Sustainable Strategies for Increasing Legume Consumption: Culinary and Educational Approaches
Abstract
:1. Introduction
1.1. Nutritional Composition of Commonly Consumed Legumes
1.2. Bioactive Properties of the Minor Components of Legumes
2. Health Effects Associated with Legume Consumption
2.1. Effect on Cardiovascular Diseases
2.2. Effects on Diabetes Risk
2.3. Effects on Overweight and Obesity
2.4. Effects on Certain Types of Cancer
2.5. Prebiotic Potential
2.6. Oxidative Stress and Inflammation
3. Barriers towards the Consumption of Legumes
3.1. Phychosocial and Socio-Economic Reasons
3.1.1. Food Neophobia Tendencies
3.1.2. Food Taboos
3.1.3. Socio-Economic Factors
3.2. Digestibility and Health-Related Concerns
4. Strategies to Promote Increased Consumption of Legumes
4.1. Processing Methods to Reduce Alpha-Galactosides
4.1.1. Extractive Methods Application for Legume Processing
4.1.2. Soaking of Legumes
4.1.3. Cooking of Legumes
4.1.4. Autoclaving Application on Legume Processing
4.1.5. Extrusion
4.1.6. Enzymatic Degradation of Alpha-Galactosides
4.1.7. Gamma Ray Application
4.1.8. Genetic Manipulation
5. Strategies to Adopt towards Reduction of Anti-Nutritional Factors in Legumes
5.1. Techniques to Reduce Cooking Time
5.2. Alternative Use of Legumes and Their Derivatives
5.3. Ready-to-Use Snacks, Breakfast Cereals and Meat Alternatives
5.4. Bakery Products
5.5. Pasta
5.6. Other Products
5.7. Political and Commercial Strategies
5.8. Food-Based Dietary Guidelines
5.9. Clean Labelling of Innovative Legume-Enriched Food Products
6. Nutrition Education and Practical Advice in the Kitchen
6.1. Culinary Approaches to Adopt towards the Use of Legumes
6.1.1. Pre-Treatment Prior to Cooking
6.1.2. Legume Salads
6.1.3. Soups and Stews
6.1.4. Single Dish
6.1.5. Hummus
6.1.6. Utilization of Legume Flours
6.1.7. Legume Sprouts
6.2. Effects of Culinary Approaches on the Nutritional Composition and Secondary Metabolites of Legumes
6.3. Relationship between the Use of Right Culinary Approaches and Health-Promoting Effects of Legumes
7. Conclusions
8. Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Population Fund. World Population Dashboard. Available online: https://www.unfpa.org/data/world-population-dashboard (accessed on 20 April 2023).
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.J. Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products. Future Foods 2022, 6, 100174. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- Ferrari, L.; Panaite, S.-A.; Bertazzo, A.; Visioli, F. Animal-and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022, 14, 5115. [Google Scholar]
- Pais, D.F.; Marques, A.C.; Fuinhas, J.A. The cost of healthier and more sustainable food choices: Do plant-based consumers spend more on food? Agric. Food Econ. 2022, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chaudhary, A.; Mathys, A. Dietary Change Scenarios and Implications for Environmental, Nutrition, Human Health and Economic Dimensions of Food Sustainability. Nutrients 2019, 11, 856. [Google Scholar] [CrossRef] [Green Version]
- Sabate, J.; Soret, S. Sustainability of plant-based diets: Back to the future. Am. J. Clin. Nutr. 2014, 100 (Suppl. S1), 476S–482S. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Pulses: Nutritious Seeds for a Sustainable Future. Available online: http://www.fao.org/3/a-i5879e.pdf (accessed on 3 April 2023).
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5. [Google Scholar] [CrossRef]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef]
- Trinidad, T.P.; Mallillin, A.C.; Loyola, A.S.; Sagum, R.S.; Encabo, R.R. The potential health benefits of legumes as a good source of dietary fibre. Br. J. Nutr. 2010, 103, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Y.; Chen, X. Nutritional and health benefits of legumes: A review of the evidence. Nutrients 2016, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture. Dietary Guidelines for Americans 2020–2025, 9th ed.; Government Printing Office: Washington, DC, USA, 2020.
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for protein. EFSA J. 2011, 9, 2557. [Google Scholar]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juraschek, S.P.; Gelber, A.C.; Choi, H.K.; Appel, L.J.; Miller, E.R., 3rd. Effects of the Dietary Approaches to Stop Hypertension (DASH) Diet and Sodium Intake on Serum Uric Acid. Arthritis Rheumatol. 2016, 68, 3002–3009. [Google Scholar] [CrossRef] [Green Version]
- El Khoury, D.; Balfour-Ducharme, S.; Joye, I.J. A Review on the Gluten-Free Diet: Technological and Nutritional Challenges. Nutrients 2018, 10, 1410. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets-A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef] [Green Version]
- Foschia, M.; Horstmann, S.W.; Arendt, E.K.; Zannini, E. Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Annu. Rev. Food Sci. Technol. 2017, 8, 75–96. [Google Scholar] [CrossRef]
- Staniak, M.; Ksiak, J.; Bojarszczuk, J. Mixtures of Legumes with Cereals as a Source of Feed for Animals. Org. Agric. Sustain. 2014, 6, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.; Pearson, E.; Grafenauer, S. Legumes-A Comprehensive Exploration of Global Food-Based Dietary Guidelines and Consumption. Nutrients 2022, 14, 3080. [Google Scholar] [CrossRef]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of all-cause mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyneke, G.; Hughes, J.; Grafenauer, S. Consumer understanding of the Australian dietary guidelines: Recommendations for legumes and whole grains. Nutrients 2022, 14, 1753. [Google Scholar] [CrossRef] [PubMed]
- Henn, K.; Goddyn, H.; Olsen, S.B.; Bredie, W.L.P. Identifying behavioral and attitudinal barriers and drivers to promote consumption of pulses: A quantitative survey across five European countries. Food Qual. Prefer. 2022, 98, 104455. [Google Scholar] [CrossRef]
- Polak, R.; Phillips, E.M.; Campbell, A. Legumes: Health Benefits and Culinary Approaches to Increase Intake. Clin. Diabetes 2015, 33, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Agriculture. FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 15 April 2023).
