The Role of Ancient Grains in Alleviating Hunger and Malnutrition
Abstract
:1. Introduction
2. Ancient Cereals
3. Ancient Grains vs. Modern Grains
4. Physicochemical, Nutritional Profile and Health Benefits of the Ancient Grains
4.1. Wheat
4.2. Green Wheat (Freekeh)
4.3. Barley
4.4. Barley
4.5. Oats
4.6. Sorghum
4.7. Millet
4.8. Wild Rice
4.9. Amaranth
4.10. Quinoa
4.11. Teff
4.12. Chia
4.13. Buckwheat
5. Current Food Applications of Ancient Grains
6. How Can Ancient Grains Prevent Hunger and Malnutrition?
6.1. Ancient Grains as Highly Resilient Crops
6.2. Ancient Grains as Nutrient-Dense and Health-Promoting Foods
6.3. Ancient Grains to Diversify Food Sources
6.4. Ancient Grains for Special Diet Foods
6.5. Ancient Grains to Support Small-Scale Farmers
7. Major Shortcomings of the Ancient Grains in to Fight against Hunger
8. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Shuai, C.; Wu, Y. Global food stability and its socio-economic determinants towards sustainable development goal 2 (Zero Hunger). In Sustainable Development; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Bangar, S.P.; Sandhu, K.S.; Trif, M.; Manjunatha, V.; Lorenzo, J.M. Germinated Barley Cultivars: Effect on physicochemical and bioactive properties. Food Anal. Methods 2022, 15, 2505–2512. [Google Scholar] [CrossRef]
- Nani, M.; Krishnaswamy, K. Physical and functional properties of ancient grains and flours and their potential contribution to sustainable food processing. Int. J. Food Prop. 2021, 24, 1529–1547. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Würschum, T. Back to the future; Tapping into ancient grains for food diversity. Trends Plant Sci. 2016, 21, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Biel, W.; Jaroszewska, A.; Stankowski, S.; Sobolewska, M.; Kępińska-Pacelik, J. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur. Food Res. Technol. 2021, 247, 1525–1538. [Google Scholar] [CrossRef]
- Bordoni, A.; Danesi, F.; Di Nunzio, M.; Taccari, A.; Valli, V. Ancient wheat and health: A legend or the reality? A review on KAMUT khorasan wheat. Int. J. Food Sci. Nutr. 2017, 68, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A. Review: Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 2018, 269, 136–142. [Google Scholar] [CrossRef]
- Sharma, S.; Sahni, P. Germination behaviour, techno-functional characteristics, antinutrients, antioxidant activity and mineral profile of lucerne as influenced by germination regimes. J. Food Meas. Charact. 2021, 15, 1796–1809. [Google Scholar] [CrossRef]
- Shewry, P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci. 2018, 79, 469–476. [Google Scholar] [CrossRef]
- Dieterich, W.; Schuster, C.; Gundel, P.; Scherf, K.A.; Pronin, D.; Geisslitz, S.; Börner, A.; Neurath, M.F.; Zopf, Y. Proteins from modern and ancient wheat cultivars: Impact on immune cells of healthy individuals and patients with NCGS. Nutrients 2022, 14, 4257. [Google Scholar] [CrossRef]
- Pronin, D.; Börner, A.; Scherf, K.A. Old and modern wheat (Triticum aestivum L.) cultivars and their potential to elicit celiac disease. Food Chem. 2021, 339, 127952. [Google Scholar] [CrossRef]
- Sievers, S.; Rohrbach, A.; Beyer, K. Wheat-induced food allergy in childhood: Ancient grains seem no way out. Eur. J. Nutr. 2020, 59, 2693–2707. [Google Scholar] [CrossRef] [PubMed]
- Simsek, S.; Budak, B.; Schwebach, C.S.; Ovando-Martínez, M. Starch digestibility properties of bread from hard red spring wheat cultivars released in the last 100 years. Cereal Chem. 2020, 97, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- Seidita, A.; Mansueto, P.; Giuliano, A.; Chiavetta, M.; Mandreucci, F.; Soresi, M.; Pistone, M.; Compagnoni, S.; Castellucci, D.; Bisso, G.; et al. Potential tolerability of ancient grains in non-celiac wheat sensitivity patients: A preliminary evaluation. Front. Med. 2022, 9, 995019. [Google Scholar] [CrossRef] [PubMed]
