Minimally Processed Vegetables in Brazil: An Overview of Marketing, Processing, and Microbiological Aspects
Abstract
1. Introduction
2. Market of MPVs in Brazil
3. Processing of MPVs
4. Microbiological Quality and Safety of MPVs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brasil. Ministério da Saúde; Secretaria de Atenção à Saúde; Departamento de Atenção Básica. Guia Alimentar para a População Brasileira, 2nd ed.; Ministério da Saúde: Brasília, Brazil, 2014; p. 156.
- Saini, R.K.; Ko, E.Y.; Keum, Y.S. Minimally processed ready-to-eat baby-leaf vegetables: Production, processing, storage, microbial safety, and nutritional potential. Food Rev. Int. 2017, 33, 644–663. [Google Scholar] [CrossRef]
- Maffei, D.F.; Silveira, M.A.; Silva, M.B.R.D.; Moreira, D.A.; Lourenço, F.R.; Schaffner, D.W.; Franco, B.D.G.M. Consumption data and consumer handling practices of leafy greens in the city of São Paulo, Brazil: Useful information for quantitative microbiological consumer phase risk assessments. Food Prot. Trends 2020, 40, 224–231. [Google Scholar]
- Mostafidi, M.; Sanjabi, M.R.; Shirkhan, F.; Zahedi, M.T. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Fruit and Vegetables—Your Dietary Essentials. The International Year of Fruits and Vegetables, Background Paper. Rome. 2021. Available online: https://www.fao.org/publications/card/en/c/CB2395EN (accessed on 10 January 2023).
- Alvarenga, A.L.B.; Toledo, J.C.D.; Paulillo, L.F.D.O. Qualidade e segurança de vegetais minimamente processados: Proposta de estruturas de governança entre os agentes da cadeia e os sinais da qualidade. Gest. Prod. 2014, 21, 341–354. [Google Scholar] [CrossRef]
- Vieira, S.L.V.; da Silva, I.C.P. Alimentos minimamente processados: Novo perfil de escolha do consumidor. Arq. MUDI 2017, 21, 26–38. Available online: https://periodicos.uem.br/ojs/index.php/ArqMudi/article/view/37199 (accessed on 10 January 2023). [CrossRef]
- Maldonade, I.R.; Ginani, V.C.; Riquette, R.F.R.; Gurgel-Gonçalves, R.; Mendes, V.S.; Machado, E.R. Good manufacturing practices of minimally processed vegetables reduce contamination with pathogenic microorganisms. Rev. Inst. Med. Trop. São Paulo 2019, 61, e14. [Google Scholar] [CrossRef]
- de Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2020, 60, 940–975. [Google Scholar] [CrossRef]
- Santos, T.S.; Campos, F.B.; Padovani, N.F.D.A.; Dias, M.; Mendes, M.A.; Maffei, D.F. Assessment of the microbiological quality and safety of minimally processed vegetables sold in Piracicaba, SP, Brazil. Lett. Appl. Microbiol. 2020, 71, 187–194. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; López-Gámez, G.M.; Domínguez-Avila, J.A.; González-Aguilar, G.A.; Soliva-Fortuny, R.; Ayala-Zavala, J.F. Minimal processing. In Postharvest Technology of Perishable Horticultural Commodities; Woodhead Publishing: Querétaro, Mexico, 2019; pp. 353–374. [Google Scholar] [CrossRef]
- de Corato, U.; Cancellara, F.A. Measures, technologies, and incentives for cleaning the minimally processed fruits and vegetables supply chain in the Italian food industry. J. Clean. Prod. 2019, 237, 117735. [Google Scholar] [CrossRef]
- Perez, R.; Ramos, A.M.; Binoti, M.L.; Sousa, P.H.M.D.; Machado, G.D.M.; Cruz, I.B. Perfil dos consumidores de hortaliças minimamente processadas de Belo Horizonte. Hortic. Bras. 2008, 26, 441–446. [Google Scholar] [CrossRef]
- Finger, J.A.F.F.; Costa, D.A.; Alves, V.F.; Baroni, W.S.G.V.; Malheiros, P.S.; Alves, E.A.; Maffei, D.F.; Pinto, U.M. Minimally Processed Vegetables: Consumer Profile, Consumption Habits, and Perceptions of Microbiological Risk. Food Prot. Trends 2023, 43, 167–178. [Google Scholar] [CrossRef]
- Moretti, C.L. Manual de Processamento Mínimo de Frutas e Hortaliças; Embrapa Hortaliças: Brasília, Brazil, 2007; pp. 25–40. [Google Scholar]
- Sant’Anna, P.B.; Franco, B.D.G.M.; Maffei, D.F. Microbiological safety of ready-to-eat minimally processed vegetables in Brazil: An overview. J. Sci. Food Agric. 2020, 100, 4664–4670. [Google Scholar] [CrossRef]
- Maffei, D.F.; Alvarenga, V.O.; Sant’Ana, A.S.; Franco, B.D.G.M. Assessing the effect of washing practices employed in Brazilian processing plants on the quality of ready-to-eat vegetables. LWT Food Sci. Technol. 2016, 69, 474–481. [Google Scholar] [CrossRef]
- Fröhling, A.; Rademacher, A.; Rumpold, B.; Klocke, M.; Schlüter, O. Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale. Heliyon 2018, 4, e00671. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Shah, M.A.; Mir, M.M.; Dar, B.N.; Greiner, R.; Roohinejad, S. Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control. 2018, 85, 235–244. [Google Scholar] [CrossRef]
- Machado-Moreira, B.; Richards, K.; Brennan, F.; Abram, F.; Burgess, C.M. Microbial contamination of fresh produce: What, where, and how? Compr. Rev. Food Sci. Food Saf. 2019, 18, 1727–1750. [Google Scholar] [CrossRef]
- Finger, J.A.F.F.; Maffei, D.F.; Dias, M.; Mendes, M.A.; Pinto, U.M. Microbiological quality and safety of minimally processed parsley (Petroselinum crispum) sold in food markets, southeastern Brazil. J. Appl. Microbiol. 2021, 131, 272–280. [Google Scholar] [CrossRef]
- CDC (Centers for Disease Control and Prevention). Center of Disease Control. Food Safety. Foodborne Outbreaks. 2022. Available online: https://www.cdc.gov/foodsafety/outbreaks/index.html (accessed on 18 May 2023).
