Effects of Endogenous Anti-Oxidative Components from Different Vegetable Oils on Their Oxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Standards and Chemicals
2.3. Analysis of Fatty Acids
2.4. Rancimat Measurements
2.5. Oxidation Products
2.6. Analysis of Tocopherols
2.7. Analysis of Phytosterol and Squalene
2.8. Total Phenolic Content
2.9. Determination of Cyclolinopeptides
2.10. Schaal Oven Test
2.11. Evaluating the Oxidative Stability of Vegetable Oils Using Improved TOPSIS
2.12. Statistical Analysis
3. Results and Discussion
3.1. The Oxidative Stability Index
3.2. Chemical Quality Analysis
3.2.1. Analysis of Fatty Acids
3.2.2. Oxidation Products
Acid Value
Peroxide Value (POV)
p-Anisidine Value
3.3. Endogenous Antioxidants
3.3.1. Tocopherols
3.3.2. Phytosterol
3.3.3. Squalene
3.3.4. Polyphenols
3.3.5. Cyclolinopeptides
3.4. Evaluation of the Oxidative Stability of Vegetable Oils
4. Conclusions and Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Nomenclatures Used
References
- Hidalgo, F.J.; Zamora, R. Amino Acid Degradations Produced by Lipid Oxidation Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 1242–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora, R.; Navarro, J.L.; Aguilar, I.; Hidalgo, F.J. Lipid-derived aldehyde degradation under thermal conditions. Food Chem. 2015, 174, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, B.; Brothersen, C.; McMahon, D.J. Fortification of Foods with Omega-3 Polyunsaturated Fatty Acids. Crit. Rev. Food Sci. Nutr. 2014, 54, 98–114. [Google Scholar] [CrossRef]
- El Moudden, H.; El Idrissi, Y.; Belmaghraoui, W.; Belhoussaine, O.; El Guezzane, C.; Bouayoun, T.; Harhar, H.; Tabyaoui, M. Olive mill wastewater polyphenol-based extract as a vegetable oil shelf life extending additive. J. Food Process. Preserv. 2020, 44, e14990. [Google Scholar] [CrossRef]
- Khounani, Z.; Hosseinzadeh-Bandbafha, H.; Nizami, A.-S.; Sulaiman, A.; Goli, S.A.H.; Tavassoli-Kafrani, E.; Ghaffari, A.; Rajaeifar, M.A.; Kim, K.-H.; Talebi, A.F. Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel. Renew. Sustain. Energy Rev. 2020, 119, 109588. [Google Scholar] [CrossRef]
- Padial-Jaudenes, M.; Castanys-Munoz, E.; Ramirez, M.; Lasekan, J. Physiological Impact of Palm Olein or Palm Oil in Infant Formulas: A Review of Clinical Evidence. Nutrients 2020, 12, 3676. [Google Scholar] [CrossRef]
- Deen, A.; Visvanathan, R.; Wickramarachchi, D.; Marikkar, N.; Nammi, S.; Jayawardana, B.C.; Liyanage, R. Chemical composition and health benefits of coconut oil: An overview. J. Sci. Food Agric. 2021, 101, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, H.; Xia, X.; Zou, X.-G.; Li, J.; Zhu, X.-M.; Deng, Z.-Y. Effect of fatty acid and tocopherol on oxidative stability of vegetable oils with limited air. Int. J. Food Prop. 2015, 18, 808–820. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Zhu, M.; Zhou, X.; Huo, X.; Long, Y.; Zeng, X.; Chen, Y. H-1 NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils. Food Chem. 2019, 287, 46–54. [Google Scholar] [CrossRef]
- Karabulut, I.; Topcu, A.; Yorulmaz, A.; Tekin, A.; Ozay, D.S. Effects of the industrial refining process on some properties of hazelnut oil. Eur. J. Lipid Sci. Technol. 2005, 107, 476–480. [Google Scholar] [CrossRef]
