Evaluation of Body Changes and the Anti-Obesity Effect after Consumption of Korean Fermented Food, Cheonggukjang: Randomized, Double-Blind Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. BAs Analysis
2.3. Participants
2.4. Safety Assessment
2.5. Indicators of Obesity Assessment
2.6. Inflammation Marker Assessment
2.7. Changes in the Gut Microbiome Assessment
2.8. Experimental Cheonggukjang Pill Preparation
2.9. Statistical Analysis
3. Results
3.1. Participants
3.2. Anthropometric Parameters
3.3. Safety Assessment
3.4. Effects on Obesity and Inflammation
3.5. Microbiome and Short-Chain Fatty Acids Analysis in Feces
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Kwang, S. Biochemical properties of seed lectin from Korean soybean cultivars developed for soy source. KSBB J. 2009, 24, 170–176. [Google Scholar]
- Lee, B.-Y.; Dong-Man, K.; Kil-Hwan, K. Studies on the change in rheological properties of Chungkook-jang. Korean J. Food Sci. Technol. 1991, 23, 478–484. [Google Scholar]
- Moon, J.S.; Seung, K.; Cho, H.; Young, C.; Kim, J.E.; Kim, S.-Y.; Cho, K.-J.; Han, N.S. Isolation and characterization of biogenic amine-producing bacteria in fermented soybean pastes. J. Microbiol. 2010, 48, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Ibe, A.; Taichiro, N.; Nobuhiko, K. Bacteriological properties of and amine-production conditions for tyramine-and histamine-producing bacterial strains isolated from soybean paste (miso) starting materials. Eisei Kagaku 1992, 38, 403–409. [Google Scholar] [CrossRef]
- Maijala, R.L.; Eerola, S.H.; Aho, M.A.; Hirn, J.A. The effect of GDL-induced pH decrease on the formation of biogenic amines in meat. J. Food Prot. 1993, 56, 125–129. [Google Scholar] [CrossRef]
- García-Ruiz, A.; González-Rompinelli, E.M.; Bartolomé, B.; Moreno-Arribas, M.V. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int. J. Food Microbiol. 2011, 148, 115–120. [Google Scholar] [CrossRef]
- Özogul, F.; Hamed, I. The importance of lactic acid bacteria for the prevention of bacterial growth and their biogenic amines formation: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1660–1670. [Google Scholar] [CrossRef]
- Aishath, N.; Flint, S.; Fletcher, G.; Bremer, P.; Meerdink, G. Control of biogenic amines in food—Existing and emerging approaches. J. Food Sci. 2010, 75, 139–150. [Google Scholar] [CrossRef]
- Shalaby, A.R. Significance of biogenic amines for food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Smith, T.A. Amines in food. Food Chem. 1981, 6, 169–200. [Google Scholar] [CrossRef]
- Karovicova, J.; Kohajdova, Z. Biogenic amines in foods. Chem. Pap. 2005, 59, 70–79. [Google Scholar] [CrossRef]
- BIAMFOOD. Controlling biogenic amines in traditional food fermentations in regional Europe (Project Reference no. 211441). In EU’s 7th Framework Program for Research; EU: Maastricht, The Netherlands, 2008. [Google Scholar]