- Paoletti, F.; Raffo, A. Fresh-Cut Vegetables Processing: Environmental Sustainability and Food Safety Issues in a Comprehensive Perspective. Front. Sustain. Food Syst. 2022, 5, 681459. [Google Scholar] [CrossRef]
- Nascimento, K.D.O.; Augusta, I.M.; da Rocha Rodrigues, N.; Pires, T.; Batista, E.; Júnior, J.L.B.; Barbosa, M.I.M.J. Alimentos minimamente processados: Uma tendência de mercado. Acta Tecnol. 2014, 9, 48–61. [Google Scholar] [CrossRef]
- Costa, D.A.; Finger, J.A.F.F.; Alves, V.F.; Baroni, W.S.G.V.; Malheiros, P.S.; Alves, E.A.; Maffei, D.F.; Pinto, U.M. Minimally Processed Vegetables: Consumer Profile, Consumption Habits, Perceptions of Microbiological Risk and Labeling. In Anais do 31° Congresso Brasileiro de Microbiologia: Brasil. 2021. Available online: https://sbmicrobiologia.org.br/31cbm-anais/lista_area_01.htm (accessed on 16 May 2023).
- Embrapa (Empresa Brasileira de Pesquisa Agropecuária Agroindústria Tropical). Processamento Mínimo de Frutas E Hortaliças: Tecnologia, Qualidade E Sistemas de Embalagem/Coordenador, Sergio Agostinho Cenci; Embrapa Agroindústria de Alimentos: Rio de Janeiro, Brasil, 2011; pp. 1–144. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/907934/1/LivroProcessamentoMinimo.pdf (accessed on 5 November 2022).
- Sato, G.S.; Martins, V.A.; Bueno, C.R.F. Análise exploratória do perfil do consumidor de produtos minimamente processados na cidade de São Paulo. Inf. Econômicas 2007, 37, 63–71. [Google Scholar]
- Degiovanni, G.C.; Japur, C.C.; Sanches, A.P.L.M.; Mattos, C.H.P.D.S.; Martins, L.D.S.; Reis, C.V.D.; Vieira, M.N.C.M. Hortaliças in natura ou minimamente processadas em unidades de alimentação e nutrição: Quais aspectos devem ser considerados na sua aquisição? Rev. Nutr. 2010, 23, 813–822. [Google Scholar] [CrossRef]
- Pena, F.L.; Paulo, K.H.; Soragni, L.; Duarte, L.T.; Antunes, A.E.C. Avaliação microbiológica de hortaliças minimamente processadas disponíveis no mercado e servidas em redes de fast-food e em unidades de alimentação e nutrição nas cidades de Limeira e Campinas, São Paulo, Brasil. Rev. Segur. Aliment. Nutr. 2015, 22, 633–643. [Google Scholar] [CrossRef]
- Melo, V.T.P.; Strasburg, V.J. Geração de resíduos na aquisição de vegetais in natura e minimamente processados por serviço de nutrição e dietética de um hospital público. Braz. J. Food Technol. 2020, 23, e2019069. [Google Scholar] [CrossRef]
- Bansal, V.; Siddiqui, M.W.; Rahman, M.S. Minimally processed foods: Overview. In Minimally Processed Foods: Technologies for Safety, Quality, and Convenience; Siddiqui, M., Rahman, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; p. 306. [Google Scholar] [CrossRef]
- Castro-Ibáñez, I.; Gil, M.I.; Allende, A. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT Food Sci. Technol. 2017, 85, 284–292. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Gil, M.I.; Truchado, P.; Selma, M.V.; Allende, A. Cross-contamination of fresh-cut lettuce after a short-term exposure during pre-washing cannot be controlled after subsequent washing with chlorine dioxide or sodium hypochlorite. Food Microbiol. 2010, 27, 199–204. [Google Scholar] [CrossRef]
- Maffei, D.F.; Sant’Ana, A.S.; Franco, B.D.G.M.; Schaffner, D.W. Quantitative assessment of the impact of cross-contamination during the washing step of ready-to-eat leafy greens on the risk of illness caused by Salmonella. Food Res. Int. 2017, 92, 106–112. [Google Scholar] [CrossRef]
- Paulo, S. Secretária do Estado da Saúde. Portaria CVS 5, de 09 de abril de 2013. In Aprova o Regulamento Técnico Sobre Boas Práticas Para Estabelecimentos Comerciais de Alimentos e Para Serviços de Alimentação, e o Roteiro de Inspeção, Anexo; Diário Oficial do Estado de São Paulo: São Paulo, Brazil, 2013; pp. 32–35. [Google Scholar]
- Ferreira, M.R.; Santos, T.S.D.; Maffei, D.F. Assessing Brazilian food establishments’ hygienic handling of leafy vegetables and their microbiological quality. Acta Aliment. 2021, 50, 189–198. [Google Scholar] [CrossRef]
- Lee, W.N.; Huang, C.H.; Zhu, G. Analytical methods for conventional and emerging disinfection by-products in fresh-cut produce. Food Chem. 2019, 291, 30–37. [Google Scholar] [CrossRef]
- Joshi, K.; Mahendran, R.; Alagusundaram, K.; Norton, T.; Tiwari, B.K. Novel disinfectants for fresh produce. Trends Food Sci. Technol. 2013, 34, 54–61. [Google Scholar] [CrossRef]
- Feliziani, E.; Lichter, A.; Smilanick, J.L.; Ippolito, A. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol. Technol. 2016, 122, 53–69. [Google Scholar] [CrossRef]
- Gadelha, J.R.; Allende, A.; López-Gálvez, F.; Fernández, P.; Gil, M.I.; Egea, J.A. Chemical risks associated with ready-to-eat vegetables: Quantitative analysis to estimate formation and/or accumulation of disinfection byproducts during washing. EFSA J. 2019, 17, e170913. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Lee, S.Y. Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Crit. Rev. Food Sci. Nutr. 2018, 58, 3189–3208. [Google Scholar] [CrossRef] [PubMed]
