evaluation of lipid oxidation in horse mackerel patties covered with borage-containing film during frozen storage. Food Chem. 2011, 124, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Bhouri, A.M.; Harzallah, H.J.; Dhibi, M.; Bouhlel, I.; Hammami, M.; Chaouch, A. Nutritional fatty acid quality of raw and cooked farmed and wild sea bream (Sparus aurata). J. Agric. Food Chem. 2010, 58, 507–512. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
Water Solubility (%) | ζ Potential (mV) | TBARS mg MDA/kg | |
---|---|---|---|
HD45 | 73.01 ± 0.88 a | −41.96 ± 6.67 a | 160.3 ± 1.03 a |
HD60 | 52.43 ± 0.35 b | −50.14 ± 2.83 b | 81.14 ± 1.37 b |
HD80 | 34.68 ± 0.58 c | −57.60 ± 3.24 c | 64.18 ± 2.79 c |
SD | 58.25 ± 3.37 d | −51.04 ± 0.97 b | 242.5 ± 1.99 d |
Moisture (%) | Ash (%) | Fat (%) | Protein (%) | |
---|---|---|---|---|
P | 78.4 ± 0.1 a | 1.55 ± 0.1 a | 0.9 ± 0.04 a | 19.13 ± 0.73 a |
GG | 72.3 ± 0.6 b | 1.01 ± 0.58 a | 6.2 ± 0.05 b | 21.74 ± 0.23 b |
HM | 66.7 ± 1.8 c | 1.16 ± 0.03 a | 11.5 ± 0.07 c | 20.64 ± 0.51 c |
Shear Strength (N/g) | WHC (%) | L* | a* | b* | |
---|---|---|---|---|---|
S1 | 12.51 ± 1.85 a | 71.87 ± 0.23 a | 43.97 ± 3.36 a | 1.16 ± 0.47 a | 12.37 ± 1.72 a |
S2-HD80 | 3.61 ± 0.28 b | 78.03 ± 0.48 b | 50.71 ± 1.17 b | 2.92 ± 0.24 b | 16.46 ± 1.12 bc |
S3-HD80 | 6.07 ± 0.65 c | 81.92 ± 0.11 cd | 52.79 ± 0.67 c | 1.85 ± 0.23 c | 16.69 ± 0.86 c |
S4-HD80 | 21.82 ± 1.29 d | 80.22 ± 0.96 e | 53.17 ± 2.11 c | 3.05 ± 0.30 b | 20.76 ± 0.30 d |
S2-SD | 3.76 ± 0.67 b | 95.10 ± 0.25 f | 50.91 ± 1.22 b | 2.79 ± 0.24 b | 15.66 ± 0.61 b |
S3-SD | 5.46 ± 0.88 c | 82.42 ± 0.13 d | 46.50 ± 1.33 d | 2.86 ± 0.26 b | 16.05 ± 0.74 bc |
S4-SD | 20.48 ± 1.18 d | 80.95 ± 0.33 ce | 48.24 ± 2.06 e | 4.94 ± 1.51 d | 19.72 ± 1.93 e |
Sample | Total Bacterial Count | Enterobacteriaceae | Lactic Acid Bacteria | Pseudomonads spp. | Staphylococcus Coagulase + |
---|---|---|---|---|---|
S1 | 4.64 ± 0.14 a | 2.9 ± 0.06 a | 2.73 ± 0.02 a | 3.86 ± 0.08 a | <2 |
S2-SD | 4.72 ± 0.12 a | 3.05 ± 0.06 a | 2.51 ± 0.11 b | 4.12 ± 0.02 b | <2 |
S3-SD | 3.84 ± 0.62 b | 2.34 ± 0.05 b | 2.37 ± 0.06 c | 3.82 ± 0.22 a | <2 |
S4-SD | 2.19 ± 0.10 c | 1.00 ± 0.00 c | 1.60 ± 0.00 d | 2.00 ± 0.00 c | < |
Fatty Acids | NL (mg/g Fat) | Free Fatty Acids (mg/g Fat) | Phospholipids (mg/g Fat) |
---|---|---|---|
C14:0 | 13.23 ± 0.06 | 0.36 ± 0.03 | - |
C14:1n5 | 0.98 ± 0.01 | - | - |
C15:0 | 1.47 ± 0.01 | - | - |
C16:0 | 70.06 ± 0.35 | 4.93 ± 0.15 | 4.54 ± 0.05 |
