Role of Lactic Acid Bacteria in Food Preservation and Safety
Abstract
:1. Introduction
2. LAB
3. Bacteriocins
4. Health-Promoting Values of Products Fermented with LAB
5. Use of LAB against Foodborne Bacterial Pathogens
6. Use of LAB against Yeast
7. Use of LAB against Filamentous Fungi
8. Use of LAB against Mycotoxins
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Admassie, M. A Review on Food Fermentation and the Biotechnology of Lactic Acid Bacteria. World J. Food Sci. Technol. 2018, 2, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Su, Y.; Zhang, Y.; Zhu, P.; Mei, Z.; Zhou, X. Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: A review. Food Chem. 2021, 357, 129805. [Google Scholar] [CrossRef] [PubMed]
- Śmiechowska, M.; Jakubowski, M.; Dmowski, P. Nowe trendy na rynku niskoalkoholowych napojów fermentowanych. Kosmos. Probl. Nauk. Biologicznych. 2018, 67, 575–582. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhu, Y.; Fang, C.; Wijffels, R.H.; Xu, Y. Can we control microbiota in spontaneous food fermentation?—Chinese liquor as a case example. Trends Food Sci. Technol. 2021, 110, 321–331. [Google Scholar] [CrossRef]
- Comasio, A.; Kerrebroeck, S.V.; Harth, H.; Verte, F.; Vuyst, L.D. Potential of Bacteria from Alternative Fermented Foods as Starter Cultures for the Production of Wheat Sourdoughs. Microorganisms 2020, 8, 1534. [Google Scholar] [CrossRef]
- Gerez, C.L.; Torino, M.I.; Rollan, G.; Font de Valdez, G. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 2009, 20, 144–148. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Kluz, M. Bakterie fermentacji mlekowej i ich metabolity–możliwość zastosowania w biokonserwacji ryb i owoców morza. Nauka. Przyroda. Technol. 2017, 11, 207–221. [Google Scholar]
- Yadav, R.K.; Gupta, R. Impact of chemical food preservatives through local product on human health—A review. High Technol. Lett. 2021, 27, 767–773. [Google Scholar]
- Inetianbor, J.E.; Yakubu, J.M.; Ezeonu, S.C. Effects of food additives and preservatives on man—A review. Asian J. Sci. Technol. 2015, 6, 1118–1135. [Google Scholar]
- Silva, M.M.; Lidon, F.C. Preservatives—An overview on applications and side effects. Emir. J. Food Agric. 2016, 28, 366–373. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Saari, N.; Hussin, A.S.M. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef] [PubMed]
- Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; da Silva, R.C.; Ibrahim, S.A. Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy 2020, 1, 202–232. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F.; Mannazzu, I. Fermentation. Ecol. Processes-Encycl. Ecol. 2008, 1548–1557. [Google Scholar]
- Montet, D.; Ray, R.C.; Zakhia-Rozis, N. Lactic Acid Fermentation of Vegetables and Fruits. In Microorganisms and Fermentation of Traditional Foods; CRC Press: Boca Raton, FL, USA, 2014; pp. 108–140. [Google Scholar]
- Mandha, J.; Shumoy, H.; Devaere, J.; Schouteten, J.J.; Gellynck, X.; Winne, A.; Matemu, A.O.; Raes, K. Effect of lactic acid fermentation of watermelon juice on its sensory acceptability and volatile compounds. Food Chem. 2021, 358, 129809. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, L.; Feng, K.; Li, H.; Deng, Z.; Liu, J. Promote lactic acid production from food waste fermentation using biogas slurry recirculation. Bioresour. Technol. 2021, 337, 125393. [Google Scholar] [CrossRef]
- Hurtado, A.; Reguant, C.; Bordons, A.; Rozes, N. Lactic acid bacteria from fermented table olives. Food Microbiol. 2012, 31, 1–8. [Google Scholar] [CrossRef]
- Prasirtsak, B.; Tanasupawat, S.; Boonsombat, R.; Kodama, K.; Thongchul, N. Characterization of lactic acid producing bacteria from Thai sources. J. Appl. Pharm. Sci. 2013, 3, 33–38. [Google Scholar]