- Meireles, A.; Giaouris, E.; Simões, M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res. Int. 2016, 82, 71–85. [Google Scholar] [CrossRef]
- Fan, X.; Huang, R.; Chen, H. Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci. Technol. 2017, 70, 9–19. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, M.; Bhandari, B.; Gao, Z. Recent developments in novel shelf-life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci. Technol. 2017, 64, 23–38. [Google Scholar] [CrossRef]
- Balbinot Filho, C.A.; Borges, C.D. Efeitos da radiação UV-C em alface e maçã minimamente processadas: Uma revisão. Braz. J. Food Technol. 2020, 23, e2018321. [Google Scholar] [CrossRef]
- Zhang, H.; Tikekar, R.V.; Ding, Q.; Gilbert, A.R.; Wimsatt, S.T. Inactivation of foodborne pathogens by the synergistic combinations of food processing technologies and food-grade compounds. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2110–2138. [Google Scholar] [CrossRef]
- Lepaus, B.M.; Rocha, J.S.; de São José, J.F.B. Organic Acids and Hydrogen Peroxide Can Replace Chlorinated Compounds as Sanitizers on Strawberries, Cucumbers and Rocket Leaves. Food Sci. Technol. 2020, 40, 242–249. [Google Scholar] [CrossRef]
- Lippman, B.; Yao, S.; Huang, R.; Chen, H. Evaluation of the Combined Treatment of Ultraviolet Light and Peracetic Acid as an Alternative to Chlorine Washing for Lettuce Decontamination. Int. J. Food Microbiol. 2020, 323, 108590. [Google Scholar] [CrossRef]
- Onwude, D.I.; Chen, G.; Eke-Emezie, N.; Kabutey, A.; Khaled, A.Y.; Sturm, B. Recent advances in reducing food losses in the supply chain of fresh agricultural produce. Processes 2020, 8, 1431. [Google Scholar] [CrossRef]
- Denoya, G.I.; Vaudagna, S.R.; Polenta, G. Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT Food Sci. Technol. 2015, 62, 801–806. [Google Scholar] [CrossRef]
- Gil, M.I.; Selma, M.V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre-and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 453–468. [Google Scholar] [CrossRef]
- Maffei, D.F.; Batalha, E.Y.; Landgraf, M.; Schaffner, D.W.; Franco, B.D.G.M. Microbiology of organic and conventionally grown fresh produce. Braz. J. Microbiol. 2016, 47, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect. 2002, 4, 413–423. [Google Scholar] [CrossRef]
- Fröder, H.; Martins, C.G.; de Souza, K.L.O.; Landgraf, M.; Franco, B.D.G.M.; Destro, M.T. Minimally processed vegetable salads: Microbial quality evaluation. J. Food Prot. 2007, 70, 1277–1280. [Google Scholar] [CrossRef]
- Silva, S.R.; Verdin, S.E.F.; Pereira, D.C.; Schatkoski, A.M.; Rott, M.B.; Corção, G. Microbiological quality of minimally processed vegetables sold in Porto Alegre, Brazil. Braz. J. Microbiol. 2007, 38, 594–598. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; de Souza, V.M.; Bergamini, A.M.M.; de Martinis, E.C.P. Microbiological quality of ready-to-eat minimally processed vegetables consumed in Brazil. Food Control. 2011, 22, 1400–1403. [Google Scholar] [CrossRef]
- Sant’Ana, A.S.; Landgraf, M.; Destro, M.T.; Franco, B.D.G.M. Prevalence and counts of Salmonella spp. in minimally processed vegetables in São Paulo, Brazil. Food Microbiol. 2011, 28, 1235–1237. [Google Scholar] [CrossRef]
- Maistro, L.C.; Miya, N.T.N.; Sant’Ana, A.S.; Pereira, J.L. Microbiological quality and safety of minimally processed vegetables marketed in Campinas, SP–Brazil, as assessed by traditional and alternative methods. Food Control. 2012, 28, 258–264. [Google Scholar] [CrossRef]
- Sant’Ana, A.S.; Igarashi, M.C.; Landgraf, M.; Destro, M.T.; Franco, B.D.G.M. Prevalence, populations and pheno-and genotypic characteristics of Listeria monocytogenes isolated from ready-to-eat vegetables marketed in São Paulo, Brazil. Int. J. Food Microbiol. 2012, 155, 1–9. [Google Scholar] [CrossRef]
- Vasconcellos, L.; Carvalho, C.T.; Tavares, R.O.; Medeiros, V.M.; Rosas, C.O.; Silva, J.N.; Lopes, S.M.D.R.; Forsythe, S.J.; Brandão, M.L.L. Isolation, molecular and phenotypic characterization of Cronobacter spp. in ready-to-eat salads and foods from Japanese cuisine commercialized in Brazil. Food Res. Int. 2018, 107, 353–359. [Google Scholar] [CrossRef]
- Cruz, M.R.G.D.; Leite, Y.J.B.D.S.; Marques, J.D.L.; Pavelquesi, S.L.S.; Oliveira, L.R.D.A.; Silva, I.C.R.D.; Orsi, D.C. Microbiological quality of minimally processed vegetables commercialized in Brasilia, DF, Brazil. Food Sci. Technol. 2019, 39, 498–503. [Google Scholar] [CrossRef]
- Schuh, V.; Schuh, J.; Fronza, N.; Foralosso, F.B.; Verruck, S.; Vargas Junior, A.; Silveira, S.M.D. Evaluation of the microbiological quality of minimally processed vegetables. Food Sci. Technol. 2020, 40, 290–295. [Google Scholar] [CrossRef]
- Santos, L.S.; Silva, L.V.; Lepaus, B.M.; São José, J.F.B. Microbial quality and labeling of minimally processed fruits and vegetables. Biosci. J. 2021, 37, 1981–3163. [Google Scholar] [CrossRef]