- Wang, N.; Hatcher, D.; Tyler, R.; Toews, R.; Gawalko, E. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res. Int. 2010, 43, 589–594. [Google Scholar] [CrossRef]
- Storz, M.A.; Beckschulte, K.; Brommer, M.; Lombardo, M. Current Sex Distribution of Cooking and Food Shopping Responsibilities in the United States: A Cross-Sectional Study. Foods 2022, 11, 2840. [Google Scholar] [CrossRef] [PubMed]
- Margier, M.; George, S.; Hafnaoui, N.; Remond, D.; Nowicki, M.; Du Chaffaut, L.; Amiot, M.J.; Reboul, E. Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method. Nutrients 2018, 10, 1668. [Google Scholar] [CrossRef] [Green Version]
- Campos-Vega, R.; Loarca-Piña, G.; Oomah, B.D. Minor components of pulses and their potential impact on human health. Food Res. Int. 2010, 43, 461–482. [Google Scholar] [CrossRef]
- Champ, C.E.; Kundu-Champ, A. Maximizing Polyphenol Content to Uncork the Relationship Between Wine and Cancer. Front. Nutr. 2019, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Campos-Vega, R.; Oomah, B.D.; Loarca-Pina, G.; Vergara-Castaneda, H.A. Common Beans and Their Non-Digestible Fraction: Cancer Inhibitory Activity-An Overview. Foods 2013, 2, 374–392. [Google Scholar] [CrossRef] [Green Version]
- Marventano, S.; Izquierdo Pulido, M.; Sanchez-Gonzalez, C.; Godos, J.; Speciani, A.; Galvano, F.; Grosso, G. Legume consumption and CVD risk: A systematic review and meta-analysis. Public Health Nutr. 2017, 20, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zargarzadeh, N.; Mousavi, S.M.; Santos, H.O.; Aune, D.; Hasani-Ranjbar, S.; Larijani, B.; Esmaillzadeh, A. Legume Consumption and Risk of All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2023, 14, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Ha, V.; Sievenpiper, J.L.; De Souza, R.J.; Jayalath, V.H.; Mirrahimi, A.; Agarwal, A.; Chiavaroli, L.; Mejia, S.B.; Sacks, F.M.; Di Buono, M. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. CMAJ 2014, 186, E252–E262. [Google Scholar] [CrossRef] [Green Version]
- Blackwood, A.D.; Salter, J.; Dettmar, P.W.; Chaplin, M.F. Dietary fibre, physicochemical properties and their relationship to health. J. R. Soc. Promot. Health 2000, 120, 242–247. [Google Scholar] [CrossRef]
- Zhao, D. Challenges associated with elucidating the mechanisms of the hypocholesterolaemic activity of saponins. J. Funct. Foods 2016, 23, 52–65. [Google Scholar] [CrossRef]
- Kadyan, S.; Sharma, A.; Arjmandi, B.H.; Singh, P.; Nagpal, R. Prebiotic potential of dietary beans and pulses and their resistant starch for aging-associated gut and metabolic health. Nutrients 2022, 14, 1726. [Google Scholar] [CrossRef] [PubMed]
- Bojarczuk, A.; Skąpska, S.; Mousavi Khaneghah, A.; Marszałek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- Lombardo, M.; Aulisa, G.; Marcon, D.; Rizzo, G. The influence of animal-or plant-based diets on blood and urine trimethylamine-N-oxide (TMAO) levels in humans. Curr. Nutr. Rep. 2022, 11, 56–68. [Google Scholar] [CrossRef]
- Mudryj, A.N.; Yu, N.; Aukema, H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014, 39, 1197–1204. [Google Scholar] [CrossRef]
- Chiu, H.F.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.K. Impact of Micronutrients on Hypertension: Evidence from Clinical Trials with a Special Focus on Meta-Analysis. Nutrients 2021, 13, 588. [Google Scholar] [CrossRef]
- Alizadeh, M.; Gharaaghaji, R.; Gargari, B.P. The effects of legumes on metabolic features, insulin resistance and hepatic function tests in women with central obesity: A randomized controlled trial. Int. J. Prev. Med. 2014, 5, 710. [Google Scholar] [PubMed]
- Hartman, T.J.; Albert, P.S.; Zhang, Z.; Bagshaw, D.; Kris-Etherton, P.M.; Ulbrecht, J.; Miller, C.K.; Bobe, G.; Colburn, N.H.; Lanza, E. Consumption of a legume-enriched, low-glycemic index diet is associated with biomarkers of insulin resistance and inflammation among men at risk for colorectal cancer. J. Nutr. 2010, 140, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Duff, W.; Chizen, D.; Zello, G.A.; Chilibeck, P.D. The Effect of a Low Glycemic Index Pulse-Based Diet on Insulin Sensitivity, Insulin Resistance, Bone Resorption and Cardiovascular Risk Factors during Bed Rest. Nutrients 2019, 11, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz Esparza Cisneros, J.; Vasconcelos-Ulloa, J.J.; González-Mendoza, D.; Beltrán-González, G.; Díaz-Molina, R. Effect of dietary intervention with a legume-based food product on malondialdehyde levels, HOMA index, and lipid profile. Endocrinol. Diabetes Nutr. 2020, 67, 235–244. [Google Scholar] [CrossRef]