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulathunga, J.; Reuhs, B.L.; Simsek, S. A review: Novel trends in hulled wheat processing for value addition. Trends Food Sci. Technol. 2020, 106, 232–241. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Kulathunga, J.; Simsek, S. Dietary fiber variation in ancient and modern wheat species: Einkorn, emmer, spelt and hard red spring wheat. J. Cereal Sci. 2022, 104, 103420. [Google Scholar] [CrossRef]
- Al-Mahasneh, M.A.; Rababah, T.M.; Bani-Amer, M.M.; Al-Omari, N.M.; Mahasneh, M.K. Fuzzy and conventional modeling of open sun drying kinetics for roasted green wheat. Int. J. Food Prop. 2013, 16, 70–80. [Google Scholar] [CrossRef]
- Al-Mahasneh, M.; Amer, M.B.; Rababah, T. Modelling moisture sorption isotherms in roasted green wheat using least square regression and neural-fuzzy techniques. Food Bioprod. Process. 2012, 90, 165–170. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, D.; Song, J.; Guo, D.; Xiao, Y.; Shen, R. Effects of green wheat flour on textural properties, digestive and flavor characteristics of the noodles. J. Food Process. Preserv. 2021, 45, e15199. [Google Scholar] [CrossRef]
- Özboy, Ö.; Özkaya, B.; Özkaya, H.; Köksel, H. Effects of wheat maturation stage and cooking method on dietary fiber and phytic acid contents of firik, a wheat-based local food. Food/Nahr. 2001, 45, 347–349. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Xu, N.; Yang, X.; Zhang, G.; Zhang, Y.; Liu, Q. Study of the protein, antioxidant activity, and starch during in vitro simulated digestion of green wheat and wheat cooked flours. Int. J. Food Prop. 2020, 23, 722–735. [Google Scholar] [CrossRef]
- Delcour, J.A.; Hoseney, C.P. Principles of Cereal Science and Technology, 3rd ed.; AACC International: Eagan, MN, USA, 2010. [Google Scholar]
- Smith, O.; Clapham, A.; Rose, P.; Liu, Y.; Wang, J.; Allaby, R.G. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. 2014, 4, 4003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taketa, S.; Amano, S.; Tsujino, Y.; Sato, T.; Saisho, D.; Kakeda, K.; Nomura, M.; Suzuki, T.; Matsumoto, T.; Sato, K.; et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. USA 2008, 105, 4062–4067. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Jing, L.; Su, C.; Zhang, B.; Zhang, Q.; Li, W. The profile, content and antioxidant activity of anthocyanin in germinated naked barley grains with infrared and hot air drying. Int. J. Food Sci. Technol. 2021, 56, 3834–3844. [Google Scholar] [CrossRef]
- Kaukovirta-Norja, A.; Lehtinen, P. Traditional and Modern Oat-Based Foods. In Technology of Functional Cereal Products; Elsevier: Amsterdam, The Netherlands, 2008; pp. 215–232. [Google Scholar]
- Sangwan, S.; Singh, R.; Tomar, S.K. Nutritional and functional properties of oats: An update. J. Innov. Biol. 2014, 1, 3–14. [Google Scholar]
- Ferguson, J.J.; Stojanovski, E.; MacDonald-Wicks, L.; Garg, M.L. High molecular weight oat β-glucan enhances lipid-lowering effects of phytosterols. A randomised controlled trial. Clin. Nutr. 2020, 39, 80–89. [Google Scholar] [CrossRef]
- Bhardwaj, R.D.; Kapoor, R.; Grewal, S.K. Biochemical characterization of oat (Avena sativa L.) genotypes with high nutritional potential. LWT Food Sci. Technol. 2019, 110, 32–39. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 29 May 2023).