- Lee, Y.L.; Kim, S.H.; Choung, N.H.; Lim, M.H. A study on the production of viscous substance during the Chungkookjang fermentation. Appl. Biol. Chem. 1992, 35, 202–209. [Google Scholar]
- Setchell, K.D. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 1996, 68, 1333S–1346S. [Google Scholar] [CrossRef]
- Daubioul, C.A.; Taper, H.S.; De Wispelaere, L.D.; Delzenne, N.M. Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats. J. Nutr. 2000, 130, 1314–1319. [Google Scholar] [CrossRef]
- Armstrong, T.; Bull, F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Kim, W.; Choi, K.; Kim, Y.; Park, H.; Choi, J.; Lee, Y.; Oh, H.; Kwon, I.; Lee, S. The purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened by Chungkook-Jang. Appl. Environ. Microbiol. 1996, 62, 2482–2488. [Google Scholar] [CrossRef]
- Warthesen, J.J.; Scanlan, R.A.; Bills, D.D.; Libbey, L.M. Formation of heterocyclic N-nitrosamines from the reaction of nitrite with selected primary diamines and amino acids. J. Agric. Food Chem. 1975, 23, 898–902. [Google Scholar] [CrossRef]
- Li, L.; Zou, D.; Ruan, L.; Wen, Z.; Chen, S.; Xu, L.; Wei, X. Evaluation of biogenic amine and microbial contributions in traditional Chinese sausages. Front. Microbiol. 2019, 10, 872. [Google Scholar] [CrossRef]
- Gu, J.; Liu, T.; Sadiq, F.A.; Yang, H.; Yuan, L.; Zhang, G.; He, J. Biogenic amine content and assessment of bacterial and fungal diversity in stinky tofu, a traditional fermented soy curd. LWT 2018, 88, 26–34. [Google Scholar] [CrossRef]
- Park, S.; Zhang, T.; Yue, Y.; Jeong, S.J.; Ryu, M.S.; Wu, X.; Yang, H.-J.; Jeong, D.-Y. Alleviation of metabolic disturbance by substituting kanjang high in Bacillus for salt through modulation of the gut microbiota in estrogen-deficient rats. Foods 2022, 11, 1951. [Google Scholar] [CrossRef]
- Yang, H.J.; Jeong, S.J.; Ryu, M.S.; Ha, G.; Jeong, D.Y.; Park, Y.M.; Lee, H.Y.; Bae, J.S. Protective effect of traditional Korean fermented soybean foods (doenjang) in a dextran sulfate sodium-induced colitis mouse model. Food Funct. 2022, 13, 8616–8626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ryu, M.S.; Wu, X.; Yang, H.J.; Jeong, S.J.; Seo, J.W.; Jeong, D.-Y.; Park, S. Alleviation of neuronal cell death and memory deficit with Chungkookjang made with Bacillus amyloliquefaciens and Bacillus subtilis potentially through promoting gut-brain axis in artery-occluded gerbils. Foods 2021, 10, 2697. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Kim, H.R.; Jeong, S.J.; Yang, H.J.; Ryu, M.S.; Jeong, D.Y.; Kim, S.-Y.; Jung, C.-H. Protective effects of fermented soybeans (Cheonggukjang) on dextran sodium sulfate (DSS)-induced colitis in a mouse model. Foods 2022, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Han, A.L.; Jeong, S.J.; Ryu, M.S.; Yang, H.J.; Jeong, D.Y.; Park, D.S.; Lee, H.K. Anti-obesity effects of traditional and commercial Kochujang in overweight and obese adults: A randomized controlled trial. Nutrients 2022, 14, 2783. [Google Scholar] [CrossRef]