- Szabo, E.A.; Scurrah, K.J.; Burrows, J.M. Survey for psychrotrophic bacterial pathogens in minimally processed lettuce. Lett. Appl. Microbiol. 2000, 30, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Viñas, I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int. J. Food Microbiol. 2008, 123, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.H.; Jang, J.H.; Moon, K.D. Microbial evaluation of minimally processed vegetables and sprouts produced in Seoul, Korea. Food Sci. Biotechnol. 2010, 19, 1283–1288. [Google Scholar] [CrossRef]
- Xanthopoulos, V.; Tzanetakis, N.; Litopoulou-Tzanetaki, E. Occurrence and characterization of Aeromonas hydrophila and Yersinia enterocolitica in minimally processed fresh vegetable salads. Food Control. 2010, 21, 393–398. [Google Scholar] [CrossRef]
- Althaus, D.; Hofer, E.; Corti, S.; Julmi, A.; Stephan, R. Bacteriological survey of ready-to-eat lettuce, fresh-cut fruit, and sprouts collected from the Swiss market. J. Food Prot. 2012, 75, 1338–1341. [Google Scholar] [CrossRef]
- Moreno, Y.; Sánchez-Contreras, J.; Montes, R.M.; García-Hernández, J.; Ballesteros, L.; Ferrús, M.A. Detection and enumeration of viable Listeria monocytogenes cells from ready-to-eat and processed vegetable foods by culture and DVC-FISH. Food Control. 2012, 27, 374–379. [Google Scholar] [CrossRef]
- Santos, M.I.; Cavaco, A.; Gouveia, J.; Novais, M.R.; Nogueira, P.J.; Pedroso, L.; Ferreira, M.A.S.S. Evaluation of minimally processed salads commercialized in Portugal. Food Control 2012, 23, 275–281. [Google Scholar] [CrossRef]
- Eckert, C.; Burghoffer, B.; Barbut, F. Contamination of ready-to-eat raw vegetables with Clostridium difficile in France. J. Med. Microbiol. 2013, 62, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, M.; Burazin, J.; Pavlović, H.; Kopjar, M.; Piližota, V. Prevalence and level of Listeria monocytogenes and other Listeria sp. in ready-to-eat minimally processed and refrigerated vegetables. World J. Microbiol. Biotechnol. 2013, 29, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, M.Z.; Yunesian, M.; Gorji, M.E.H.; Noori, N.; Pourmand, M.R.; Khaniki, G.R.J. Microbial evaluation of fresh, minimally-processed vegetables and bagged sprouts from chain supermarkets. J. Health Popul. Nutr. 2014, 32, 391. [Google Scholar] [PubMed]
- Cerna-Cortes, J.F.; Leon-Montes, N.; Cortes-Cueto, A.L.; Salas-Rangel, L.P.; Helguera-Repetto, A.C.; Lopez-Hernandez, D.; Gonzalez-y-Merchand, J.A. Microbiological quality of ready-to-eat vegetables collected in Mexico City: Occurrence of aerobic-mesophilic bacteria, fecal coliforms, and potentially pathogenic nontuberculous mycobacteria. BioMed Res. Int. 2015, 2015, 789508. [Google Scholar] [CrossRef] [PubMed]
- Gurler, Z.; Pamuk, S.; Yildirim, Y.; Ertas, N. The microbiological quality of ready-to-eat salads in Turkey: A focus on Salmonella spp. and Listeria monocytogenes. Int. J. Food Microbiol. 2015, 196, 79–83. [Google Scholar] [CrossRef]
- Nousiainen, L.L.; Joutsen, S.; Lunden, J.; Hänninen, M.L.; Fredriksson-Ahomaa, M. Bacterial quality and safety of packaged fresh leafy vegetables at the retail level in Finland. Int. J. Food Microbiol. 2016, 232, 73–79. [Google Scholar] [CrossRef]
- Abaza, A. Bacteriological assessment of some vegetables and ready-to-eat salads in Alexandria Egypt. J. Egypt Public Health Assoc. 2017, 92, 177–187. [Google Scholar] [CrossRef]
- Berthold-Pluta, A.; Garbowska, M.; Stefańska, I.; Pluta, A. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp. Food Microbiol. 2017, 65, 221–230. [Google Scholar] [CrossRef]
- Bencardino, D.; Vitali, L.A.; Petrelli, D. Microbiological evaluation of ready-to-eat iceberg lettuce during shelf-life and effectiveness of household washing methods. Ital. J. Food Saf. 2018, 7, 6913. [Google Scholar] [CrossRef]
- Hualpa, D.; Toledo, Z.; Meneses, M.A.; Feng, P. Microbiological Quality of Minimally Processed, Ready-to-Eat, Vegetables in Loja, Ecuador. Rev. Politec. 2018, 41, 45–50. [Google Scholar]
- Azimirad, M.; Nadalian, B.; Alavifard, H.; Panirani, S.N.; Bonab, S.M.V.; Azimirad, F.; Gholami, F.; Jabbari, P.; Yadegar, A.; Busani, L.; et al. Microbiological survey and occurrence of bacterial foodborne pathogens in raw and ready-to-eat green leafy vegetables marketed in Tehran, Iran. Int. J. Hyg. Environ. Health 2021, 237, 113824. [Google Scholar] [CrossRef] [PubMed]
- Baraquet, M.L.; Camiletti, O.F.; Moretti, C.I.; Rodríguez, L.E.; Vázquez, C.; Oberto, M.G. Microbiological Status and Quality Traits of Ready-to-Eat Minimally Processed Vegetables Sold in Córdoba, Argentina. J. Food Qual. Hazards Control. 2021, 8, 119–124. [Google Scholar] [CrossRef]
- Łepecka, A.; Zielińska, D.; Szymański, P.; Buras, I.; Kołożyn-Krajewska, D. Assessment of the Microbiological Quality of Ready-to-Eat Salads—Are There Any Reasons for Concern about Public Health? Int. J. Environ. Res. Public Health 2022, 19, 1582. [Google Scholar] [CrossRef]
- WHO (World Health Organization); FAO (Food and Agriculture Organization of the United Nations). Shiga Toxin-Producing Escherichia coli (STEC) and Food: Attribution, Characterization, and Monitoring: Report; World Health Organization: Rome, Italy, 2018. Available online: https://apps.who.int/iris/handle/10665/272871. (accessed on 16 May 2023).