- Zhang, Z.; Lanza, E.; Kris-Etherton, P.M.; Colburn, N.H.; Bagshaw, D.; Rovine, M.J.; Ulbrecht, J.S.; Bobe, G.; Chapkin, R.S.; Hartman, T.J. A high legume low glycemic index diet improves serum lipid profiles in men. Lipids 2010, 45, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Cione, E.; Fazio, A.; Curcio, R.; Tucci, P.; Lauria, G.; Cappello, A.R.; Dolce, V. Resistant starches and non-communicable disease: A Focus on mediterranean diet. Foods 2021, 10, 2062. [Google Scholar] [CrossRef]
- Warrilow, A.; Mellor, D.; McKune, A.; Pumpa, K. Dietary fat, fibre, satiation, and satiety-a systematic review of acute studies. Eur. J. Clin. Nutr. 2019, 73, 333–344. [Google Scholar] [CrossRef]
- Giuntini, E.B.; Sarda, F.A.H.; de Menezes, E.W. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods 2022, 11, 3934. [Google Scholar] [CrossRef]
- Goff, H.D.; Repin, N.; Fabek, H.; El Khoury, D.; Gidley, M.J. Dietary fibre for glycaemia control: Towards a mechanistic understanding. Bioact. Carbohydr. Diet. Fibre 2018, 14, 39–53. [Google Scholar] [CrossRef]
- Becerra-Tomas, N.; Diaz-Lopez, A.; Rosique-Esteban, N.; Ros, E.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Fito, M.; Serra-Majem, L.; Aros, F.; et al. Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clin. Nutr. 2018, 37, 906–913. [Google Scholar] [CrossRef]
- Lombardo, M.; Bellia, C.; Moletto, C.; Aulisa, G.; Padua, E.; Della-Morte, D.; Caprio, M.; Bellia, A. Effects of Quality and Quantity of Protein Intake for Type 2 Diabetes Mellitus Prevention and Metabolic Control. Curr. Nutr. Rep. 2020, 9, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Bielefeld, D.; Grafenauer, S.; Rangan, A. The Effects of Legume Consumption on Markers of Glycaemic Control in Individuals with and without Diabetes Mellitus: A Systematic Literature Review of Randomised Controlled Trials. Nutrients 2020, 12, 2123. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.; Cehun, M.; Chronopoulos, A. Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am. J. Clin. Nutr. 2004, 79, 390–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goshtasebi, A.; Hosseinpour-Niazi, S.; Mirmiran, P.; Lamyian, M.; Moghaddam Banaem, L.; Azizi, F. Pre-pregnancy consumption of starchy vegetables and legumes and risk of gestational diabetes mellitus among Tehranian women. Diabetes Res. Clin. Pract. 2018, 139, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Schiattarella, A.; Lombardo, M.; Morlando, M.; Rizzo, G. The Impact of a Plant-Based Diet on Gestational Diabetes: A Review. Antioxidants 2021, 10, 557. [Google Scholar] [CrossRef]
- Kim, S.J.; de Souza, R.J.; Choo, V.L.; Ha, V.; Cozma, A.I.; Chiavaroli, L.; Mirrahimi, A.; Blanco Mejia, S.; Di Buono, M.; Bernstein, A.M.; et al. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 103, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Howarth, N.C.; Saltzman, E.; Roberts, S.B. Dietary fiber and weight regulation. Nutr. Rev. 2001, 59, 129–139. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Westman, E.; Mattes, R.D.; Wolfe, R.R.; Astrup, A.; Westerterp-Plantenga, M. Protein, weight management, and satiety. Am. J. Clin. Nutr. 2008, 87, 1558S–1561S. [Google Scholar] [CrossRef] [Green Version]
- Baer, D.J.; Rumpler, W.V.; Miles, C.W.; Fahey Jr, G.C. Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J. Nutr. 1997, 127, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Thorne, M.J.; Thompson, L.; Jenkins, D. Factors affecting starch digestibility and the glycemic response with special reference to legumes. Am. J. Clin. Nutr. 1983, 38, 481–488. [Google Scholar] [CrossRef]
- Willis, H.J.; Eldridge, A.L.; Beiseigel, J.; Thomas, W.; Slavin, J.L. Greater satiety response with resistant starch and corn bran in human subjects. Nutr. Res. 2009, 29, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Priebe, M.G.; Wang, H.; Weening, D.; Schepers, M.; Preston, T.; Vonk, R.J. Factors related to colonic fermentation of nondigestible carbohydrates of a previous evening meal increase tissue glucose uptake and moderate glucose-associated inflammation. Am. J. Clin. Nutr. 2010, 91, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Murphy, S.P.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N.; Multiethnic Cohort, S. Legume and isoflavone intake and prostate cancer risk: The Multiethnic Cohort Study. Int. J. Cancer 2008, 123, 927–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective; Continuous Update Project Expert Report 2018; World Cancer Research Fund International: London, UK, 2018. [Google Scholar]