- Lim, H.J.; Park, I.S.; Jeong, S.J.; Ha, G.S.; Yang, H.J.; Jeong, D.Y.; Kim, S.-Y.; Jung, C.-H. Effects of Cheonggukjang (fermented soybean) on the development of colitis-associated colorectal cancer in mice. Foods 2023, 12, 383. [Google Scholar] [CrossRef]
- Seo, M.J.; Lee, C.D.; Lee, J.N.; Yang, H.J.; Jeong, D.Y. Analysis of biogenic amines and inorganic elements in Cheonggukjang. Korean J. Food Preserv. 2019, 26, 101–108. [Google Scholar] [CrossRef]
- Han, G.H.; Cho, T.Y.; Yoo, M.S.; Kim, C.S.; Kim, J.M.; Kim, H.A.; Kim, M.O.; Kim, S.C.; Lee, S.A.; Lo, Y.S.; et al. Biogenic amines formation and content in fermented soybean paste (Cheonggukjang). Korean J. Food Sci. Technol. 2007, 39, 541–545. [Google Scholar]
- Cho, T.Y.; Han, G.H.; Bahn, K.N.; Son, Y.W.; Jang, M.R.; Lee, C.H.; Kim, S.H.; Kim, D.B.; Kim, S.B. Evaluation of biogenic amines in Korean commercial fermented foods. Korean J. Food Sci. Technol. 2006, 38, 730–737. [Google Scholar]
- Lee, S.; Eom, H.S.; Yoo, M.; Cho, Y.S.; Shin, D.B. Determination of biogenic amines in Cheonggukjang using ultra high pressure liquid chromatography coupled with mass spectrometry. Food Sci. Biotechnol. 2011, 20, 123–129. [Google Scholar] [CrossRef]
- Soh, J.R.; Kwon, D.Y.; Cha, Y.S. Hepatic gene expression profiles are altered by dietary unsalted Korean fermented soybean (Chungkookjang) consumption in mice with diet-induced obesity. J. Nutr. Metab. 2011, 2011, 260214. [Google Scholar] [CrossRef]
- Kim, D.J.; Jeong, Y.J.; Kwon, J.H.; Moon, K.D.; Kim, H.J.; Jeon, S.M.; Lee, M.-Y.; Park, Y.B.; Choi, M.-S. Beneficial effects of chungkukjang on the regulation of blood glucose and pancreatic β-cell functions in C75BL/KsJ-db/db mice. J. Med. Food 2008, 11, 215–223. [Google Scholar] [CrossRef]
- Choi, Y.H.; Lim, H.; Heo, M.Y.; Kwon, D.Y.; Kim, H.P. Anti-inflammatory activity of the ethanol extract of Chungkukjang, Korean fermented bean: 5-lipoxygenase inhibition. J. Med. Food 2008, 11, 539–543. [Google Scholar] [CrossRef]
- Bobek, P.; Ozdíin, L.; Galbavýy, S. Dose- and time-dependent hypocholesterolemic effects of oyster mushroom (Pleurotus ostreatus) in rats. Nutrition 1998, 14, 282–286. [Google Scholar] [CrossRef]
- Urnbaugh, P.J.; Ley, R.E.; Klein, S.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvesting. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Abenavoli, L.; Scarpellini, E.; Colica, C.; Boccuto, L.; Salehi, B.; Sharifi-Rad, J.; Aiello, V.; Romano, B.; De Lorenzo, A.; Izzo, A.; et al. Gut microbiota and obesity: Role of probiotics. Nutrients 2019, 11, 2690. [Google Scholar] [CrossRef]
- Kasai, C.; Sugimoto, K.; Moritani, I.; Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, M.; Takei, Y.; et al. Comparison of gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015, 15, 100. [Google Scholar] [CrossRef]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef]