- Miralles, M.M.; Maestre-Carballa, L.; Lluesma-Gomez, M.; Martinez-Garcia, M. High-throughput 16S rRNA sequencing to assess potentially active bacteria and foodborne pathogens: A case example in ready-to-eat food. Foods 2019, 8, 480. [Google Scholar] [CrossRef]
- Tatsika, S.; Karamanoli, K.; Karayanni, H.; Genitsaris, S. Metagenomic characterization of bacterial communities on ready-to-eat vegetables and effects of household washing on their diversity and composition. Pathogens 2019, 8, 37. [Google Scholar] [CrossRef]
- Manthou, E.; Coeuret, G.; Chaillou, S.; Nychas, G.J.E. Metagenetic characterization of bacterial communities associated with ready-to-eat leafy vegetables and study of temperature effect on their composition during storage. Food Res. Int. 2022, 158, 111563. [Google Scholar] [CrossRef]
- Jung, Y.; Jang, H.; Matthews, K.R. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. J. Microbial. Biotechnol. 2014, 7, 517–527. [Google Scholar] [CrossRef]
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef]
- Garner, D.; Kathariou, S. Fresh produce-associated listeriosis outbreaks, sources of concern, teachable moments, and insights. J. Food Prot. 2016, 79, 337–344. [Google Scholar] [CrossRef]
- Elias, S.O.; Decol, L.T.; Tondo, E.C. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. Food Qual. Saf. 2018, 2, 173–181. [Google Scholar] [CrossRef]
- Ministério da Saúde; Secretaria de Vigilância em Saúde; Sistema de Informação de Agravos de Notificação. Situação Epidemiológica—Doenças Transmitidas Por Alimentos; Banco de dados 2000 a 2021; Ministério da Saúde: Brasília, Brazil, 2022.
- Ministério da Saúde; Agência Nacional de Vigilância Sanitária. Instrução Normativa n 161, de 01 de Julho de 2022; Estabelece os padrões microbiológicos dos alimentos; Ministério da Saúde: Brasília, Brazil, 2022.
- CFS (Centre for Food Safety). Microbiological Guidelines for Food (For Ready-To-Eat Food in General and Specific Food Items). In Food and Environmental Hygiene Department, Hong Kong. 2014. Available online: https://www.cfs.gov.hk/english/food_leg/files/food_leg_Microbiological_Guidelines_for_Food_e.pdf (accessed on 20 December 2022).
- EU (European Union). Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-20200308&rid=1 (accessed on 10 January 2023).
- FDA (Food and Drug Administration). FDA Circular 2013-010-Food and Drug Administration Philippines. 2013. Available online: https://members.wto.org/crnattachments/2021/TBT/PHL/21_3930_00_e.pdf (accessed on 10 January 2023).