- Khoddami, A.; Messina, V.; Vadabalija Venkata, K.; Farahnaky, A.; Blanchard, C.L.; Roberts, T.H. Sorghum in foods: Functionality and potential in innovative products. Crit. Rev. Food Sci. Nutr. 2023, 63, 1170–1186. [Google Scholar] [CrossRef]
- Rad, S.V.; Valadabadi, S.A.R.; Pouryousef, M.; Saifzadeh, S.; Zakrin, H.R.; Mastinu, A. Quantitative and qualitative evaluation of Sorghum bicolor L. under intercropping with legumes and different weed control methods. Horticulturae 2020, 6, 78. [Google Scholar] [CrossRef]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Wu, G.; Johnson, S.K.; Blanchard, C.L. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 2018, 84, 103–111. [Google Scholar] [CrossRef]
- Punia, H.; Tokas, J.; Malik, A.; Sangwan, S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res. Commun. 2021, 49, 343–353. [Google Scholar] [CrossRef]
- Palacios, C.E.; Nagai, A.; Torres, P.; Rodrigues, J.A.; Salatino, A. Contents of tannins of cultivars of sorghum cultivated in Brazil, as determined by four quantification methods. Food Chem. 2021, 337, 127970. [Google Scholar] [CrossRef]
- Mohapatra, D.; Patel, A.S.; Kar, A.; Deshpande, S.S.; Tripathi, M.K. Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chem. 2019, 271, 129–135. [Google Scholar] [CrossRef]
- Pan, L.; An, D.; Zhu, W. Low-tannin sorghum grain could be used as an alternative to corn in diet for nursery pigs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 890–897. [Google Scholar] [CrossRef]
- Haliza, W.; Widowati, S. The characteristic of different formula of low tannin sorghum instant porridge. IOP Conf. Ser. Earth Environ. Sci. 2021, 653, 012124. [Google Scholar] [CrossRef]
- Palavecino, P.M.; Curti, M.I.; Bustos, M.C.; Penci, M.C.; Ribotta, P.D. Sorghum pasta and noodles: Technological and nutritional aspects. Plant Foods Hum. Nutr. 2020, 75, 326–336. [Google Scholar] [CrossRef]
- Gao, F.; Li, X.; Li, X.; Liu, Z.; Zou, X.; Wang, L.; Zhang, H. Physicochemical properties and correlation analysis of retrograded starch from different varieties of sorghum. Int. J. Food Sci. Technol. 2022, 57, 6678–6689. [Google Scholar] [CrossRef]
- Li, W.; Wen, L.; Chen, Z.; Zhang, Z.; Pang, X.; Deng, Z.; Liu, T.; Guo, Y. Study on metabolic variation in whole grains of four proso millet varieties reveals metabolites important for antioxidant properties and quality traits. Food Chem. 2021, 357, 129791. [Google Scholar] [CrossRef]
- Suma, P.F.; Urooj, A. Isolation and characterization of starch from pearl millet (Pennisetum typhoidium) flours. Int. J. Food Prop. 2015, 18, 2675–2687. [Google Scholar] [CrossRef] [Green Version]
- Gull, A.; Prasad, K.; Kumar, P. Physico-chemical, functional and antioxidant properties of millet flours. J. Agric. Eng. Food Technol. 2015, 2, 73–75. [Google Scholar]
