Rapid and Simultaneous Measurement of Fat and Moisture Contents in Pork by Low-Field Nuclear Magnetic Resonance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pork Sample Preparation
2.3. Effect of Sample Treatment Parameters on T2 Distribution Curves
2.3.1. MnCl2 Aqueous Solution Concentration
2.3.2. MnCl2 Aqueous Solution Volume
2.3.3. Heat Treatment Temperature
2.4. Fat and Moisture Contents Measurement
2.5. LF-NMR Relaxation Measurements
2.5.1. Effect of Echo Time (TE) on LF-NMR Relaxation
2.5.2. Effect of Number of Echoes (NS) on LF-NMR Relaxation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of MnCl2 Aqueous Solution on T2 Distribution Curves of Lard and Pork Meat
3.2. Effect of Sample Treatment Conditions on T2 Distribution Curves
3.2.1. MnCl2 Aqueous Solution Concentration
3.2.2. MnCl2 Aqueous Solution Volume
3.2.3. Heat Treatment Temperature
3.3. Effect of Performance Parameters on LF-NMR Relaxation
3.3.1. Effect of TE on LF-NMR Relaxation
3.3.2. Effect of NS on LF-NMR Relaxation
3.4. Calibration Curves of Fat and Moisture in Pork
3.4.1. Calibration Curves of Fat
3.4.2. Calibration Curves of Moisture
3.5. Method Validation
3.6. Determination of Fat and Moisture Content in Pork
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, N.; Dong, C.; Du, X.; Kong, B.; Sun, J.; Xia, X. Effect of freeze-thaw cycles on the quality of quick-frozen pork patty with different fat content by consumer assessment and instrument-based detection. Meat Sci. 2021, 172, 108313. [Google Scholar] [CrossRef] [PubMed]
- Beldarrain, L.R.; Morán, L.; Sentandreu, M.; Insausti, K.; LJ, R.B.; Aldai, N. Muscle and Subcutaneous Fatty Acid Composition and the Evaluation of Ageing Time on Meat Quality Parameters of Hispano-Bretón Horse Breed. Animals 2021, 11, 1421. [Google Scholar] [CrossRef] [PubMed]
- Gai, S.; Zhang, Z.; Zou, Y.; Liu, D. Effects of Hydrocolloid Injection on the Eating Quality of Pork Analyzed Based on Low-Field Nuclear Magnetic Resonance (LF-NMR). J. Food Qual. 2019, 2019, 3536824. [Google Scholar] [CrossRef] [Green Version]
- Kiel, R.C.; Martin, J.N.; Woerner, D.R.; Murphy, R.; Geornaras, I.; Levey, J.R.; Yang, H.; Delmore, R.J.; Belk, K.E. Influence of Storage Temperature, Moisture Content, and Physical Impurities on the Distribution and Survival of Salmonella enterica in Poultry Fat Intended for Pet Food Use. J. Food Prot. 2018, 81, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Grigonis, D.; Venskutonis, P.R.; Sivik, B.; Sandahl, M.; Eskilsson, C.S. Comparison of different extraction techniques for isolation of antioxidants from sweet grass(Hierochloe odoratd). J. Supercrit. Fluids 2005, 33, 223–233. [Google Scholar] [CrossRef]
- Balage, J.M.; da Luz, E.S.S.; Gomide, C.A.; Bonin Mde, N.; Figueira, A.C. Predicting pork quality using Vis/NIR spectroscopy. Meat Sci. 2015, 108, 37–43. [Google Scholar] [CrossRef]
- Rojas, E.Z.; Varo, A.G.; Sanz, E.D.P.; Ginel, J.E.G.; Marín, D.P. Monitoring NIRS calibrations for use in routine meat analysis as part of Iberian pig-breeding programs. Food Chem. 2011, 129, 1889–1897. [Google Scholar] [CrossRef]
- Muik, B.; Lendl, B.; Molina-Díaz, A.; Pérez-Villarejo, L.; Ayora-Ca?Ada, M. Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study. Anal. Bioanal. Chem. 2004, 379, 35–41. [Google Scholar] [CrossRef]