- Sohail, M.A.; Elrayess, M.A.; Al Thani, A.A.; Al-Asmakh, M.; Yassine, H.M. Profiling the oral microbiome and plasma biochemistry of obese hyperglycemic subjects in Qatar. Microorganisms 2019, 7, 645. [Google Scholar] [CrossRef]
- Xu, P.; Li, M.; Zhang, J.; Zhang, T. Correlation of intestinal microbiota with overweight and obesity in Kazakh schoolchildren. BMC Microbiol. 2012, 12, 283. [Google Scholar] [CrossRef] [PubMed]
- Bervoets, L.; Van Hoorenbeeck, K.; Kortleven, I.; Van Noten, C.; Hens, N.; Vael, C.; Goossens, H.; Desager, K.; Vankerckhoven, V. Differences in gut microbiota composition between obese and lean children: A cross-sectional study. Gut Pathog. 2013, 5, 10. [Google Scholar] [CrossRef]
Instrument | Agilent 1200 series (Agilent Technologies, Santa Clara, CA, USA) |
Column | CapcellPak C18 column |
Detector | DAD detector (254 nm) |
Mobile phase | A: 0.1% formic acid in H2O B: 0.1% formic acid in ACN |
Gradients condition | A:B = 45:55, 0~10 min A:B = 35:65, 10~15 min A:B = 20:80, 15~20 min A:B = 10:90, 20~30 min A:B = 10:90, >40 min |
Flow rate | 1 mL/min |
Temperature | 40 °C |
Injection volume | 20 µL |
HTC | LTC | CC | ||||
---|---|---|---|---|---|---|
Content (g) | Ratio (%) | Content (g) | Ratio (%) | Content (g) | Ratio (%) | |
Freeze-dried Cheonggukjang powder | 2.97 | 90 | 2.97 | 90 | 2.97 | 90 |
Glutinous rice flour | 0.33 | 10 | 0.33 | 10 | 0.33 | 10 |
Total | 3 | 100 | 3 | 100 | 3 | 100 |
Value | Group | |||
---|---|---|---|---|
HTC (n = 19) | LTC (n = 20) | CC (n = 20) | p-Value | |
Sex (M/F) | 9/10 | 10/10 | 11/7 | 0.675 |
Drinking (n) | 10 (52.6) | 7 (35.0) | 11 (61.1) | 0.256 |
Smoking (n) | 2 (10.5) | 2 (10.0) | 3 (16.7) | 0.790 |
Age | 38.00 ± 10.52 | 41.80 ± 12.64 | 41.80 ± 12.64 | 0.213 |
Weight | 78.33 ± 12.98 | 75.31 ± 12.97 | 80.74 ± 14.15 | 0.458 |
BMI | 28.17 ± 3.39 | 27.98 ± 2.91 | 28.25 ± 2.51 | 0.958 |
Sample | Biogenic Amine (mg/kg) | Total Contents (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PUT | CAD | HIS | SER | TYR | SPD | NOR | DOP | SPM | ||
HTC | ND (1) | 96.28 ± 2.7 (2) | 619.34 ± 1.5 | ND | ND | 56.35 ± 1.1 | ND | ND | ND | 771.91 ± 5.0 |
LTC | ND | 207.75 ± 2.7 | 91.35 ± 0.9 | ND | ND | 40.26 ± 0.2 | ND | ND | ND | 339.36 ± 3.2 |
CC | ND | 164.55 ± 1.2 | 157.87 ± 1.1 | ND | ND | 43.80 ± 1.9 | ND | ND | ND | 366.23 ± 2.8 |
Value | Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
HTC (n = 19) | LTC (n = 20) | CC (n = 20) | |||||||
Before | After | p-Value | Before | After | p- Value | Before | After | p- Value | |
HC | 103.03 ± 6.64 | 102.85 ± 6.56 | 0.128 | 101.33 ± 6.25 | 101.04 ± 5.95 | 0.429 | 103.42 ± 5.57 | 103.31 ± 5.39 | 0.497 |
WHR | 0.91 ± 0.05 | 0.91 ± 0.05 | 0.871 | 0.91 ± 0.05 | 1.01 ± 0.45 | 0.330 | 0.91 ± 0.05 | 0.92 ± 0.05 | 0.96 |