- Sanchez-Chino, X.; Jimenez-Martinez, C.; Davila-Ortiz, G.; Alvarez-Gonzalez, I.; Madrigal-Bujaidar, E. Nutrient and nonnutrient components of legumes, and its chemopreventive activity: A review. Nutr. Cancer 2015, 67, 401–410. [Google Scholar] [CrossRef]
- Thompson, M.D.; Thompson, H.J. Physiological effects of bean (Phaseolus vulgaris L.) consumption on cellular signaling in cancer. Cell Cycle 2012, 11, 835–836. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.D.; Thompson, H.J.; Brick, M.A.; McGinley, J.N.; Jiang, W.; Zhu, Z.; Wolfe, P. Mechanisms associated with dose-dependent inhibition of rat mammary carcinogenesis by dry bean (Phaseolus vulgaris L.). J. Nutr. 2008, 138, 2091–2097. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Kerem, Z.; German-Shashoua, H.; Yarden, O. Microwave-assisted extraction of bioactive saponins from chickpea (Cicer arietinum L.). J. Sci. Food Agric. 2005, 85, 406–412. [Google Scholar] [CrossRef]
- Chan, Y.S.; Zhang, Y.; Sze, S.C.; Ng, T.B. A thermostable trypsin inhibitor with antiproliferative activity from small pinto beans. J. Enzym. Inhib. Med. Chem. 2014, 29, 485–490. [Google Scholar] [CrossRef]
- Martinez-Villaluenga, C.; Frias, J.; Vidal-Valverde, C. Alpha-galactosides: Antinutritional factors or functional ingredients? Crit. Rev. Food Sci. Nutr. 2008, 48, 301–316. [Google Scholar] [CrossRef]
- Aleksandrova, K.; Koelman, L.; Rodrigues, C.E. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol. 2021, 42, 101869. [Google Scholar] [CrossRef] [PubMed]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes. Rev. 2014, 15, 392–407. [Google Scholar] [CrossRef]
- Ferreira, H.; Vasconcelos, M.; Gil, A.M.; Pinto, E. Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2021, 61, 85–96. [Google Scholar] [CrossRef]
- Karaağaç, Y.; Bellikci-Koyu, E. A narrative review on food neophobia throughout the lifespan: Relationships with dietary behaviours and interventions to reduce it. Br. J. Nutr. 2022, 127, 1–34. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Food taboos: Their origins and purposes. J. Ethnobiol. Ethnomed. 2009, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tela, F.G.; Gebremariam, L.W.; Beyene, S.A. Food taboos and related misperceptions during pregnancy in Mekelle city, Tigray, Northern Ethiopia. PLoS ONE 2020, 15, e0239451. [Google Scholar] [CrossRef] [PubMed]
- D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the Mediterranean Diet: A Review of Evidence of the Role and Sustainability of the Mediterranean Diet. Nutrients 2019, 11, 1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leterme, P.; Muũoz, L.C. Factors influencing pulse consumption in Latin America. Br. J. Nutr. 2002, 88, 251–254. [Google Scholar] [CrossRef]
- Carbonaro, M.; Grant, G.; Cappelloni, M.; Pusztai, A. Perspectives into factors limiting in vivo digestion of legume proteins: Antinutritional compounds or storage proteins? J. Agric. Food Chem. 2000, 48, 742–749. [Google Scholar] [CrossRef]
- Thirunathan, P.; Manickavasagan, A. Processing methods for reducing alpha-galactosides in pulses. Crit. Rev. Food Sci. Nutr. 2019, 59, 3334–3348. [Google Scholar] [CrossRef]
- Erickson, J.; Korczak, R.; Wang, Q.; Slavin, J. Gastrointestinal tolerance of low FODMAP oral nutrition supplements in healthy human subjects: A randomized controlled trial. Nutr. J. 2017, 16, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, V.; Tresina, P.; Daffodil, E. Antinutritional factors in legume seeds: Characteristics and determination. Encycl. Food Health 2016, 2, 211–220. [Google Scholar]
- Ryan, C.A. Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 1990, 28, 425–449. [Google Scholar] [CrossRef]
- Hathcock, J.N. Residue trypsin inhibitor: Data needs for risk assessment. Nutr. Toxicol. Conseq. Food Process. 1991, 2, 273–279. [Google Scholar]
- Champ, M.M.-J. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 2002, 88, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; Thompson, A.M.; Tees, M.T.; Nguyen, C.H.; Winham, D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 94–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liener, I. Significance for humans of biologically active factors in soybeans and other food legumes. J. Am. Oil Chem. Soc. 1979, 56, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Gulewicz, P.; Szymaniec, S.; Bubak, B.; Frias, J.; Vidal-Valverde, C.; Trojanowska, K.; Gulewicz, K. Biological activity of α-galactoside preparations from Lupinus angustifolius L. and Pisum sativum L. seeds. J. Agric. Food Chem. 2002, 50, 384–389. [Google Scholar] [CrossRef]