- Nian, Y.; Zhao, M.; O’Donnell, C.P.; Downey, G.; Kerry, J.P.; Allen, P. Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics. Food Res. Int. 2017, 99 Pt 1, 778–789. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles. Food Chem. 2016, 197, 848–854. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Reed, D.D.; Young, J.M.; Eshkabilov, S.; Berg, E.P.; Sun, X. Beef Quality Grade Classification Based on Intramuscular Fat Content Using Hyperspectral Imaging Technology. Appl. Sci. 2021, 11, 4588. [Google Scholar] [CrossRef]
- Miaw, C.S.W.; Santos, P.M.; Silva, A.R.C.S.; Gozzi, A.; Guimarães, N.C.C.; Callao, M.P.; Ruisánchez, I.; Sena, M.M.; de Souza, S.V.C. Comparison of Different Multivariate Classification Methods for the Detection of Adulterations in Grape Nectars by Using Low-Field Nuclear Magnetic Resonance. Food Anal. Methods 2020, 13, 108–118. [Google Scholar] [CrossRef]
- Li, Y.; Obadi, M.; Shi, J.; Sun, J.; Xu, B. Determination of moisture, total lipid, and bound lipid contents in oats using low-field nuclear magnetic resonance. J. Food Comp. Anal. 2019, 87, 103401. [Google Scholar] [CrossRef]
- Gudjonsdottir, M.; Romotowska, P.E.; Karlsdottir, M.G.; Arason, S. Low field nuclear magnetic resonance and multivariate analysis for prediction of physicochemical characteristics of Atlantic mackerel as affected by season of catch, freezing method, and frozen storage duration. Food Res. Int. 2019, 116, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, X.; Li, R.; Yang, H.; Wang, H.; Wang, H.; Tan, M. Influence of multiple freeze-thaw cycles on quality characteristics of beef semimembranous muscle: With emphasis on water status and distribution by LF-NMR and MRI. Meat Sci. 2019, 147, 44–52. [Google Scholar] [CrossRef]
- Bertram, H.C.; Karlsson, A.H.; Rasmussen, M.; Pedersen, O.D.; Dønstrup, S.; Andersen, H.J. Origin of multiexponential T(2) relaxation in muscle myowater. J. Agric. Food Chem. 2001, 49, 3092–3100. [Google Scholar] [CrossRef]
- Srland, G.H.; Larsen, P.M.; Lundby, F.; Rudi, A.P.; Guiheneuf, T. Determination of total fat and moisture content in meat using low field NMR. Meat Science 2004, 66, 543–550. [Google Scholar] [CrossRef]
- Wang, C.; Su, G.; Wang, X.; Nie, S. Rapid Assessment of Deep Frying Oil Quality as Well as Water and Fat Contents in French Fries by Low-Field Nuclear Magnetic Resonance. J. Agric. Food Chem. 2019, 67, 2361–2368. [Google Scholar] [CrossRef]
- Miklos, R.; Mora-Gallego, H.; Larsen, F.H.; Serra, X.; Lametsch, R. Influence of lipid type on water and fat mobility in fermented sausages studied by low-field NMR. Meat Sci. 2013, 96, 617–622. [Google Scholar] [CrossRef]
- Keeton, J.; Hafley, T.; Brian, S.; Moser, E.S.M. Rapid Determination of Moisture and Fat in Meats by Microwave and Nuclear Magnetic Resonance Analysis. J. Aoac Int. 2003, 86, 1193–1202. [Google Scholar] [CrossRef]
- Leffler, T.P.; Moser, C.R.; Mcmanus, B.J.; Urh, J.J.; Keeton, J.T.; Amy, C. Determination of moisture and fat in meats by microwave and nuclear magnetic resonance analysis: Collaborative study. J. Aoac Int. 2008, 4, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, B.A.; Yamanashi, W.S. NMR imaging of fluid dynamics in reservoir core. Magn. Reson. Imaging 1988, 6, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zheng, X.; Chi, Y.; Ni, M.J. Rapid, Accurate Measurement of the Oil and Water Contents of Oil Sludge Using Low-Field NMR. Ind. Eng. Chem. Res. 2013, 52, 2228–2233. [Google Scholar] [CrossRef]