Vegetables | Fresh Vegetables (BRL/100g) | MPVs (BRL/100g) | Price Difference | ||||
---|---|---|---|---|---|---|---|
Mean | Minimum | Maximum | Mean | Minimum | Maximum | BRL (%) | |
Arugula | 1.88 | 0.78 | 0.79 | 8.72 | 5.32 | 18.87 | 6.84 (463.8) |
Cassava | 0.70 | 0.47 | 0.86 | 1.00 | 1.00 | 1.00 | 0.30 (142.8) |
Escarole | 0.89 | 0.36 | 1.31 | 7.15 | 4.49 | 9.43 | 6.26 (803.4) |
Kale | 1.58 | 0.59 | 4.00 | 3.88 | 2.00 | 4.50 | 2.30 (245.6) |
Lettuce | 1.05 | 0.68 | 2.39 | 6.12 | 2.99 | 11.32 | 5.07 (582.9) |
Pumpkin | 1.02 | 0.30 | 2.00 | 1.55 | 2.10 | 2.10 | 0.53 (152.0) |
Spinach | 1.83 | 1.66 | 2.00 | 5.65 | 4.61 | 6.00 | 3.82 (308.7) |
Watercress | 1.05 | 1.05 | 1.05 | 6.71 | 6.24 | 7.98 | 5.66 (639.0) |
Microorganisms | Number of Samples | Range Counts | Unit | Reference | |
---|---|---|---|---|---|
Total n | Positive n (%) | ||||
Total psychrotrophic bacteria | 133 | 133 (100) | 1.0–6.0 | Log CFU/g | [54] |
Enterobacteriaceae | 133 (100) | 1.0 > 6.0 | Log CFU/g | ||
Total coliforms | 133 (100) | 1.0–>6.0 | Log CFU/g | ||
Thermotolerant coliforms | 133 (100) | 1.0–>6.0 | Log CFU/g | ||
Salmonella | 4 (3) | - | - | ||
Listeria monocytogenes | 181 | 1 (0.6) | - | – | |
Listeria welshimeri | 1 (0.6) | - | - | ||
Listeria innocua | 2 (1.1) | - | - | ||
Total mesophilic bacteria | 56 | 56 (100) | 5.7–8.2 | Log CFU/g | [55] |
Total psychrotrophic bacteria | 56 (100) | 6.9–8.2 | Log CFU/g | ||
Thermotolerant coliforms | 56 (100) | <0.5–4.0 | Log MNP/g | ||
Escherichia coli | 8 (28.6) | <0.5 | Log MNP/g | ||
Oocysts of Eimeria | 52 | 8 (15.3) | - | - | |
Total psychrotrophic bacteria | 162 | 157 (96.7) | 7.1–9.4 | Log CFU/g | [56] |
Total coliforms | 158 (97.5) | - | - | ||
Thermotolerant coliforms | 107 (66) | - | - | ||
Escherichia coli | 86 (53.1) | 1.0–6.0 | Log MNP/g | ||
Listeria | 6 (3.7) | - | - | ||
Listeria monocytogenes | 2 (1.2) | - | - | ||
Listeria innocua | 4 (2.4) | - | - | ||
Salmonella | 2 (1.2) | - | - | ||
Total coliforms | 512 | 512 (100) | 2.0–>6.0 | Log CFU/g | [57] |
Escherichia coli | 512 (100) | 2.0–5.0 | Log CFU/g | ||
Salmonella | 4 (0.8) | 2.4–2.9 | Log CFU/g | ||
Total mesophilic bacteria | 172 | 172 (100) | 4.0–6.8 | Log CFU/g | [58] |
Total coliforms | 172 (100) | 1.0–3.7 | Log CFU/g | ||
Escherichia coli | 10 (17.2) | <1.0–3.5 | Log CFU/g | ||
Listeria monocytogenes | 3 (1.2) | - | - | ||
Salmonella | 1 (0.6) | - | - | ||
Listeria monocytogenes | 512 | 16 (3.1) | 1.0–2.4 | Log CFU/g | [59] |
Cronobacter | 30 | 13 (43.3) | - | - | [60] |
Total mesophilic bacteria | 32 | 32 (100) | 4.0–8.0 | Log CFU/g | [61] |
Total psychrotrophic bacteria | 32 (100) | 4.0–8.0 | Log CFU/g | ||
Total coliforms | 32 (100) | 1.0–4.0 | Log MPN/g | ||
Thermotolerant coliforms | 32 (100) | 1.0–4.0 | Log MPN/g | ||
Escherichia coli | 16 (50) | - | - | ||
Staphylococcus aureus | 14 (43.8) | 1.0–5.0 | Log CFU/g | ||
Salmonella | 4 (12.5) | - | - | ||
Enterobacteriaceae | 100 | 86 (25.9) | 5.2–6.8 | Log MPN/g | [10] |
Total coliforms | 100 (100) | 2.6–3.0 | Log MPN/g | ||
Thermotolerant coliforms | 20 (20) | <0.5–3.0 | Log MPN/g | ||
Escherichia coli | 16 (16) | <0.5–1.9 | Log MPN/g | ||
Salmonella | 1 (1) | - | - | ||
Total mesophilic bacteria | 21 | 21 (100) | 2.4–7.4 | Log CFU/g | [62] |
Total coliforms | 9 (37.5) | 0.5–>3.0 | Log MPN/g | ||
Thermotolerant coliforms | 1 (4.1) | <0.5–2.3 | Log MPN/g | ||
Staphylococcus | 21 (100) | <2.0–7.2 | Log CFU/g | ||
Yeasts and molds | 21 (100) | 2.7–5.7 | Log CFU/g | ||
Enterobacteriaceae | 100 | 100 (100) | - | CFU/g | [21] |
Escherichia coli | 3 (3) | - | - | ||
Listeria innocua | 2 (2) | - | - | ||
Listeria fleischmannii | 1 (1) | - | - | ||
Total mesophilic bacteria | 30 | 30 (100) | 4.3–>6.3 | Log CFU/g | [63] |
Total coliforms | 30 (100) | 4.0–>6.3 | Log CFU/g | ||
Escherichia coli | 4 (13.3) | 3.0–3.6 | Log CFU/g | ||
Yeasts and molds | 30 (100) | 3.4–>6.3 | Log CFU/g |
Country | Microorganisms | Number of Samples | Range Counts | Unit | Reference | |
---|---|---|---|---|---|---|
Total | Positive | |||||
n | n (%) | |||||
Australia | Total psychrotrophic bacteria | 120 | 120 (100) | 3.0–9.0 | Log CFU/g | [64] |
Aeromonas hydrophila or A. caviae | 66 (55) | - | - | |||