- Pagani, M.A.; Baltanás, M.A. Production of natural antioxidants from vegetable oil deodorizer distillates: Effect of catalytic hydrogenation. Bioresour. Technol. 2010, 101, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Réblová, Z. The effect of temperature on the antioxidant activity of tocopherols. Eur. J. Lipid Sci. Technol. 2006, 108, 858–863. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Zhang, T.; Gong, M.; Liu, R.; Chang, M.; Wang, X. Interactions between liposoluble antioxidants: A critical review. Food Res. Int. 2022, 155, 111104. [Google Scholar] [CrossRef] [PubMed]
- Rather, R.A.; Bhagat, M. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health. Cancer Med. 2020, 9, 9181–9192. [Google Scholar] [CrossRef]
- Araujo, F.F.; Farias, D.P.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Nieto, G.; Pateiro, M.; Lorenzo, J.M. Phenolic Compounds Obtained from Olea europaea By-Products and Their Use to Improve the Quality and Shelf Life of Meat and Meat Products-A Review. Antioxidants 2020, 9, 1061. [Google Scholar] [CrossRef] [PubMed]
- Psomiadou, E.; Tsimidou, M. On the role of squalene in olive oil stability. J. Agric. Food Chem. 1999, 47, 4025–4032. [Google Scholar] [CrossRef]
- Bolland, J.L.; Hughes, H. The primary thermal oxidation product of squalene. J. Chem. Soc. 1949, 26, 492–497. [Google Scholar] [CrossRef]
- Naziri, E.; Consonni, R.; Tsimidou, M.Z. Squalene oxidation products: Monitoring the formation, characterisation and pro-oxidant activity. Eur. J. Lipid Sci. Technol. 2014, 116, 1400–1411. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Chang, M.; Tang, L.; Lu, M.; Liu, R.; Jin, Q.; Wang, X. Antioxidant interaction of alpha-tocopherol, gamma-oryzanol and phytosterol in rice bran oil. Food Chem. 2021, 343, 128431. [Google Scholar] [CrossRef]
- del Pilar Garcia-Mendoza, M.; Espinosa-Pardo, F.A.; Savoire, R.; Harscoat-Schiavo, C.; Cansell, M.; Subra-Paternault, P. Improvement of the oxidative stability of camelina oil by enrichment with phospholipid-quercetin formulations. Food Chem. 2021, 341, 128234. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, G.; Zhou, J.; Liu, W.; Bi, Y. The characterization of soybean germ oil and the antioxidative activity of its phytosterols. Rsc. Adv. 2019, 9, 40109–40117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Xu, L.; Xue, C.; Jiang, X.; Wei, Z. Assessing the impact of oil types and grades on tocopherol and tocotrienol contents in vegetable oils with chemometric methods. Molecules 2020, 25, 5076. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, W.; Zhou, H.; Zhang, D.; Li, R.; Li, C.; Wang, S. The relations between minor components and antioxidant capacity of five fruits and vegetables seed oils in China. J. Oleo Sci. 2019, 68, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-X.; Wang, Y.-Y. Evaluation of the provincial competitiveness of the Chinese high-tech industry using an improved TOPSIS method. Expert Syst. Appl. 2014, 41, 2824–2831. [Google Scholar] [CrossRef]
- Zou, X.-G.; Hu, J.-N.; Zhao, M.-L.; Zhu, X.-M.; Li, H.-Y.; Liu, X.-R.; Liu, R.; Deng, Z.-Y. Lipozyme RM IM-Catalyzed Acidolysis of Cinnamomum camphora Seed Oil with Oleic Acid To Produce Human Milk Fat Substitutes Enriched in Medium-Chain Fatty Acids. J. Agric. Food Chem. 2014, 62, 10594–10603. [Google Scholar] [CrossRef] [PubMed]
- AOCS. Acid Value of fats and oils. In AOCS Official Method Cd 3d-63; American Oil Chemists Society Press: Champaign, IL, USA, 2017. [Google Scholar]