- Resende, M.T.; Osheter, T.; Linder, C.; Wiesman, Z. Proton Low Field NMR Relaxation Time Domain Sensor for Monitoring of Oxidation Stability of PUFA-Rich Oils and Emulsion Products. Foods 2021, 10, 1385. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wang, X.; Chen, L. Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics. Food Chem. 2017, 216, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, D. Experimental Study on the Effect of Paramagnetic Ions on NMR Relaxation Response and Its Application. Well Logging Technol. 2003, 27, 270–273+355. [Google Scholar]
- Clerke, E.E.; Coates, G.R.; Hartman, D.E.; Horkowitz, J.P.; Vinegar, H.J. Residual Oil Saturation Measurements In Carbonates With Pulsed Nmr Logs. Log. Anal. 1997, 38, 73–83. [Google Scholar]
- Wu, Z.; Ma, W.; Xian, Z.; Liu, Q.; Hui, A.; Zhang, W. The impact of quick-freezing methods on the quality, moisture distribution and microstructure of prepared ground pork during storage duration. Ultrason. Sonochem. 2021, 78, 105707. [Google Scholar] [CrossRef]
- Zang, X.; Lin, Z.; Zhang, T.; Wang, H.; Cong, S.; Song, Y.; Li, Y.; Cheng, S.; Tan, M. Non-destructive measurement of water and fat contents, water dynamics during drying and adulteration detection of intact small yellow croaker by low field NMR. J. Food Meas. Charact. 2017, 11, 1550–1558. [Google Scholar] [CrossRef]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 1948, 73. [Google Scholar] [CrossRef] [Green Version]
- Bloembergen, N.J. Proton Relaxation Times in Paramagnetic Solutions. J. Chem. Phys. 1957, 27, 572–573. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, S.; Wang, S.; Yi, K.; Li, D. Effect of pre-frying on distribution of protons and physicochemical qualities of mackerel. J. Sci. Food Agric. 2021, 2021, 4838–4846. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, K.; Wang, X.; Tan, M. Detection of Sesame Oil Adulteration Using Low-Field Nuclear Magnetic Resonance and Chemometrics. Int. J. Food Eng. 2019, 15, 20180349. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Fan, D. Effect of ultrasonic on deterioration of oil in microwave vacuum frying and prediction of frying oil quality based on low field nuclear magnetic resonance (LF-NMR). Ultrason. Sonochem. 2019, 51, 77–89. [Google Scholar] [CrossRef]
- Henoumont, C.; Laurent, S.; Elst, L.V. How to perform accurate and reliable measurements of longitudinal and transverse relaxation times of MRI contrast media in aqueous solutions. Contrast Media Mol. Imaging 2009, 4, 312–321. [Google Scholar] [CrossRef]
- Shi, R.; Wang, X.; Liu, B.; Zhao, T.; Lu, H.; Yang, P. Determination of Oil Quality by LF-NMR:Optimization of Measurement Parameters. J. Instrumental Anal. 2012, 31, 1365–1372. [Google Scholar]
- Kirtil, E.; Oztop, M.H. 1H Nuclear Magnetic Resonance Relaxometry and Magnetic Resonance Imaging and Applications in Food Science and Processing. Food Eng. Rev. 2016, 8, 1–22. [Google Scholar] [CrossRef]
- Chen, L.; Tian, Y.; Sun, B.; Wang, J.; Tong, Q.; Jin, Z. Rapid, accurate, and simultaneous measurement of water and oil contents in the fried starchy system using low-field NMR. Food Chem. 2017, 233, 525–529. [Google Scholar] [CrossRef]