Aeromonas sobria | 14 (12.7) | - | - | |||
Listeria monocytogenes | 3 (2.5) | - | - | |||
Yersinia enterocolitica | 71 (59.2) | - | - | |||
Spain | Total mesophilic bacteria | 236 | 236 (100) | 4.3–8.9 | Log CFU/g | [65] |
Total psychrotrophic bacteria | 236 (100) | 4.3–8.9 | Log CFU/g | |||
Lactic acid bacteria | 236 (100) | <1.0–8.5 | Log CFU/g | |||
Enterobacteriaceae | 236 (100) | <1.0–8.0 | Log CFU/g | |||
Escherichia coli | 27 (11.4) | - | - | |||
Listeria monocytogenes | 2 (0.8) | - | - | |||
Salmonella | 4 (1.7) | - | - | |||
Yeasts and molds | 236 (100) | 2.0–7.8 | Log CFU/g | |||
Korea | Total mesophilic bacteria | 159 | 159 (100) | 4.2–8.9 | Log CFU/g | [66] |
Total psychrotrophic bacteria | 159 (100) | 3.2–8.5 | Log CFU/g | |||
Total coliforms | 159 (100) | 2.2–8.2 | Log CFU/g | |||
Escherichia coli | 7 (4.4) | - | - | |||
Clostridium perfringens | 6 (3.7) | - | - | |||
Salmonella | 2 (1.2) | - | - | |||
Yeasts and molds | 159 (100) | 1.7–7.5 | Log CFU/g | |||
Greece | Total mesophilic bacteria | 26 | 26 (100) | 5.4–8.6 | Log CFU/g | [67] |
Escherichia coli | 3 (11.5) | - | - | |||
Aeromonas | 16 (61.5) | - | - | |||
Aeromonas hydrophila | 12 (46.1) | - | - | |||
Yersinia enterocolitica | 2 (7.7) | - | - | |||
Yeasts and molds | 26 (100) | <3.0 | Log CFU/g | |||
Switzerland | Total viable count | 142 | 142 (100) | 5.0–>8.0 | Log CFU/g | [68] |
Cronobacter | 2 (1.4) | - | - | |||
Escherichia coli (EPEC) | 11 (7.7) | <2.0–3.0 | Log CFU/g | |||
Escherichia coli (STEC) | 1 (0.7) | <2.0 | Log CFU/g | |||
Listeria monocytogenes | 5 (3.5) | <2.0 | Log CFU/g | |||
Spain | Listeria monocytogenes | 191 | 8 (4.2) | <100.0 | CFU/g | [69] |
Portugal | Total psychrotrophic bacteria | 151 | 151 (100) | 0.7–0.9 | Log CFU/g | [70] |
Enterobacteriaceae | 151 (100) | 2.0–8.0 | Log CFU/g | |||
Escherichia coli | 4 (2.6) | <1.0–2.3 | Log CFU/g | |||
Listeria | 3 (2) | <1.0–2.0 | Log CFU/g | |||
Listeria innocua | 2 (1.3) | 2.0–2.3 | Log CFU/g | |||
Listeria monocytogenes | 1 (0.7) | <2.0 | Log CFU/g | |||
Aeromonas hydrophila | 11 (7.3) | 3.1–5.1 | Log CFU/g | |||
Bacillus cereus | 66 | 15 (22.7) | <2.0–3.2 | Log CFU/g | ||
France | Clostridium difficile | 104 | 3 (2.9) | - | - | [71] |
Croatia | Listeria monocytogenes | 100 | 1 (1) | 1.8 | Log CFU/g | [72] |
Listeria | 20 (20) | - | - | |||
Iran | Total mesophilic bacteria | 32 | 32 (100) | 5.3–7.5 | Log CFU/g | [73] |
Total coliforms | 28 (87.5) | ND *–5.5 | Log CFU/g | |||
Thermotolerant coliforms | 11 (34.4) | - | - | |||
Escherichia coli | 3 (9.4) | - | - | |||
Yeasts and molds | 32 (100) | 5.4–7.6 | Log CFU/g | |||
Mexico | Total mesophilic bacteria | 100 | 100 (100) | 3.0–6.6 | Log CFU/g | [74] |
Total coliforms | 96 (100) | <0.5–>3.0 | Log NMP/g | |||
Thermotolerant coliforms | 32 (32) | <0.5–>3.0 | Log NMP/g | |||
Nontuberculous mycobacteria | 7 (7) | - | - | |||
Turkey | Total psychrotrophic bacteria | 261 | 235 (90) | 2.0–> 6.0 | Log CFU/g | [75] |
Total coliforms | 155 (59.3) | >0.5 | Log NMP/g | |||
Escherichia coli | 10 (3.8) | >0.5 | Log NMP/g | |||
Listeria monocytogenes | 15 (5.7) | - | - | |||
Listeria ivanovi | 14 (5.3) | - | - | |||
Listeria grayi | 21 (8) | - | - | |||
Listeria welshimeri | 23 (8.8) | - | - | |||
Salmonella | 21 (8) | - | - | |||
Finland | Total mesophilic bacteria | 100 | 100 (100) | 6.2–10.6 | Log CFU/g | [76] |
Total coliforms | 100 (100) | 4.2–8.3 | Log CFU/g | |||
Escherichia coli | 15 (15) | - | - | |||
Escherichia coli (STEC) | 7 (7) | - | - | |||
Listeria | 4 (4) | - | - | |||
Listeria monocytogenes | 2 (2) | - | - | |||
Yersinia | 33 (33) | - | - | |||
Yersinia enterocolitica | 3 (3) | - | - | |||
Salmonella | 2 (2) | - | - | |||
Egypt | Total mesophilic bacteria | 50 | 10 (35.7) | 3.8–9.4 | Log CFU/g | [77] |
Total coliforms | 33 (66) | - | - | |||
Thermotolerant coliforms | 33 (66) | - | - | |||
Escherichia coli | 4 (18.2) | - | - | |||
Poland | Total mesophilic bacteria | 20 | 20 (100) | 5.6–7.6 | Log CFU/g | [78] |
Cronobacter | 6 (35) | - | - | |||
Cronobacter sakazakii | 3 (15) | - | - | |||
Italy | Total mesophilic bacteria | 78 | 78 (100) | 6.0–9.2 | Log CFU/g | [79] |
Ecuador | Total mesophilic bacteria | 60 | 60 (100) | 4.5–7.8 | Log CFU/g | [80] |