- Jood, S.; Mehta, U.; Singh, R.; Bhat, C.M. Effect of processing on flatus-producing factors in legumes. J. Agric. Food Chem. 1985, 33, 268–271. [Google Scholar] [CrossRef]
- Onigbinde, A.; Akinyele, I. Oligosaccharide content of 20 varieties of cowpeas in Nigeria. J. Food Sci. 1983, 48, 1250–1251. [Google Scholar] [CrossRef]
- Somiari, R.I.; Balogh, E. Effect of soaking, cooking and crude α-galactosidase treatment on the oligosaccharide content of cowpea flours. J. Sci. Food Agric. 1993, 61, 339–343. [Google Scholar] [CrossRef]
- Mulimani, V.; Devendra, S. Effect of soaking, cooking and crude α-galactosidase treatment on the oligosaccharide content of red gram flour. Food Chem. 1998, 61, 475–479. [Google Scholar] [CrossRef]
- Rao, P.U.; Belavady, B. Oligosaccharides in pulses: Varietal differences and effects of cooking and germination. J. Agric. Food Chem. 1978, 26, 316–319. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Guillamon, E.; Arribas, C. Autoclaved and Extruded Legumes as a Source of Bioactive Phytochemicals: A Review. Foods 2021, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Kamau, E.H.; Nkhata, S.G.; Ayua, E.O. Extrusion and nixtamalization conditions influence the magnitude of change in the nutrients and bioactive components of cereals and legumes. Food Sci. Nutr. 2020, 8, 1753–1765. [Google Scholar] [CrossRef]
- Berrios, J.D.J.; Morales, P.; Cámara, M.; Sánchez-Mata, M.C. Carbohydrate composition of raw and extruded pulse flours. Food Res. Int. 2010, 43, 531–536. [Google Scholar] [CrossRef]
- Zamora, A.F.; Fields, M.L. Nutritive quality of fermented cowpeas (Vigna sinensis) and chickpeas (Cicer arietinum). J. Food Sci. 1979, 44, 234–236. [Google Scholar] [CrossRef]
- Devindra, S.; Aruna, T. Effect of chemical soaking, toasting and crude α-galactosidase enzyme treatment on the oligosaccharide content of red gram flour. J. Food Process. Preserv. 2017, 41, e12922. [Google Scholar] [CrossRef]
- Song, D.; Chang, S.K.; Ibrahim, S.A. Effect of fermentation substrates on enzyme production and degradation of oligosaccharides in pinto bean flour as affected by particle size. J. Food Process. Preserv. 2009, 33, 527–546. [Google Scholar] [CrossRef]
- Haileslassie, H.A.; Henry, C.J.; Tyler, R.T. Impact of household food processing strategies on antinutrient (phytate, tannin and polyphenol) contents of chickpeas (Cicer arietinum L.) and beans (Phaseolus vulgaris L.): A review. Int. J. Food Sci. Technol. 2016, 51, 1947–1957. [Google Scholar] [CrossRef]
- Schwenke, K.D. Enzyme and chemical modification of proteins. In Food Proteins and Their Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 393–423. [Google Scholar]
- Tresina, P.S.; Mohan, V.R. Effect of gamma irradiation on physicochemical properties, proximate composition, vitamins and antinutritional factors of the tribal pulse Vigna unguiculata subsp. unguiculata. Int. J. Food Sci. Technol. 2011, 46, 1739–1746. [Google Scholar] [CrossRef]
- Geada, P.; Rodrigues, R.; Loureiro, L.; Pereira, R.; Fernandes, B.; Teixeira, J.A.; Vasconcelos, V.; Vicente, A.A. Electrotechnologies applied to microalgal biotechnology—Applications, techniques and future trends. Renew. Sustain. Energy Rev. 2018, 94, 656–668. [Google Scholar] [CrossRef] [Green Version]
- Taha, A.; Casanova, F.; Šimonis, P.; Stankevič, V.; Gomaa, M.A.; Stirkė, A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022, 11, 1556. [Google Scholar] [CrossRef] [PubMed]
- Devkota, L.; He, L.; Bittencourt, C.; Midgley, J.; Haritos, V.S. Thermal and pulsed electric field (PEF) assisted hydration of common beans. Lwt 2022, 158, 113163. [Google Scholar] [CrossRef]
- Ashraf, S.; Saeed, S.M.G.; Sayeed, S.A.; Ali, R. Impact of Microwave Treatment on the Functionality of Cereals and Legumes. Int. J. Agric. Biol. 2012, 14, 356–370. [Google Scholar]
- Ogundele, O.M.; Kayitesi, E. Influence of infrared heating processing technology on the cooking characteristics and functionality of African legumes: A review. J. Food Sci. Technol. 2019, 56, 1669–1682. [Google Scholar] [CrossRef]
- Pasqualone, A.; Costantini, M.; Coldea, T.E.; Summo, C. Use of Legumes in Extrusion Cooking: A Review. Foods 2020, 9, 958. [Google Scholar] [CrossRef]
- Beniwal, A.S.; Singh, J.; Kaur, L.; Hardacre, A.; Singh, H. Meat analogs: Protein restructuring during thermomechanical processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1221–1249. [Google Scholar] [CrossRef]
- Kourkouta, L.; Koukourikos, K.; Iliadis, C.; Ouzounakis, P.; Monios, A.; Tsaloglidou, A. Bread and health. J. Pharm. Pharmacol. 2017, 5, 821–826. [Google Scholar] [CrossRef] [Green Version]