- AOCS. Peroxide value acetic acid-isooctane method, official methods and recommended practices of the AOCS. In AOCS Official Method Cd 8b-90; American Oil Chemists Society Press: Champaign, IL, USA, 2011. [Google Scholar]
- Ahmed, I.A.M.; Uslu, N.; Ozcan, M.M.; Juhaimi, F.A.L.; Ghafoor, K.; Babiker, E.E.; Osman, M.A.; Alqah, H.A.S. Effect of conventional oven roasting treatment on the physicochemical quality attributes of sesame seeds obtained from different locations. Food Chem. 2021, 338, 128109. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, T.; Liu, R.; Chang, M.; Jin, Q.; Wang, X. Chemical characterization of fourteen kinds of novel edible oils: A comparative study using chemometrics. LWT 2020, 118, 108725. [Google Scholar] [CrossRef]
- Shi, T.; Wu, G.; Jin, Q.; Wang, X. Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC–MS fingerprints. Food Chem. 2021, 352, 129422. [Google Scholar] [CrossRef]
- Zou, X.-G.; Hu, J.-N.; Zhu, X.-M.; Wang, Y.-F.; Deng, Z.-Y. Methionine sulfone-containing orbitides, good indicators to evaluate oxidation process of flaxseed oil. Food Chem. 2018, 250, 204–212. [Google Scholar] [CrossRef]
- Gui, B.; Shim, Y.Y.; Datla, R.S.S.; Covello, P.S.; Stone, S.L.; Reaney, M.J.T. Identification and Quantification of Cyclolinopeptides in Five Flaxseed Cultivars. J. Agric. Food Chem. 2012, 60, 8571–8579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, X.-G.; Chen, X.-L.; Hu, J.-N.; Wang, Y.-F.; Gong, D.-M.; Zhu, X.-M.; Deng, Z.-Y. Comparisons of proximate compositions, fatty acids profile and micronutrients between fiber and oil flaxseeds (Linum usitatissimum L.). J. Food Compos. Anal. 2017, 62, 168–176. [Google Scholar] [CrossRef]
- Yang, K.-M.; Hsu, F.-L.; Chen, C.-W.; Hsu, C.-L.; Cheng, M.-C. Quality characterization and oxidative stability of camellia seed oils produced with different roasting temperatures. J. Oleo Sci. 2018, 67, ess17190. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Y.; Yang, F.; Liu, R.; Zhao, C.; Jin, Q.; Wang, X. Oxidation degree of soybean oil at induction time point under Rancimat test condition: Theoretical derivation and experimental observation. Food Res. Int. 2019, 120, 756–762. [Google Scholar] [CrossRef]
- Multari, S.; Marsol-Vall, A.; Heponiemi, P.; Suomela, J.-P.; Yang, B. Changes in the volatile profile, fatty acid composition and other markers of lipid oxidation of six different vegetable oils during short-term deep-frying. Food Res. Int. 2019, 122, 318–329. [Google Scholar] [CrossRef]
- Rossi, M.; Alamprese, C.; Ratti, S. Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem. 2007, 102, 812–817. [Google Scholar] [CrossRef]
- Hyatt, J.R.; Zhang, S.; Akoh, C.C. Comparison of antioxidant activities of selected phenolic compounds in O/W emulsions and bulk oil. Food Chem. 2021, 349, 129037. [Google Scholar] [CrossRef]
- Ahmadian, F.; Aminzare, M.; Mohseni, M.; Hoseini, M.; Hassanzadazar, H. Eugenol and Clove (Syzygium aromaticum) Essential Oil Efficacy on Oxidative Stability of Sunflower Oil during Accelerated Storage. J. Med. Plants By-Prod. 2022. [Google Scholar] [CrossRef]
- Saleh, F.; Al-Otaibi, M.M.; Al-Zoreky, N. Quality Assessment of Frying Oil from some Restaurants in Al Ahsa, Saudi Arabia. Sci. J. King Faisal Univ. 2021, 22, 42–47. [Google Scholar] [CrossRef]