- Gupta, R.; Jeevaratnam, K.; Fatima, A. Lactic Acid Bacteria: Probiotic Characteristic, Selection Criteria, and its Role in Human Health. J. Emerg. Technol. Innov. Res. 2018, 5, 411–424. [Google Scholar]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomicnote on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Zielińska, D.; Kołożyn-Krajewska, D. Zmiany nomenklatury taksonomicznej ważnych gatunków probiotycznych bakterii lactobacillus. Żywność. Nauka. Technol. Jakość. 2020, 27, 5–14. [Google Scholar] [CrossRef]
- Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmuller, S. Detoxification of patulin and ochratoxin A, two bundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol. 2008, 46, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef] [PubMed]
- Castellano, P.; Ibarreche, M.P.; Massani, M.B.; Fontana, C.; Vignolo, G.M. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments. Microorganisms 2017, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Papagianni, M.; Anastasiadou, S. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Factories 2009, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Hernández-González, J.C.; Martínez-Tapia, A.; Lazcano-Hernández, G.; García-Pérez, B.E.; Castrejón-Jiménez, N.S. Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals 2021, 11, 979. [Google Scholar] [CrossRef]
- Benítez-Chao, D.F.; León-Buitimea, A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front. Microbiol. 2021, 12, 630695. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of Lactic Acid Bacteria: Extending the Family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ramos, A.; Madi-Moussa, D.; Coucheney, F.; Drider, D. Current Knowledge of the Mode of Action and Immunity Mechanisms of LAB-Bacteriocins. Microorganisms 2021, 9, 2107. [Google Scholar] [CrossRef]
- Soltani, S.; Hammami, R.; Cotter, P.D.; Rebuffat, S.; Said, L.B.; Gaudreau, H.; Bedard, F.; Biron, E.; Drider, D.; Fliss, I. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiol. Rev. 2021, 45, fuaa039. [Google Scholar] [CrossRef]
- Ananou, S.; Maqueda, M.; Martinez-Bueno, M.; Valdivia, E. Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol. 2007, 1, 475–486. [Google Scholar]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019, 11, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligenza, A.; Jakubczyk, K.P.; Kochman, J.; Janda, K. Potencjał prozdrowotny i skład mikrobiologiczny fermentowanego napoju tepache. Med. Ogólna Nauk. Zdrowiu 2021, 27, 272–276. [Google Scholar] [CrossRef]
- Szutowska, J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: A systematic literature review. Eur. Food Res. Technol. 2020, 246, 357–372. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Püssa, T.; Rembiałkowska, E. Beetroot (Beta vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels and anticancer activity. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef]
- Sharma, C.; Sahota, P.P.; Kaur, S. Physicochemical and microbiological evaluation of antioxidant-rich traditional black carrot beverage: Kanji. Bull. Natl. Res. Cent. 2021, 45, 143. [Google Scholar] [CrossRef]
- LeBlanc, J.G.; Laiño, J.E.; del Valle, M.J.; Vannini, V.; van Sinderen, D.; Taranto, M.P.; Sesma, F. B-Group vitamin production by lactic acid bacteria-current knowledge and potential applications. J. Appl. Microbiol. 2011, 111, 1297–1309. [Google Scholar] [CrossRef]
- Morishita, T.; Tamura, T.; Makino, T.; Kudo, S. Production of Menaquinones by Lactic Acid Bacteria. J. Dairy Sci. 1999, 82, 1897–1903. [Google Scholar] [CrossRef]
- Popa, D.S.; Bigman, G.; Rusu, M.E. The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants 2021, 10, 566. [Google Scholar] [CrossRef]