C16:1n7 | 29.21 ± 0.15 | 0.76 ± 0.04 | 0.34 ± 0.02 |
C16:2n4 | 1.32 ± 0.08 | - | - |
C17:0 | 2.07 ± 0.00 | - | - |
C18:0 | 19.16 ± 0.12 | 2.46 ± 0.16 | 2.49 ± 0.05 |
C18:1n7c | 15.04 ± 0.10 | 0.71 ± 0.03 | 0.62 ± 0.00 |
18:1n9c | 173.01 ± 1.09 | 3.95 ± 0.70 | 2.80 ± 0.05 |
C18:2n6c | 28.57 ± 0.16 | 0.63 ± 0.10 | 0.39 ± 0.02 |
C18:3n3 | 2.12 ± 0.15 | - | - |
C18:4n3 | 2.36 ± 0.02 | - | - |
C20:0 | 1.11 ± 0.01 | - | - |
C20:1n9 | 4.41 ± 0.05 | - | - |
C20:2n6 | 0.70 ± 0.00 | - | - |
C20:3n3 | 0.72 ± 0.07 | - | - |
C20:4n3 | 1.77 ± 0.00 | - | - |
C20:4n6 | 3.26 ± 0.02 | 0.56 ± 0.18 | 0.43 ± 0.00 |
C20:5n3 | 23.91 ± 0.16 | 2.40 ± 0.15 | 1.02 ± 0.00 |
C22:0 | 1.50 ± 0.01 | - | - |
C22:1n9 | 0.79 ± 0.02 | - | - |
C22:4n6 | 0.57 ± 0.04 | - | - |
C22:5n3 | 6.20 ± 0.02 | 0.53 ± 0.08 | 0.53 ± 0.03 |
C22:6n3 | 35.17 ± 0.28 | 5.33 ± 0.26 | 6.77 ± 0.10 |
C24:0 | 0.64 ± 0.03 | ||
TOTAL | 439.34 ± 2.50 91% | 22.62 ± 1.06 5% | 19.93 ± 0.19 4% |
∑PUFA | 106.67 ± 0.61 | 9.45 ± 0.05 | 9.14 ± 0.15 |
∑MUFA | 223.43 ± 1.38 | 5.42 ± 0.77 | 0.36 ± 0.07 |
∑SFA | 109.23 ± 0.51 | 7.75 ± 0.34 | 7.03 ± 0.05 |
EPA + DHA | 59.08 | 7.73 | 7.80 |
n3/n6 | 2.18 | 6.91 | 0.82 |
PI | 0.84 | 1.57 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Guillén, M.C.; Pérez-García, S.; Alemán, A.; López-Caballero, M.E.; Sotelo, C.G.; Montero, M.P. Development of a Ready-to-Eat Fish Product Enriched with Fish Oil Entrapped in a κ-Carrageenan Egg White Fish Protein Hydrolysate Dry Powder. Foods 2023, 12, 2272. https://doi.org/10.3390/foods12112272
Gómez-Guillén MC, Pérez-García S, Alemán A, López-Caballero ME, Sotelo CG, Montero MP. Development of a Ready-to-Eat Fish Product Enriched with Fish Oil Entrapped in a κ-Carrageenan Egg White Fish Protein Hydrolysate Dry Powder. Foods. 2023; 12(11):2272. https://doi.org/10.3390/foods12112272
Chicago/Turabian StyleGómez-Guillén, María Carmen, Selene Pérez-García, Ailén Alemán, María Elvira López-Caballero, Carmen G. Sotelo, and María Pilar Montero. 2023. "Development of a Ready-to-Eat Fish Product Enriched with Fish Oil Entrapped in a κ-Carrageenan Egg White Fish Protein Hydrolysate Dry Powder" Foods 12, no. 11: 2272. https://doi.org/10.3390/foods12112272
APA StyleGómez-Guillén, M. C., Pérez-García, S., Alemán, A., López-Caballero, M. E., Sotelo, C. G., & Montero, M. P. (2023). Development of a Ready-to-Eat Fish Product Enriched with Fish Oil Entrapped in a κ-Carrageenan Egg White Fish Protein Hydrolysate Dry Powder. Foods, 12(11), 2272. https://doi.org/10.3390/foods12112272