- Li, C.; Shen, S.; Li, H.; Zhou, G.; Zhao, D. A Low Field Nuclear Magnetic Resonance Method for Determination of Moisture Mass and/or Moisture Content in Fresh Meat and Its Standard Sample Preparation and Application. Patent CN202110187731.1, 6 June 2016. [Google Scholar]
- Ma, Y.; Qian, J.; Hui, Z.; Du, Y.; Chen, M. CPMG Sequence Nuclear Magnetic Resonance Measurement of Oily Seed Water Content. College Phys. 2018, 37, 78–81. [Google Scholar]
- Chen, L.L.; Xia, L.I.; Zhang, C.H.; Tang, C.H. Determination of Different State Moisture Content in Five Kinds of Meat Using Low-Field NMR. J. Anal. Sci. 2015, 31, 90–94. [Google Scholar]
- Zhao, L.; Liang, N.; Lang, D.; Zhou, D.; Dong, X.; Peng, J.; Liu, L.; Pan, B.; Xing, B. Heating methods generate different amounts of persistent free radicals from unsaturated fatty acids. Sci. Total Environ. 2019, 672, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, D.; Liu, F.; Bian, H.; Xu, W.; Dong, H.; Zhang, M. Changes in actomyosin dissociation and endogenous enzyme activities during heating and their relationship with duck meat tenderness. Food Chem. 2013, 141, 675–679. [Google Scholar]
- Han, M.; Wang, P.; Xu, X.; Zhou, G. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res. Int. 2014, 62, 1175–1182. [Google Scholar] [CrossRef]
- Ab Aziz, M.F.; Hayat, M.N.; Kaka, U.; Kamarulzaman, N.H.; Sazili, A.Q. Physico-Chemical Characteristics and Microbiological Quality of Broiler Chicken Pectoralis major Muscle Subjected to Different Storage Temperature and Duration. Foods 2020, 9, 741. [Google Scholar] [CrossRef] [PubMed]
- Zielbauer, B.I.; Franz, J.; Viezens, B.; Vilgis, T.A. Physical Aspects of Meat Cooking: Time Dependent Thermal Protein Denaturation and Water Loss. Food Biophys. 2016, 11, 34–42. [Google Scholar] [CrossRef]
Pork Sample | 1 | 2 | 3 | 4 | 5 | 6 | Fat Peak Area | RSD |
---|---|---|---|---|---|---|---|---|
1 | 1085 ± 18 | 1102 ± 14 | 1106 ± 15 | 1119 ± 6 | 1064 ± 11 | 1081 ± 18 | 1093 ± 22 | 2.04% |
2 | 3068 ± 26 | 2971 ± 10 | 3036 ± 7 | 3062 ± 29 | 2991 ± 10 | 2956 ± 6 | 3014 ± 47 | 1.57% |
3 | 2012 ± 23 | 2096 ± 10 | 2020 ± 11 | 2026 ± 19 | 2059 ± 13 | 2006 ± 10 | 2036 ± 35 | 1.71% |
Intra-Day Reproducibility | Inter-Day Reproducibility | |||||
---|---|---|---|---|---|---|
Morning | Noon | Evening | Day 1 | Day 3 | Day 5 | |
1081 ± 22 | 1050 ± 18 | 1067 ± 44 | 1492 ± 26 | 1398± 26 | 1455 ± 15 | |
Fat peak area | 1066 ± 32 | 1448 ± 45 | ||||
RSD | 3.03% | 3.10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Zhang, Y.; Li, W.; Tang, X.; Huang, X. Rapid and Simultaneous Measurement of Fat and Moisture Contents in Pork by Low-Field Nuclear Magnetic Resonance. Foods 2023, 12, 147. https://doi.org/10.3390/foods12010147
Tang S, Zhang Y, Li W, Tang X, Huang X. Rapid and Simultaneous Measurement of Fat and Moisture Contents in Pork by Low-Field Nuclear Magnetic Resonance. Foods. 2023; 12(1):147. https://doi.org/10.3390/foods12010147
Chicago/Turabian StyleTang, Shuyue, Yuhui Zhang, Wusun Li, Xiaoyan Tang, and Xinyuan Huang. 2023. "Rapid and Simultaneous Measurement of Fat and Moisture Contents in Pork by Low-Field Nuclear Magnetic Resonance" Foods 12, no. 1: 147. https://doi.org/10.3390/foods12010147