- Slama, A.; Cherif, A.; Sakouhi, F.; Boukhchina, S.; Radhouane, L. Fatty acids, phytochemical composition and antioxidant potential of pearl millet oil. J. Consum. Prot. Food Saf. 2020, 15, 145–151. [Google Scholar] [CrossRef]
- Chauhan, E.; Sarita, S. Effects of processing (germination and popping) on the nutritional and anti-nutritional properties of finger millet (Eleusine Coracana). Curr. Res. Nutr. Food Sci. J. 2018, 6, 566–572. [Google Scholar] [CrossRef]
- Dey, S.; Saxena, A.; Kumar, Y.; Maity, T.; Tarafdar, A. Understanding the antinutritional factors and bioactive compounds of kodo millet (Paspalum scrobiculatum) and little millet (Panicum sumatrense). J. Food Qual. 2022, 2022, 1578448. [Google Scholar] [CrossRef]
- Chu, M.-J.; Liu, X.-M.; Yan, N.; Wang, F.-Z.; Du, Y.-M.; Zhang, Z.-F. Partial purification, identification, and quantitation of antioxidants from wild rice (Zizania latifolia). Molecules 2018, 23, 2782. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant activity of commercial wild rice and identification of flavonoid compounds in active fractions. J. Agric. Food Chem. 2009, 57, 7543–7551. [Google Scholar] [CrossRef]
- Melini, V.; Acquistucci, R. Health-promoting compounds in pigmented Thai and wild rice. Foods 2017, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.-D.; Yan, N.; Du, Y.-M.; Liang, H.; Zhang, Z.-F.; Yuan, X.-L. Consumption of wild rice (zizania latifolia) prevents metabolic associated fatty liver disease through the modulation of the gut microbiota in mice model. Int. J. Mol. Sci. 2020, 21, 5375. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci. Technol. 2018, 75, 170–180. [Google Scholar] [CrossRef]
- Coelho, L.M.; Silva, P.M.; Martins, J.T.; Pinheiro, A.C.; Vicente, A.A. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct. 2018, 9, 5499–5512. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Graziano, S.; Agrimonti, C.; Marmiroli, N.; Gullì, M. Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends Food Sci. Technol. 2022, 125, 154–165. [Google Scholar] [CrossRef]
- Filho, A.M.M.; Pirozi, M.R.; Borges, J.T.D.S.; Pinheiro Sant’Ana, H.M.; Chaves, J.B.P.; Coimbra, J.S.D.R. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 57, 1618–1630. [Google Scholar] [CrossRef]
- Ugural, A.; Akyol, A. Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics? Crit. Rev. Food Sci. Nutr. 2022, 62, 1725–1739. [Google Scholar] [CrossRef]
- Satheesh, N.; Fanta, S.W. Review on structural, nutritional and anti-nutritional composition of teff (Eragrostis tef) in comparison with quinoa (Chenopodium quinoa Willd.). Cogent Food Agric. 2018, 4, 1546942. [Google Scholar] [CrossRef]
- Barretto, R.; Buenavista, R.M.; Rivera, J.L.; Wang, S.; Prasad, P.V.V.; Siliveru, K. Teff (Eragrostis tef) processing, utilization and future opportunities: A review. Int. J. Food Sci. Technol. 2021, 56, 3125–3137. [Google Scholar] [CrossRef]