- Azzi, A. Reflections on a century of vitamin E research: Looking at the past with an eye on the future. Free Radic. Biol. Med. 2021, 175, 155–160. [Google Scholar] [CrossRef]
- Karmowski, J.; Hintze, V.; Kschonsek, J.; Killenberg, M.; Boehm, V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chem. 2015, 175, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Moersel, J.-T. Screening of the antiradical action of vegetable oils. J. Food Compos. Anal. 2006, 19, 838–842. [Google Scholar] [CrossRef]
- Winkler, J.K.; Warner, K. The effect of phytosterol concentration on oxidative stability and thermal polymerization of heated oils. Eur. J. Lipid Sci. Technol. 2008, 110, 455–464. [Google Scholar] [CrossRef]
- Kohno, Y.; Egawa, Y.; Itoh, S.; Nagaoka, S.-I.; Takahashi, M.; Mukai, K. Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1995, 1256, 52–56. [Google Scholar] [CrossRef]
- Finotti, E.; D’ambrosio, M.; Paoletti, F.; Vivanti, V.; Quaglia, G. Synergistic effects of α-tocopherol, β-sitosterol and squalene on antioxidant activity assayed by crocin bleaching method. Nahrung 2000, 44, 373–374. [Google Scholar] [CrossRef]
- Zeng, J.; Xiao, T.; Ni, X.; Wei, T.; Liu, X.; Deng, Z.-Y.; Li, J. The comparative analysis of different oil extraction methods based on the quality of flaxseed oil. J. Food Compos. Anal. 2022, 107, 104373. [Google Scholar] [CrossRef]
Antioxidant | Method | System | Result | Reference |
---|---|---|---|---|
Tocopherols | Schaal oven test assay | Vegetable oils | At high quantities, tocopherols promote oxidation while acting as antioxidants at low concentrations. Additionally, different vegetable oils have different inflection points in terms of concentration. | Cao et al., 2015 [8] |
Quercetin | Schaal oven test assay | Camelina oil | When quercetin is dissolved in camellia oil, phospholipids increase its antioxidant power and solubility. | Maria et al., 2021 [21] |
Phytosterols | (1) DPPH radical scavenging assay; (2) Hydroxyl radical scavenging assay; (3) β-Carotene protection assay; (4) Accelerated oxidation of soybean oil. | Ethanol solution and soybean oil | Compared to non-lipid systems, lipid systems have a higher capacity for antioxidants in phytosterols. Furthermore, it works better in colder conditions than it does in hotter ones. | Chen et al., 2019 [22] |
Tocopherol and tocotrienol | Chemometric methods | Vegetable oils | Tocopherol type and content are largely controlled by the kind of vegetable oil and are not always correlated with the level of oil refinement. | Wen et al., 2020 [23] |
Tocopherol, polyphenol, and phytosterol | Free radical scavenging capacity (ABTS, DPPH and FRAP assay) | Methanol | The key elements influencing the antioxidant potential of the studied seed oils were polyphenols, brassicasterol, and α-tocopherol. | Yao et al., 2019 [24] |
α-tocopherol and phytosterol | (1) Rancimat test; (2) DPPH free radical scavenging assay. | Purified rice bran oil | Compared to phytosterol, α-tocopherols has stronger antioxidant effect. Additionally, they have negative impacts on the oil matrix. | Liu et al., 2021 [20] |
Index | OSI | ΔAV | ΔPOV | Δp-AV | ΔTOTOX | SFA% | MUFA% | PUFA% | COX |
---|---|---|---|---|---|---|---|---|---|
OSI | 1 | ||||||||
ΔAV | −0.333 | 1 | |||||||
ΔPOV | 0.369 | −0.323 | 1 | ||||||
Δp-AV | −0.675 * | 0.321 | 0.126 | 1 | |||||
ΔTOTOX | 0.275 | −0.275 | 0.992 ** | 0.250 | 1 | ||||
SFA% | 0.659 * | −0.245 | 0.783 ** | −0.352 | 0.720 * | 1 | |||