- Shehata, M.G.; Abu-Serie, M.M.; El-Aziz, N.M.A.; El-Sohaimy, S.A. In vitro Assessment of Antioxidant, Antimicrobal and Anticancer Properties of Lactic Acid Bacteria. Int. J. Pharmacol. 2019, 15, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Jacouton, E.; Michel, M.L.; Torres-Maravilla, E.; Chain, F.; Langella, P.; Bermúdez-Humarán, L.G. Elucidating the immune-related mechanisms by which probiotic strain Lactobacillus casei BL23 displays anti-tumoral properties. Front. Microbiol. 2019, 9, 3281. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Hsieh, Y.M.; Huang, C.C.; Tsai, C.C. Inhibitory effects of probiotic Lactobacillus on the growth of human colonic carcinoma cell line HT-29. Molecules 2017, 22, 107. [Google Scholar] [CrossRef] [PubMed]
- Pourramezan, Z.; Oloomi, M.; Kasra-Kermanshahi, R. Antioxidant and Anticancer Activities of Lactobacillus hilgardii Strain AG12a. J. Prev. Med. 2020, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Vamanu, A.; Vamanu, E.; Drugulescu, M.; Popa, O.; Campeanu, G. Identification of a lactic bacterium strain used for obtaining a pollen-based probiotic product. Turk. J. Biol. 2006, 30, 75–80. [Google Scholar]
- Dunne, C.; O’Mahony, L.; Murphy, L.; Thornton, G.; Morrissey, D.; O’Halloran, S.; Feeney, M.; Flynn, S.; Fitzgerald, G.; Daly, C.; et al. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am. J. Clin. Nutr. 2001, 73, 386s–392s. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2020, 11, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Zommiti, M.; Feuilloleym, M.G.J.; Connil, N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganism 2020, 8, 1907. [Google Scholar] [CrossRef]
- Średnicka, P.; Juszczuk-Kubiak, E.; Wójcicki, M.; Akimowicz, M.; Roszko, M.Ł. Probiotics as a biological detoxification tool of food chemical contamination: A review. Food Chem. Toxicol. 2021, 153, 112306. [Google Scholar] [CrossRef]
- Gul, O.; Mortas, M.; Atalar, I.; Dervisoglu, M.; Kahyaoglu, T. Manufacture and characterization of kefir made from cow and buffalo milk, using kefir grain and starter culture. J. Dairy Sci. 2015, 98, 1517–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panesar, P. Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food Nutr. Sci. 2011, 2, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Oshiro, M.; Zendo, T.; Nakayama, J. Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. J. Biosci. Bioeng. 2021, 131, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.C.; Joshi, V. Fermented Foods: Past, Present and Future. In Microorganisms and Fermentation of Traditional Foods; Ray, R.C., Montet, D., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 2–34. [Google Scholar]
- Singh, R.; Nikitha, M.; Mangalleima, S.N. The Product and the Manufacturing of Yoghurt. Int. J. Mod. Trends Sci. Technol. 2021, 7, 48–51. [Google Scholar]
- Limsowtin, G.; Bruinenberg, P.G.; Powell, I.B. A strategy for cheese starter culture managment in Australia. J. Microbiol. Biotechnol. 1997, 7, 1–7. [Google Scholar]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Seok, J.-H.; Park, K.-B.; Bae, M.-O.; Lee, M.-K.; Oh, S.-H. Production and Characterization of Kimchi with Enhanced Levels of γ-Aminobutyric Acid. Food Sci. Biotechnol. 2008, 17, 940–946. [Google Scholar]
- Lee, M.E.; Jang, J.Y.; Lee, J.H.; Park, H.W.; Choi, H.J.; Kim, T.W. Starter Cultures for Kimchi Fermentation. J. Microbiol. Biotechnol. 2015, 25, 559–568. [Google Scholar] [CrossRef]
- Saeed, M.; Anjum, F.M.; Zahoor, T.; Nawaz, H.; Rehman, S.U. Isolation and Characterization of Starter Culture from Spontaneous Fermentation of Sourdough. Int. J. Agric. Biol. 2009, 11, 329–332. [Google Scholar]
- McFeeters, R.F.; Perez-Diaz, I. Fermentation of Cucumbers Brined with Calcium Chloride Instead of Sodium Chloride. J. Food Sci. 2010, 75, 291–297. [Google Scholar] [CrossRef]
- Jaafir, A.; Al-Shawi, S.G. Cucumber Pickles and Fermentations. In Cucumber Pickles and Fermentation; IntechOpen: London, UK, 2021; pp. 1–15. [Google Scholar]
- Luo, C.; Deng, S. Viili as Fermented Food in Health and Disease Prevention: A Review Study. Pearl Res. J. 2016, 2, 105–113. [Google Scholar]
- Kontusaari, S.; Forsen, R. Finnish Fermented Milk “Villi”: Involvement of Two Cell Surface Proteins in Production of Slime by Streptococcus lactis ssp. Cremoris. J. Dairy Sci. 1988, 71, 3197–3202. [Google Scholar] [CrossRef]