- Gebremariam, M.M.; Zarnkow, M.; Becker, T. Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: A review. J. Food Sci. Technol. 2014, 51, 2881–2895. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.G.; Alvarez-Orti, M.; Pardo, J.E.; Oliveira, M.; Alves, R.C. Characterization of chia seeds, cold-pressed oil, and defatted cake: An ancient grain for modern food production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef]
- Gómez-Velázquez, H.D.J.; Aparicio-Fernández, X.; Mora, O.; González Davalos, M.L.; de los Ríos, E.A.; Reynoso-Camacho, R. Chia seeds and chemical-elicited sprouts supplementation ameliorates insulin resistance, dyslipidemia, and hepatic steatosis in obese rats. J. Food Biochem. 2022, 46, e14136. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V.d.S.C.N.; Zago, L.; Antunes, A.E.C.; Miyahira, R.F. Chia (Salvia hispanica L.) seed germination: A brief review. Plant Foods Hum. Nutr. 2022, 77, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An overview-ohytochemical orofile, isolation methods, and application. Molecules 2019, 25, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, D.A.; Khalid, N.; Ahmad, A.; Abbasi, N.; Msz, L.; Randhawa, M. Phytochemicals and biofunctional properties of buckwheat: A review. J. Agric. Sci. 2013, 152, 349–369. [Google Scholar] [CrossRef]
- Borisjuk, L.; Rolletschek, H.; Radchuk, V. Advances in the understanding of barley plant physiology: Factors determining grain development, composition, and chemistry. In Achieving Sustainable Cultivation of Barley; Routledge: Oxford, UK, 2020; pp. 53–96. [Google Scholar]
- Zhang, K.; Dong, R.; Hu, X.; Ren, C.; Li, Y. Oat-based foods: Chemical constituents, glycemic index, and the effect of processing. Foods 2021, 10, 1304. [Google Scholar] [CrossRef]
- Tumwine, G.; Atukwase, A.; Tumuhimbise, G.A.; Tucungwirwe, F.; Linnemann, A. Production of nutrient-enhanced millet-based composite flour using skimmed milk powder and vegetables. Food Sci. Nutr. 2019, 7, 22–34. [Google Scholar] [CrossRef]
- Zhang, K.; Wen, Q.; Wang, Y.; Li, T.; Nie, B.; Zhang, Y. Study on the in vitro digestion process of green wheat protein: Structure characterization and product analysis. Food Sci. Nutr. 2022, 10, 3462–3474. [Google Scholar] [CrossRef]
- Rocchetti, G.; Giuberti, G.; Busconi, M.; Marocco, A.; Trevisan, M.; Lucini, L. Pigmented sorghum polyphenols as potential inhibitors of starch digestibility: An in vitro study combining starch digestion and untargeted metabolomics. Food Chem. 2020, 312, 126077. [Google Scholar] [CrossRef]
- Shumoy, H.; Raes, K. Tef: The rising ancient cereal: What do we know about its nutritional and health benefits? Plant Foods Hum. Nutr. 2017, 72, 335–344. [Google Scholar] [CrossRef]
- Abugoch James, L.E. Chapter 1 Quinoa (Chenopodium quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2009; pp. 1–31. [Google Scholar]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef]