MUFA% | 0.436 | −0.054 | −0.420 | −0.680 * | −0.496 | −0.063 | 1 | ||
PUFA% | −0.634 * | 0.131 | 0.154 | 0.772 ** | 0.248 | −0.261 | −0.947 ** | 1 | |
COX | −0.696 * | 0.257 | 0.077 | 0.944 ** | 0.194 | −0.354 | −0.833 ** | 0.920 ** | 1 |
Index | OSI | ΔSFA | ΔMUFA | ΔPUFA | ΔAV | ΔPOV | Δp-AV | ΔTOTOX | Δα-Tocopherol | Δγ-Tocopherol | ΔTocopherol | ΔCampesterol | Δβ-Sitosterol | ΔStigmasterol | ΔTotal Sterol | ΔSqualene | ΔPolyphenols |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OSI | 1.00 | ||||||||||||||||
ΔSFA | 0.07 | 1.00 | |||||||||||||||
ΔMUFA | −0.48 | −0.71 * | 1.00 | ||||||||||||||
ΔPUFA | 0.65 * | −0.06 | −0.66 * | 1.00 | |||||||||||||
ΔAV | −0.33 | −0.38 | 0.11 | 0.25 | 1.00 | ||||||||||||
ΔPOV | 0.37 | −0.30 | 0.39 | −0.16 | −0.32 | 1.00 | |||||||||||
Δp-AV | −0.68 * | −0.38 | 0.75 * | −0.66 * | 0.32 | 0.13 | 1.00 | ||||||||||
ΔTOTOX | 0.28 | −0.35 | 0.48 | −0.24 | −0.28 | 0.99 ** | 0.25 | 1.00 | |||||||||
Δα-Tocopherol | −0.30 | −0.54 | 0.64 * | −0.31 | 0.59 | 0.24 | 0.52 | 0.30 | 1.00 | ||||||||
Δγ-Tocopherol | −0.16 | −0.06 | −0.19 | 0.29 | 0.19 | −0.32 | 0.21 | −0.29 | −0.42 | 1.00 | |||||||
ΔTocopherol | −0.57 | −0.57 | 0.46 | −0.10 | 0.71 * | −0.43 | 0.60 | −0.35 | 0.53 | 0.37 | 1.00 | ||||||
ΔCampesterol | 0.05 | −0.34 | 0.01 | 0.36 | 0.35 | 0.17 | 0.27 | 0.20 | 0.00 | 0.49 | 0.20 | 1.00 | |||||
Δβ-Sitosterol | 0.12 | −0.32 | −0.07 | 0.47 | 0.34 | 0.19 | 0.12 | 0.20 | −0.02 | 0.41 | 0.12 | 0.97 ** | 1.00 | ||||
ΔStigmasterol | 0.03 | −0.18 | −0.22 | 0.46 | 0.58 | −0.45 | 0.21 | −0.42 | 0.08 | 0.55 | 0.59 | 0.49 | 0.45 | 1.00 | |||
ΔTotal sterol | 0.19 | −0.27 | 0.09 | 0.18 | 0.01 | 0.38 | 0.22 | 0.39 | −0.08 | 0.23 | −0.07 | 0.90 ** | 0.86 ** | 0.24 | 1.00 | ||
ΔSqualene | −0.01 | 0.82 ** | −0.51 | −0.14 | −0.25 | −0.22 | −0.24 | −0.25 | −0.49 | −0.04 | −0.54 | −0.42 | −0.44 | −0.24 | −0.37 | 1.00 | |
ΔPolyphenols | −0.48 | 0.41 | 0.02 | −0.46 | −0.08 | 0.01 | 0.35 | 0.05 | −0.06 | 0.30 | −0.02 | −0.26 | −0.29 | −0.18 | −0.39 | 0.47 | 1.00 |
Improved TOPSIS | ||||
---|---|---|---|---|
Oils | d+ | d− | Closeness | Order |
CO | 6.379 | 5.350 | 0.456 | 1 |
SBO | 8.778 | 4.728 | 0.350 | 8 |
FSO | 7.644 | 5.309 | 0.410 | 5 |
PSO | 9.177 | 1.738 | 0.159 | 10 |
SO | 7.072 | 5.344 | 0.430 | 3 |
PNO | 6.663 | 5.141 | 0.436 | 2 |
RO | 8.466 | 4.362 | 0.340 | 9 |
POL | 8.215 | 4.773 | 0.368 | 7 |
CMO | 7.878 | 5.260 | 0.400 | 6 |
HSSO | 7.068 | 5.052 | 0.417 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, G.; Deng, Z.; Zhang, B.; Li, H. Effects of Endogenous Anti-Oxidative Components from Different Vegetable Oils on Their Oxidative Stability. Foods 2023, 12, 2273. https://doi.org/10.3390/foods12112273
Ma Y, Wang G, Deng Z, Zhang B, Li H. Effects of Endogenous Anti-Oxidative Components from Different Vegetable Oils on Their Oxidative Stability. Foods. 2023; 12(11):2273. https://doi.org/10.3390/foods12112273
Chicago/Turabian StyleMa, Yuchen, Guangyi Wang, Zeyuan Deng, Bing Zhang, and Hongyan Li. 2023. "Effects of Endogenous Anti-Oxidative Components from Different Vegetable Oils on Their Oxidative Stability" Foods 12, no. 11: 2273. https://doi.org/10.3390/foods12112273
APA StyleMa, Y., Wang, G., Deng, Z., Zhang, B., & Li, H. (2023). Effects of Endogenous Anti-Oxidative Components from Different Vegetable Oils on Their Oxidative Stability. Foods, 12(11), 2273. https://doi.org/10.3390/foods12112273