- Birch, C.S.; Bonwick, G.A. Ensuring the future of functional foods. Int. J. Food Sci. Technol. 2018, 54, 1467–1485. [Google Scholar] [CrossRef]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: A Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. Nutrients 2019, 11, 1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoah, I.; Cairncross, C.; Osei, E.O.; Yeboah, J.A.; Cobbinah, J.C.; Rush, E. Bioactive Properties of Bread Formulated with Plant-based Functional Ingredients Before Consumption and Possible Links with Health Outcomes After Consumption- A Review. Plant Foods Hum. Nutr. 2022, 77, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Portman, D.; Blanchard, C.; Maharjan, P.; McDonald, L.S.; Mawson, J.; Naiker, M.; Panozzo, J.F. Blending studies using wheat and lentil cotyledon flour—Effects on rheology and bread quality. Cereal Chem. 2018, 95, 849–860. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Magala, M. Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chem. Pap. 2013, 67, 398–407. [Google Scholar] [CrossRef]
- Dabija, A.; Codină, G.G.; Fradinho, P. Effect of yellow pea flour addition on wheat flour dough and bread quality. Rom. Biotechnol. Lett. 2017, 22, 12888. [Google Scholar]
- Malcolmson, L.; Boux, G.; Bellido, A.; Frohlich, P. Use of pulse ingredients to develop healthier baked products. Cereal Foods World 2013, 58, 27–32. [Google Scholar] [CrossRef]
- Han, J.; Janz, J.A.M.; Gerlat, M. Development of gluten-free cracker snacks using pulse flours and fractions. Food Res. Int. 2010, 43, 627–633. [Google Scholar] [CrossRef]
- Gómez, M.; Doyagüe, M.J.; de la Hera, E. Addition of pin-milled pea flour and air-classified fractions in layer and sponge cakes. LWT-Food Sci. Technol. 2012, 46, 142–147. [Google Scholar] [CrossRef]
- Sozer, N.; Holopainen-Mantila, U.; Poutanen, K. Traditional and New Food Uses of Pulses. Cereal Chem. J. 2017, 94, 66–73. [Google Scholar] [CrossRef]
- Thavamani, A.; Sferra, T.J.; Sankararaman, S. Meet the Meat Alternatives: The Value of Alternative Protein Sources. Curr. Nutr. Rep. 2020, 9, 346–355. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.V. Overview of the market and consumption of puises in Europe. Br. J. Nutr. 2002, 88, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinangeli, C.P.F.; Curran, J.; Barr, S.I.; Slavin, J.; Puri, S.; Swaminathan, S.; Tapsell, L.; Patterson, C.A. Enhancing nutrition with pulses: Defining a recommended serving size for adults. Nutr. Rev. 2017, 75, 990–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health. Eating and Activity Guidelines; Ministry of Health: Wellington, New Zealand, 2022.
- Food and Agriculture Organisation of the United Nations. Food-Based Dietary Guidelines. Available online: http://www.fao.org/nutrition/education/food-dietary-guidelines/background/en/ (accessed on 26 May 2023).
- Brown, D.; Donaldson, B.; Parsons, A.; Macrae, D.; Kelleher, J.; Yan, M.; Rush, E. The Nothing Else brand: A case study. Food Nutr. Sci. 2015, 06, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Figueira, N.; Curtain, F.; Beck, E.; Grafenauer, S. Consumer Understanding and Culinary Use of Legumes in Australia. Nutrients 2019, 11, 1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, N.I.; Perry, C.L.; Story, M.; Neumark-Sztainer, D. Food preparation by young adults is associated with better diet quality. J. Am. Diet. Assoc. 2006, 106, 2001–2007. [Google Scholar] [CrossRef]
- Chen, R.C.; Lee, M.S.; Chang, Y.H.; Wahlqvist, M.L. Cooking frequency may enhance survival in Taiwanese elderly. Public Health Nutr. 2012, 15, 1142–1149. [Google Scholar] [CrossRef] [Green Version]
- Wallace, T.C.; Murray, R.; Zelman, K.M. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients 2016, 8, 766. [Google Scholar] [CrossRef] [Green Version]
- Marengo, M.; Amoah, I.; Carpen, A.; Benedetti, S.; Zanoletti, M.; Buratti, S.; Lutterodt, H.E.; Johnson, P.-N.T.; Manful, J.; Marti, A.; et al. Enriching gluten-free rice pasta with soybean and sweet potato flours. J. Food Sci. Technol. 2018, 55, 2641–2648. [Google Scholar] [CrossRef]
- Monnet, A.-F.; Laleg, K.; Michon, C.; Micard, V. Legume enriched cereal products: A generic approach derived from material science to predict their structuring by the process and their final properties. Trends Food Sci. Technol. 2019, 86, 131–143. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kinabo, J.; Uebersax, M.A. Nutrient profile and effect of processing methods on the composition and functional properties of lentils (Lens culinaris Medik): A review. Legume Sci. 2022, 5, e156. [Google Scholar] [CrossRef]