TC | 203.21 ± 25.83 | 209.37 ± 27.1 | 0.239 | 206.25 ± 26.54 | 208.9 ± 29.05 | 0.686 | 207.17 ± 27.9 | 204.11 ± 31.04 | 0.363 |
LDL-C | 121.79 ± 29.37 | 125.05 ± 32.91 | 0.563 | 132.45 ± 22.6 | 131.05 ± 22.93 | 0.809 | 129.28 ± 23.3 | 126.39 ± 27.32 | 0.494 |
HDL-C | 51.89 ± 13.14 | 54.32 ± 13.9 | 0.208 | 47.1 ± 11.12 | 49 ± 9.82 | 0.235 | 48.78 ± 14.38 | 50.39 ± 11.41 | 0.384 |
Triglyceride | 130.21 ± 111.54 | 127.95 ± 122.36 | 0.918 | 132.95 ± 69.38 | 134.1 ± 52.85 | 0.906 | 155.06 ± 97.32 | 134 ± 84.13 | 0.304 |
NonHDL-C | 151.32 ± 30.54 | 155.05 ± 32.06 | 0.394 | 159.15 ± 26.22 | 159.9 ± 29.61 | 0.901 | 158.39 ± 28.85 | 153.72 ± 30.33 | 0.214 |
WC | 93.79 ± 7.07 | 93.89 ± 6.99 | 0.361 | 92.3 ± 7.61 | 92.14 ± 7.49 | 0.762 | 94.08 ± 7.8 | 94.78 ± 7.5 | 0.125 |
IL-6 | 1.70 ± 0.72 | 1.82 ± 0.78 | 0.514 | 1.91 ± 1.02 | 1.88 ± 0.84 | 0.892 | 2.21 ± 1.67 | 1.82 ± 0.97 | 0.292 |
Haptoglobin | 103.68 ± 48.32 | 100.21 ± 45.00 | 0.252 | 113.65 ± 51.17 | 112.15 ± 51.99 | 0.834 | 95.72 ± 59.49 | 102.00 ± 47.35 | 0.431 |
VF | 128.8 ± 64.71 | 122.91 ± 68.34 | 0.176 | 135.8 ± 55.43 | 137.84 ± 53.56 | 0.690 | 143.85 ± 83.68 | 141.12 ± 80.54 | 0.601 |
SF | 229.37 ± 86.49 | 222.47 ± 85.38 | 0.218 | 217.55 ± 69.03 | 213.35 ± 68.25 | 0.381 | 203.87 ± 65.9 | 211.1 ± 68.75 | 0.242 |
V/S | 0.65 ± 0.49 | 0.64 ± 0.51 | 0.799 | 0.67 ± 0.35 | 0.68 ± 0.28 | 0.821 | 0.75 ± 0.54 | 0.7 ± 0.49 | 0.283 |
LAP | 47.75 ± 33.16 | 48.3 ± 39.85 | 0.931 | 47.81 ± 25.81 | 48.37 ± 26.36 | 0.854 | 56.81 ± 32.11 | 49.28 ± 28.55 | 0.219 |
VAI | 1.93 ± 1.56 | 2.08 ± 2.4 | 0.715 | 2.13 ± 1.38 | 2.05 ± 1.36 | 0.642 | 2.37 ± 1.6 | 1.96 ± 1.34 | 0.156 |
GGT | 29.63 ± 18.59 | 29.32 ± 21.56 | 0.828 | 28.85 ± 16.45 | 27.6 ± 16.97 | 0.642 | 35.28 ± 27.18 | 30.17 ± 20.2 | 0.048 |
AST | 25.11 ± 11.81 | 24.79 ± 11.53 | 0.860 | 24.5 ± 6.18 | 26.1 ± 6.66 | 0.208 | 27.28 ± 13.79 | 23.72 ± 8.81 | 0.049 |
ALT | 24.89 ± 20.92 | 24.42 ± 23.03 | 0.827 | 26.8 ± 14.53 | 28.05 ± 15.27 | 0.585 | 31.33 ± 24.53 | 26.72 ± 22.03 | 0.030 |
BUN | 12.74 ± 3.28 | 12.06 ± 2.99 | 0.370 | 12.85 ± 2.87 | 11.92 ± 2.39 | 0.172 | 12.92 ± 3.59 | 13.49 ± 3.27 | 0.311 |
Cr | 0.83 ± 0.17 | 0.82 ± 0.18 | 0.277 | 0.83 ± 0.14 | 0.83 ± 0.14 | 0.970 | 0.84 ± 0.2 | 0.9 ± 0.3 | 0.324 |
Uric acid | 6 ± 1.74 | 5.78 ± 1.43 | 0.162 | 5.88 ± 1.47 | 5.87 ± 1.52 | 0.976 | 6.59 ± 1.71 | 6.76 ± 1.68 | 0.390 |
Glucose | 101.11 ± 7.32 | 101.21 ± 6.4 | 0.945 | 103.6 ± 8.44 | 105.7 ± 10.6 | 0.110 | 101.56 ± 9.26 | 103.06 ± 9.38 | 0.433 |
Insulin | 8.91 ± 4.8 | 8.31 ± 4.54 | 0.376 | 8.58 ± 5.87 | 7.28 ± 2.91 | 0.190 | 11.67 ± 9.49 | 9.06 ± 5.39 | 0.051 |
HOMA_IR | 2.25 ± 1.23 | 2.08 ± 1.15 | 0.356 | 2.19 ± 1.44 | 1.89 ± 0.74 | 0.252 | 3.03 ± 2.63 | 2.34 ± 1.43 | 0.075 |
QUICKI | 0.35 ± 0.04 | 0.35 ± 0.04 | 0.606 | 0.35 ± 0.02 | 0.35 ± 0.02 | 0.443 | 0.35 ± 0.05 | 0.35 ± 0.04 | 0.629 |