- Tekin, M.; Cengiz, M.F.; Abbasov, M.; Aksoy, A.; Canci, H.; Akar, T. Comparison of some mineral nutrients and vitamins in advanced hulled wheat lines. Cereal Chem. 2018, 95, 436–444. [Google Scholar] [CrossRef]
- Singkhornart, S.; Ryu, G.H. Effect of soaking time and steeping temperature on biochemical properties and γ-aminobutyric acid (GABA) content of germinated wheat and barley. J. Food Sci. Nutr. 2011, 16, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Collar, C.; Jiménez, T.; Conte, P.; Fadda, C. Impact of ancient cereals, pseudocereals and legumes on starch hydrolysis and antiradical activity of technologically viable blended breads. Carbohydr. Polym. 2014, 113, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, K.D.; Jha, A.; Sabikhi, L.; Singh, A. Significance of coarse cereals in health and nutrition: A review. J. Food Sci. Technol. 2014, 51, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- Punia Bangar, S.; Sharma, N.; Singh, A.; Phimolsiripol, Y.; Brennan, C.S. Glycaemic response of pseudocereal-based gluten-free food products: A review. Int. J. Food Sci. Technol. 2022, 57, 4936–4944. [Google Scholar] [CrossRef]
Ancient Grains | Carbohydrate | Starch | Dietary Fibre | Protein | Lipid | Ash | References |
---|---|---|---|---|---|---|---|
Spelt wheat | 68–72 | 52–65 | 10.7–13.9 | 14.6–15.7 | 1.7–1.9 | 1.7–1.9 | [6,7] |
Emmer wheat | 63.5–68.5 | 52–65 | 7.2–12.0 | 14–16 | 1.8–2.8 | 2.1–2.3 | [6] |
Einkorn wheat | 60–64 | 58–68 | 9.3–12.8 | 13.5–15.4 | 2.0–2.8 | 2.6–2.2 | [6] |
Barley | 64–75% | 59.1–61.6 | 12.8–17.2 | 11.7–13.6 | 1.4–3.9 | 1.5–4.5 | [11] |
Oat | 75–80 | 54.9–63.6 | 8.5–13 | 10.0–15.0 | 3.0–8.0 | 1.7–1.9 | [12] |
Millet | 65–80.6 | 62–70 | 1.52–4.65 | 6.2–14.5 | 1.2–8.2 | 0.73–3.3 | [13] |
Wild rice | 71–84 | 56–79 | 1.15–1.93 | 10–15.5 | 0.7–1.23 | 1.1–2.0 | [14] |
Green wheat | 73–80 | 45–68 | 12.0–19.0 | 11.0–15.0 | 1.32–2.7 | 0.8–2.0 | [15] |
Sorghum | 57–83 | 55–79 | 1.0–7.4 | 7–15 | 2–3 | 0.68–4.2 | [16,17] |
Amaranth | 63.8–65.2% | 65–75% | 6.7–11.4% | 12.5–13.5% | 5.7–7.2% | 1.5–2.8% | [18,19] |
Quinoa | 65 | 58.1–64.2 | 16.5 | 12.8 | 3.9 | 2.4 | [20] |
Teff | 67 | - | 12.1 | 13 | 5 | 2.2 | [21] |
Chia | 3.4 | - | 21.1–33.3- | 18.9 | 31.2 | 2.9 | [22] |
Buckwheat | 65 | 54.5–57.4 | 13.8 | 15.1 | 2.9 | 1.9 | [23,19] |
Ancient Grains | Vitamins | Minerals | Main Antioxidants | Health Benefits | Ref. |
---|---|---|---|---|---|
Spelt | Vit. B1: 0.14–0.17 mg/100 g | Zn: 47 mg/kg Fe: 50 mg/kg P: 4.7 g/kg | Ferulic acids: 223–502 µg/g | Modulating postprandial glycemia and insulin level | [10] |
Emmer | Vit. B1: 0.42 mg/100 g | Zn: 54 mg/kg Fe: 49 mg/kg P: 5.1 g/kg | Ferulic acids: 323–711 µg/g | Reducing total cholesterol, LDL cholesterol and blood glucose | [24] |
Einkorn | Vit. B2: 0.45 mg/100 g | Zn: 36–84 mg/kg Fe: 32–85 mg/ kg Mn: 26–92 g/kg P: 5.2 g/kg Cu: 4.1–10 mg/kg | Ferulic acids: 207–442 µg/g | Enhancing blood carotenoid level, antioxidant activities that reduce cardiovascular disease and hypoallergenic effects | [6,25] |