- Ananthanarayan, L.; Gat, Y.; Panghal, A.; Chhikara, N.; Sharma, P.; Kumar, V.; Singh, B. Effect of extrusion on thermal, textural and rheological properties of legume based snack. J. Food Sci. Technol. 2018, 55, 3749–3756. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Moreno, R.J.; Reyes-Moreno, C.; Milan-Carrillo, J.; Lopez-Valenzuela, J.A.; Paredes-Lopez, O.; Gutierrez-Dorado, R. Healthy Ready-to-Eat Expanded Snack with High Nutritional and Antioxidant Value Produced from Whole Amarantin Transgenic Maize and Black Common Bean. Plant Foods Hum. Nutr. 2016, 71, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Guy, R. Extrusion Cooking: Technologies and Applications; Woodhead Publishing: Sawston, UK, 2001. [Google Scholar]
- Marti, A.; Seetharaman, K.; Pagani, M.A. Rice-based pasta: A comparison between conventional pasta-making and extrusion-cooking. J. Cereal Sci. 2010, 52, 404–409. [Google Scholar] [CrossRef]
- Tas, A.A.; Shah, A.U. The replacement of cereals by legumes in extruded snack foods: Science, technology and challenges. Trends Food Sci. Technol. 2021, 116, 701–711. [Google Scholar] [CrossRef]
- Guzel, D.; Sayar, S. Effect of cooking methods on selected physicochemical and nutritional properties of barlotto bean, chickpea, faba bean, and white kidney bean. J. Food Sci. Technol. 2012, 49, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Shin, J.; Kang, Y.; Kim, D.; Park, J.J.; Kim, H.J. Effect of different cooking method on vitamin E and K content and true retention of legumes and vegetables commonly consumed in Korea. Food Sci. Biotechnol. 2022, 32, 647–658. [Google Scholar] [CrossRef]
- Adepoju, O.T.; Dudulewa, B.I.; Bamigboye, A.Y. Effect of cooking methods on time and nutrient retention of pigeon pea (Cajanus cajan). Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14708–14725. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes. Food Chem. 2008, 110, 1–13. [Google Scholar] [CrossRef]
- Huma, N.; Anjum, M.; Sehar, S.; Issa Khan, M.; Hussain, S. Effect of soaking and cooking on nutritional quality and safety of legumes. Nutr. Food Sci. 2008, 38, 570–577. [Google Scholar] [CrossRef]
- Acquah, C.; Ohemeng-Boahen, G.; Power, K.A.; Tosh, S.M. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. Front. Sustain. Food Syst. 2021, 5, 681662. [Google Scholar] [CrossRef]
- Atudorei, D.; Stroe, S.-G.; Codină, G.G. Impact of germination on the microstructural and physicochemical properties of different legume types. Plants 2021, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Marti, A.; Cardone, G.; Pagani, M.A.; Casiraghi, M.C. Flour from sprouted wheat as a new ingredient in bread-making. LWT 2018, 89, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.-B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbab Sakandar, H.; Chen, Y.; Peng, C.; Chen, X.; Imran, M.; Zhang, H. Impact of Fermentation on Antinutritional Factors and Protein Degradation of Legume Seeds: A Review. Food Rev. Int. 2021, 39, 1227–1249. [Google Scholar] [CrossRef]
- Angelino, D.; Cossu, M.; Marti, A.; Zanoletti, M.; Chiavaroli, L.; Brighenti, F.; Del Rio, D.; Martini, D. Bioaccessibility and bioavailability of phenolic compounds in bread: A review. Food Funct. 2017, 8, 2368–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with alpha-amylase and alpha-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
Legumes | Water (%) | Energy (kcal) | Protein (%) | Carbohydrates (%), Excluding Fiber) | Total Fibers (%) | Soluble Fibers (%) | Insoluble Fibers (%) | Lipids (%) | Resistant Starch (%) | Oligosaccharides (%) | Other Non-Digestible Fibers (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Common beans | 11.9 | 333 | 23.6 | 45.0 | 15.0 | 2.0 | 13.0 | 1.2 | 4.8 | 1.9 | 0.8 |
Lentils | 11.8 | 353 | 24.6 | 52.2 | 10.8 | 1.0 | 9.8 | 1.1 | 2.9 | 1.8 | 0.8 |
Chickpeas | 10.7 | 364 | 19.0 | 44.0 | 17.0 | 3.4 | 13.6 | 6.0 | 1.7 | 2.7 | 1.3 |
Peas | 10.7 | 338 | 25.0 | 44.0 | 16.0 | 2.0 | 14.0 | 1.2 | 0.8 | 1.6 | 0.7 |
Broad beans | 11.3 | 341 | 26.0 | 33.0 | 25.0 | 1.8 | 23.2 | 1.5 | 1.8 | 1.0 | 2.2 |
Soybeans | 8.5 | 446 | 36.0 | 21.0 | 9.0 | 2.0 | 7.0 | 20.0 | 1.4 | 4.9 | 0.6 |
Legume | Stachyose | Verbascose | Raffinose | Ajugose |
---|---|---|---|---|
Common beans | 3.3 | 2.6 | 0.4 | 0.2 |
Lentils | 0.2 | 0.2 | 0.0 | 0.0 |
Chickpeas | 1.0 | 0.8 | 0.2 | 0.0 |
Peas | 0.4 | 0.2 | 0.2 | 0.0 |
Broad beans | 0.2 | 0.3 | 0.0 | 0.0 |
Soybeans | 1.5 | 0.6 | 0.3 | 0.0 |
Anti-Nutritional Factor | Legume(s) That Contain It | Possible Health Effects |
---|---|---|