Total coliforms | 60 (100) | 0.4–>5.0 | Log MNP/g | |||
Escherichia coli | 13 (21.7) | <0.8 | Log MNP/g | |||
Canada | Listeria monocytogenes | 5379 | 13 (0.2) | - | - | [46] |
Iran | Escherichia coli | 92 | 28 (30.4) | - | - | [81] |
Clostridium perfringens | 8 (8.7) | - | - | |||
Bacillus cereus | 10 (10.9) | - | - | |||
Listeria monocytogenes | 4 (4.3) | - | - | |||
Staphylococcus aureus | 18 (19.6) | - | - | |||
Pseudomonas aeruginosa | 4 (4.3) | - | - | |||
Shigella | 2 (2.2) | - | - | |||
Salmonella | 3 (3.3) | - | - | |||
Argentina | Total coliforms | 60 | 60 (100) | 1.3–3.3 | Log MPN/g | [82] |
Thermotolerant coliforms | 60 (100) | 0.3–1.9 | Log MPN/g | |||
Escherichia coli | 15 (25) | 3.4–8.4 | Log CFU/g | |||
Staphylococcus aureus | 3 (5) | - | - | |||
Poland | Total mesophilic bacteria | 30 | 30 (100) | 2.3–9.3 | Log CFU/g | [83] |
Enterobacteriaceae | 30 (100) | <1.0–7.4 | Log CFU/g | |||
Escherichia coli | 30 (100) | <1.0–5.5 | Log CFU/g | |||
Staphylococcus aureus | 30 (100) | <1.0–3.5 | Log CFU/g | |||
Lactic acid bacteria | 30 (100) | <1.0–8.4 | Log CFU/g | |||
Listeria monocytogenes | 10 (33.3) | - | - | |||
Salmonella | 8 (26.7) | - | - | |||
Yeasts and molds | 30 (100) | <1.0–7.0 | Log CFU/g |
Etiological Agents | Outbreaks |
Sick
Individuals |
Dead
Individuals | ||
---|---|---|---|---|---|
n | % | n | % | n | |
Not identified | 39 | 25.5 | 703 | 19.6 | 1 |
Escherichia coli * | 27 | 17.6 | 752 | 21 | 0 |
Salmonella spp. | 25 | 16.3 | 681 | 19 | 0 |
Bacillus cereus | 20 | 13.1 | 543 | 15.2 | 0 |
Staphylococcus aureus | 14 | 9.2 | 515 | 14.4 | 0 |
Others | 28 | 18.3 | 388 | 10.8 | 1 |
Total | 153 | 100 | 3582 | 100 | 2 |
Sites of occurrence | |||||
Restaurants/bakeries | 31 | 20.3 | 270 | 7.5 | 0 |
Homes | 31 | 20.3 | 222 | 6.2 | 2 |
Other institutions (accommodation facilities, workplace) | 29 | 19 | 1271 | 35.5 | 0 |
Others | 62 | 40.4 | 1819 | 50.8 | 0 |
Total | 153 | 100 | 3582 | 100 | 2 |
Source | Criteria | Guidelines | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bacillus cereus | Campylobacter spp. | Clostridium perfringens | Escherichia coli | Listeria monocytogenes | Salmonella spp. | Staphylococcus aureus | Vibrio cholerae | Vibrio parahaemolyticus | Yeasts and Molds | ||
Brazilian Ministry of Health [93] | Satisfactory | N/A | N/A | N/A | 10 | 102 | Abs/25 g | N/A | N/A | N/A | N/A |
Acceptable | N/A | N/A | N/A | 102 | N/A | N/A | N/A | N/A | N/A | N/A | |
Centre for Food Safety China [94] | Satisfactory | <103 | Abs/25 g | <10 | Abs/25 g | Abs/25 g | Abs/25 g | <20 | Abs/25 g | <20 | Abs/25 g |
Acceptable | 103–≤105 | N/A | 10–≤104 | N/A | N/A | N/A | 20–≤104 | N/A | 20–≤103 | N/A | |
European Union [95] | Satisfactory | N/A | N/A | N/A | 102 | 102 | Abs/25 g | N/A | N/A | N/A | N/A |
Acceptable | N/A | N/A | N/A | 103 | N/A | N/A | N/A | N/A | N/A | N/A | |
Food and Drug Administration USA [96] | Satisfactory | N/A | N/A | N/A | <3 * | N/A | Abs/25 g | 10 | N/A | N/A | 102 |
Acceptable | N/A | N/A | N/A | N/A | Abs/25 g | N/A | N/A | N/A | N/A | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finger, J.A.F.F.; Santos, I.M.; Silva, G.A.; Bernardino, M.C.; Pinto, U.M.; Maffei, D.F. Minimally Processed Vegetables in Brazil: An Overview of Marketing, Processing, and Microbiological Aspects. Foods 2023, 12, 2259. https://doi.org/10.3390/foods12112259
Finger JAFF, Santos IM, Silva GA, Bernardino MC, Pinto UM, Maffei DF. Minimally Processed Vegetables in Brazil: An Overview of Marketing, Processing, and Microbiological Aspects. Foods. 2023; 12(11):2259. https://doi.org/10.3390/foods12112259
Chicago/Turabian StyleFinger, Jéssica A. F. F., Isabela M. Santos, Guilherme A. Silva, Mariana C. Bernardino, Uelinton M. Pinto, and Daniele F. Maffei. 2023. "Minimally Processed Vegetables in Brazil: An Overview of Marketing, Processing, and Microbiological Aspects" Foods 12, no. 11: 2259. https://doi.org/10.3390/foods12112259
APA StyleFinger, J. A. F. F., Santos, I. M., Silva, G. A., Bernardino, M. C., Pinto, U. M., & Maffei, D. F. (2023). Minimally Processed Vegetables in Brazil: An Overview of Marketing, Processing, and Microbiological Aspects. Foods, 12(11), 2259. https://doi.org/10.3390/foods12112259