hs-CRP | 1.19 ± 0.83 | 2.56 ± 6.19 | 0.332 | 2.14 ± 2.27 | 1.78 ± 1.55 | 0.287 | 1.65 ± 1.9 | 2.7 ± 4.18 | 0.282 |
Value | HTC | LTC | CC | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | p-Value | Before | After | p-Value | Before | After | p-Value | |
Firmicutes (%) | 60.91 ± 9.79 | 64.96 ± 11.40 | 0.235 | 62.65 ± 11.74 | 60.40 ± 9.05 | 0.511 | 63.06 ± 10.80 | 62.11 ± 10.61 | 0.785 |
Bacteroidetes (%) | 28.06 ± 12.79 | 24.34 ± 14.41 | 0.864 | 24.12 ± 12.45 | 29.69 ± 9.07 | 0.123 | 24.73 ± 14.77 | 26.87 ± 11.35 | 0.621 |
F/B | 2.17 | 2.67 | 2.60 | 2.03 | 2.55 | 2.31 | |||
Beneficial Bacteria | 28.52 ± 10.50 | 31.30 ± 11.87 | 0.061 | 31.90 ± 11.02 | 29.96 ± 11.57 | 0.230 | 33.70 ± 7.69 | 31.80 ± 9.70 | 0.411 |
Harmful Bacteria | 3.10 ± 2.47 | 3.43 ± 2.73 | 0.615 | 2.87 ± 2.91 | 2.44 ± 1.66 | 0.517 | 2.92 ± 2.41 | 3.44 ± 1.37 | 0.301 |
Others | 68.38 ± 11.69 | 65.26 ± 13.20 | 0.063 | 65.23 ± 11.18 | 67.59 ± 11.66 | 0.172 | 63.38 ± 9.22 | 64.76 ± 10.13 | 0.570 |
Acid | HTC | LTC | CC | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | p-Value | Before | After | p-Value | Before | After | p-Value | |
Acetic | 46.66 ± 34.3 | 33.1 ± 26.59 | 0.123 | 49.39 ± 30.32 | 40.68 ± 24.83 | 0.341 | 51.98 ± 29.4 | 57.90 ± 47.81 | 0.568 |
Propionic | 34.61 ± 25.49 | 26.97 ± 31.54 | 0.299 | 28.79 ± 18.45 | 20.85 ± 14.27 | 0.128 | 36.14 ± 24.49 | 35.00 ± 23.40 | 0.824 |
Butyric | 26.36 ± 15.81 | 24.05 ± 18.57 | 0.639 | 26.58 ± 16.68 | 26.63 ± 15.67 | 0.993 | 27.86 ± 14.79 | 36.34 ± 26.29 | 0.232 |
Total | 107.63 ± 71.70 | 84.12 ± 73.88 | 0.228 | 104.76 ± 59.79 | 88.16 ± 46.84 | 0.369 | 115.97 ± 62.06 | 129.23 ± 90.81 | 0.508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.L.; Jeong, S.-J.; Ryu, M.-S.; Yang, H.-J.; Jeong, D.-Y.; Seo, Y.-B. Evaluation of Body Changes and the Anti-Obesity Effect after Consumption of Korean Fermented Food, Cheonggukjang: Randomized, Double-Blind Clinical Trial. Foods 2023, 12, 2190. https://doi.org/10.3390/foods12112190
Han AL, Jeong S-J, Ryu M-S, Yang H-J, Jeong D-Y, Seo Y-B. Evaluation of Body Changes and the Anti-Obesity Effect after Consumption of Korean Fermented Food, Cheonggukjang: Randomized, Double-Blind Clinical Trial. Foods. 2023; 12(11):2190. https://doi.org/10.3390/foods12112190
Chicago/Turabian StyleHan, A Lum, Su-Ji Jeong, Myeong-Seon Ryu, Hee-Jong Yang, Do-Youn Jeong, and Yoo-Bin Seo. 2023. "Evaluation of Body Changes and the Anti-Obesity Effect after Consumption of Korean Fermented Food, Cheonggukjang: Randomized, Double-Blind Clinical Trial" Foods 12, no. 11: 2190. https://doi.org/10.3390/foods12112190
APA StyleHan, A. L., Jeong, S.-J., Ryu, M.-S., Yang, H.-J., Jeong, D.-Y., & Seo, Y.-B. (2023). Evaluation of Body Changes and the Anti-Obesity Effect after Consumption of Korean Fermented Food, Cheonggukjang: Randomized, Double-Blind Clinical Trial. Foods, 12(11), 2190. https://doi.org/10.3390/foods12112190