Barley | Vit. B1: 0.35 mg/100 g; Vit. B2: 0.091 mg/100 g Vit. E: 0.85–3.15 mg/100 g | Zn: 6–245 mg/kg Fe: 26–334 mg/kg P: 3320–5020 mg/kg | Ferulic acid: 4.5–102 mg/100 g | Reducing blood cholesterol levels and increasing insulin response in diabetics, lowering blood glucose levels, weight control, gut regulation, preventing colon cancer | [26] |
Oats | Vit. B1: 50 mg/kg; Vit. B2: 1.4 mg/kg | Zn: 39 mg/kg Fe: 38 mg/kg P: 3.7 g/kg | Ferulic acids: 24–40.8 µg/100 g | Reducing the serum cholesterol, excellent antioxidant and anti-inflammatory activities, improving gut health and reducing risks of cardiovascular diseases | [27] |
Millet | Vit. C: 0.04 mg/100 g Vit. A: 0.015 mg/100 g Vit. B1: 0.15–0.52 mg/100 g Vit. B2: 0.09–0.28 mg/100 g Vit. B3: 1.1–4.5 mg/100 g | Ca: 23–350 mg/100 g Fe: 1.18–53.39 mg/100 g P: 255–509 mg/100 g Zn: 0.73–4.2 mg/100 g Mg: 78–201 mg/100 g | TPC: 36–445 mg/100 g TFC: 51–202 mg/100 g Ferulic acid: 3.3–36.6 mg/100 g | Antioxidative and antiproliferative activities; therapeutic intervention in type 2 diabetes; alleviation of cardiovascular diseases, liver injury and cancer; lowering blood pressure. | [28] |
Wild rice | Vit. B1: 0.30–0.63 mg/100 g Vit. B2: 0.07–0.2 mg/100 g Vit. E: 0.2–4.8 mg/100 g | Ca: 21–24 mg/100 g Fe: 1.60–3.17 mg/100 g Mg: 106–120 mg/100 g Mn: 0.93–1.45 mg/100 g P: 236–384 mg/100 g K: 145–244 mg/100 g Na: 1.34–5.86 mg/100 g Zn: 1.25–2.83 mg/100 g | TPC: 16.98–58.8 mg/100 g Ferulic acid: 24.1–35.5 mg/100 g Sinapic acid: 5.5–9.6 mg/100 g p-coumaric acid: 1.1–4.3 mg/100 g | Alleviation of insulin resistance and lipotoxicity; atherosclerosis prevention; anti-inflammatory, anti-hypertensive and immunomodulatory effects; antiobesity; antianaphylactic actions; prevention and treatment of cardiovascular disease; cholesterol-lowering and anti-atherogenic effects | [29,14] |
Green wheat | Vit. B: 1.80 mg/100 g Vit. B2: 0.19 mg/100 g Vit. B3: 1.30 mg/100 g Vit. C: 4.5 mg/100 g Vit. E: 0.2–0.6 mg/100 g | Na: 4–12.5 mg/100 g Ca: 32–63 mg/100 g K: 369–451 mg/100 g Mg: 160–202 mg/100 g P:412 mg/100 g Cu: 0.49 mg/100 g | Ferulic acid: 1444 mg/100 g | Preventive and treatment effects on chronic degenerative diseases caused by oxidative stress; reducing the risk factors for obesity, diabetes, cardiovascular diseases and cancer; antianemia effects | [14,29,30] |
Sorghum | Vit E: 1.95 mg/100 g α-tochopherol: 0.122–0.525 mg/100 g Vit A (β-carotene): 0.054–0.134 mg/100 g Thiamine: 0.08 mg/100 g Riboflavin: 0.21 mg/100 g Pyridoxine: 0.17 mg/100 g | Ca: 665.6 mg/100 g Fe: 168.8 mg/100 g K: 26,940 mg/100 g Mn: 141.2 mg/100 g Na: 292.5 mg/100 g P: 32,727 mg/100 g Zn: 432.8 mg/100 g Mg: 12,010 mg/100 g | TPC: 109–1040 mg/100 g TFC: 11–61 mg/100 g Ferulic acid: 2.40–86.8 mg/100 g caffeic acid: 1.43–8.17 mg/100 g p-coumaric acid: 0.68–8.17 mg/100 g | Reducing the risk of cardiovascular disease, cancer, diabetes, dyslipidaemia and coeliac disease; antiallergic properties | [16,31,32,33,34,35,36,37,38,39,40] |