Phytic acid | Soybeans, chickpeas, lentils, kidney beans, black beans | Diarrhea, nausea, vomiting, abdominal pain, impaired nutrient absorption |
Lectins | Kidney beans, lima beans, peanuts | Reduced protein digestion, decreased protein utilization |
Protease inhibitors | Soybeans, kidney beans, lima beans, peanuts | Impaired mineral absorption, reduced bioavailability of dietary minerals |
Saponins | Chickpeas, lentils, peas | Reduced protein digestion, decreased protein utilization, impaired nutrient absorption |
Tannins | Kidney Beans, lima beans, mung beans | Hemolysis, intestinal irritation, decreased nutrient absorption |
Lathyrogens | Chickpeas, lentils, peas | Flatulence, abdominal bloating, decreased nutrient absorption |
Oligosaccharides | Chickpeas, kidney beans, lentils, navy beans | Reduced protein digestion, decreased protein utilization |
Cyanogens | Lima beans, fava beans | Neurotoxicity, paralysis |
Phytoestrogens | Soybeans | Hemolytic anemia, favism |
Trypsin Inhibitors | Soybeans, lima beans, kidney beans, peanuts | Autoimmune response, impaired nutrient absorption |
Nutrient | 100 g Dry Legumes | RDA (Male) | RDA (Female) | AI |
---|---|---|---|---|
Protein (g/day) | 20–30 | 56 | 46 | - |
Fiber (g/day) | 8–16 | 38 | 25 | - |
Folate (μg/day) | 300–600 | 400 | 400 | 320–400 |
Iron (mg/day) | 2.5–7 | 8 | 18 (premenopausal) | 8 (postmenopausal) |
Magnesium (mg/day) | 70–130 | 420 | 320 | 310–420 |
Phosphorus (mg/day) | 250–500 | 700 | 700 | - |
Potassium (mg/day) | 500–1000 | 3400 | 2600 | 2000–3100 |
Factors | Recommendations |
---|---|
Heat exposure and cooking time | Opt for methods with shorter cooking times or lower heat to preserve nutrients. Examples include steaming, stir-frying, or sautéing legumes. Avoid overcooking or prolonged high-heat cooking methods which may lead to nutrient losses. |
Water usage | Use methods that involve limited water contact and volumes to minimize nutrient leaching. Consider using boiling methods such as pressure cooking, where less water is required. Additionally, using the soaking water (for legumes that require soaking) in boiling procedures can help retain some water-soluble nutrients. |
Processing techniques | Soaking, sprouting, and fermentation can enhance nutrient quality. Soaking legumes before cooking reduces cooking time and improves digestibility. Sprouting legumes increases nutrient availability and reduces anti-nutrients content. Fermenting legumes enhances their nutritional profile and promotes the growth of beneficial bacteria. |
Complementary ingredients | Pair legumes with foods rich in vitamin C or fat sources to enhance nutrients absorption. Vitamin C facilitates the legumes’ non-heme iron absorption, while pairing legumes’ consumption with a source of fat can improve the absorption of fat-soluble vitamins. Including citrus fruits, bell peppers, or tomatoes in legume dishes can provide vitamin C, while adding olive oil, avocado, or nuts can contribute to the fat content. |
Consider nutritional composition of variety | Take into account the specific nutritional composition of the variety of legume being used. Different legumes may vary in their nutrient profiles, so understanding their individual characteristics can guide the selection of appropriate cooking methods. Referring to nutritional databases or dietary guidelines can provide valuable informations on various legume varieties’ nutrient contents. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoah, I.; Ascione, A.; Muthanna, F.M.S.; Feraco, A.; Camajani, E.; Gorini, S.; Armani, A.; Caprio, M.; Lombardo, M. Sustainable Strategies for Increasing Legume Consumption: Culinary and Educational Approaches. Foods 2023, 12, 2265. https://doi.org/10.3390/foods12112265
Amoah I, Ascione A, Muthanna FMS, Feraco A, Camajani E, Gorini S, Armani A, Caprio M, Lombardo M. Sustainable Strategies for Increasing Legume Consumption: Culinary and Educational Approaches. Foods. 2023; 12(11):2265. https://doi.org/10.3390/foods12112265
Chicago/Turabian StyleAmoah, Isaac, Angela Ascione, Fares M. S. Muthanna, Alessandra Feraco, Elisabetta Camajani, Stefania Gorini, Andrea Armani, Massimiliano Caprio, and Mauro Lombardo. 2023. "Sustainable Strategies for Increasing Legume Consumption: Culinary and Educational Approaches" Foods 12, no. 11: 2265. https://doi.org/10.3390/foods12112265
APA StyleAmoah, I., Ascione, A., Muthanna, F. M. S., Feraco, A., Camajani, E., Gorini, S., Armani, A., Caprio, M., & Lombardo, M. (2023). Sustainable Strategies for Increasing Legume Consumption: Culinary and Educational Approaches. Foods, 12(11), 2265. https://doi.org/10.3390/foods12112265