Amaranth | Vit. B3: 64.4 mg/100 g Vit. E: 1.54 mg/100 g Vit. C: 64.4 mg/100 g | Fe: 7.61 mg/100 g Zn: 287 mg/100 g Mg: 248 mg/100 g Mn: 3.3 mg/100 g P: 508 mg/100 g Cal: 159 mg/100 g | Protocatechuic p-Hydroxybenzoic p-coumaric Ferulic acid | Anti-radical Antioxidant Anti-inflammatory Anti-diabetic Anti-cancer Improving gut health | [23,41] |
Quinoa | Vit. B3: 0.01–8 mg/100 g Vit. E: 24.7 mg/100 g Vit. C: 4–49.3 mg/100 g Folate: 0.2 mg/100 g | Fe: 5.5 mg/100 g Zn: 1.8 mg/100 g Mg: 206 mg/100 g Cal: 32.9 mg/100 g | Gallic acid Caffeic acid Ferulic acid p-coumaric p-Hydroxybenzoic acid Vanillic acid | Antioxidant activity Anti-obesity Antimicrobial Skin protection Anti-inflammatory Anti-diabetic Preventing cardiovascular disease and childhood malnutrition Improving gut health | [23,41] |
Teff | Vit. B1: 0.3 mg/100 g Vit. B3: 3.3 mg/100 g Vit. E: 0.08 mg/100 g Vit. C: 88 mg/100 g | Fe: 7.63 mg/100 g Zn: 3.63 mg/100 g Mg: 184 mg/100 g P: 427 mg/100 g K: 427 mg/100 g Cal: 180 mg/100 g | Catechin Ferulic acid Rosmarinic acid p-coumaric acid | Anti-radical Antioxidant Anti-inflammatory | [42] |
Chia | Vit. B2: 0.17 mg/100 g Vit. B3: 8.83 mg/100 g Vit. B1: 0.62 mg/100 g Vit. E: 8.1 mg/100 g Vit. C: 1.6 mg/100 g | Ca: 455 mg/100 g P: 585 mg/100 g K: 585 mg/100 g MG: 340 mg/100 g Fe: 8.54 mg/100 g Zn: 3.7 mg/100 g | Caffeic acid Chlorogenic acid Quercetin Kaempferol | Anti-hypertensive Antioxidant activity Anticholesterolemic Anthropometrics Hypoglycemic | [43,22] |
Buckwheat | Vit. B3: 2.1–18 mg/100 g Vit. E: 9.5–16.4 mg/100 g | Fe: 4.7 mg/100 g Zn: 1.0 mg/100 g Mg: 203 mg/100 g Ca: 60.9 mg/100 g | Rutin Ferulic acid caffeic acid gallic acid p-Coumaric | Anti-inflammatory Anti-hypertensive Antioxidant activity Anti-obesity Antidiabetic activity Anti-cancer Improving gut health | [41,44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majzoobi, M.; Jafarzadeh, S.; Teimouri, S.; Ghasemlou, M.; Hadidi, M.; Brennan, C.S. The Role of Ancient Grains in Alleviating Hunger and Malnutrition. Foods 2023, 12, 2213. https://doi.org/10.3390/foods12112213
Majzoobi M, Jafarzadeh S, Teimouri S, Ghasemlou M, Hadidi M, Brennan CS. The Role of Ancient Grains in Alleviating Hunger and Malnutrition. Foods. 2023; 12(11):2213. https://doi.org/10.3390/foods12112213
Chicago/Turabian StyleMajzoobi, Mahsa, Shima Jafarzadeh, Shahla Teimouri, Mehran Ghasemlou, Milad Hadidi, and Charles S. Brennan. 2023. "The Role of Ancient Grains in Alleviating Hunger and Malnutrition" Foods 12, no. 11: 2213. https://doi.org/10.3390/foods12112213
APA StyleMajzoobi, M., Jafarzadeh, S., Teimouri, S., Ghasemlou, M., Hadidi, M., & Brennan, C. S. (2023). The Role of Ancient Grains in Alleviating Hunger and Malnutrition. Foods, 12(11), 2213. https://doi.org/10.3390/foods12112213