- Synder, A.; Breidt, F.; Andress, E.L.; Ingham, B.H. Manufacture of Traditionally Fermented Vegetable Products: Best Practice for Small Businesses and Retail Food Establishments. Food Prot. Trends 2020, 40, 251–263. [Google Scholar]
- Thakur, P.K.; Panja, P.; Kabir, J.; Dhua, R.S. Studies on shelf life of sauerkraut. Journal of Crop and Weed. 2020, 16, 204–209. [Google Scholar] [CrossRef]
- Daliri, F.; Aboagye, A.A.; Daliri, E.B.M. Inactivation of Foodborne Pathogens by Lactic Acid Bacteria. J. Food Hyg. Saf. 2020, 35, 419–429. [Google Scholar] [CrossRef]
- Adetoye, A.; Pinloche, E.; Adeniyi, B.A.; Ayeni, F.A. Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 2018, 18, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, R.O.; Campos-Galvão, M.E.M.; Nero, L.A. Expression of genes associated with stress conditions by Listeria monocytogenes in interaction with nisin producer Lactococcus lactis. Food Res. Int. 2018, 105, 897–904. [Google Scholar] [CrossRef]
- Alakomi, H.L.; Skyttä, E.; Saarela, M.; Mattila-Sandholm, T.; Latva-Kala, K.; Helander, I. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 2000, 66, 2001–2005. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, D.; Kadyan, S. Antifungal Lactic Acid Bacteria (LAB): Potential Use in Food Systems. In Novel Strategies to Improve Shelf-Life and Quality of Foods, 1st ed.; Apple Academic Press: Palm Bay, FL, USA, 2020; Chapter 4; pp. 73–94. [Google Scholar]
- Matsubara, V.H.; Wang, Y.; Bandara, H.M.H.N.; Mayer, M.P.A.; Samaranayake, L.P. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol. 2016, 100, 6415–6426. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak, K.; Piotrowska-Cyplik, A. Metabolity bakterii kwasu mlekowego i ich zastosowanie w przemyśle. Postępy Mikrobiol. 2017, 56, 416–421. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, J.H.; Kim, S.L.; Dengm, H.Y.; Lee, D.; Kim, C.S.; Yun, B.S.; Lee, D.S. Catechol derived from aronia juice through lactic acid bacteria fermentation inhibits breast cancer stem cell formation via modulation Stat3/IL-6 signaling pathway. Mol. Carcinog. 2018, 11, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic-Nikolic, S.; Dimic, G.; Mojovic, L.; Pejin, J.; Djukic-Vukovic, A.; Kocic-Tanackov, S. Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J. Food Processing Preserv. 2015, 40, 990–998. [Google Scholar] [CrossRef]
- Mangalanayaki, R.; Bala, A. Bacteriocin production using lactic acid bacteria. Biomed. Pharmacol. J. 2010, 3, 413–416. [Google Scholar]
- Scatassa, M.L.; Gaglio, R.; Cardamone, C.; Macaluso, G.; Arcuri, L.; Todaro, M.; Mancuso, I. Anti-Listeria activity of lactic acid bacteria in two traditional Sicilian cheeses. Ital. J. Food Saf. 2017, 6, 6191. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Yuan, L.; Sadiq, A.; He, G. Inhibitory effect of Lactobacillus plantarum metabolites against biofilm formation by Bacillus licheniformis isolated from milk powder products. Food Control 2019, 106, 106721. [Google Scholar] [CrossRef]
- Todhanakasem, T.; Ketbumrung, K. Using Potential Lactic Acid Bacteria Biofilms and their Compounds to Control Biofilms of Foodborne Pathogens. Biotechnol. Rep. 2020, 26, e00477. [Google Scholar]
- Jakobsen, M.; Narvhus, J. Yeasts and their possible beneficial and negative effects on the quality of dairy products. Int. Dairy J. 1996, 6, 755–768. [Google Scholar] [CrossRef]
- Zara, G.; Budroni, M.; Mannazzu, I.; Fancello, F.; Zara, S. Yeast biofilm in food realms: Occurrence and control. World J. Microbiol. Biotechnol. 2020, 36, 134. [Google Scholar] [CrossRef]
- Basílio, A.C.M.; de Araújo, P.R.L.; de Morais, J.O.F.; da Silva Filho, E.A.; de Morais, M.A.; Simões, D.A. Detection and Identification of Wild Yeast Contaminants of the Industrial Fuel Ethanol Fermentation Process. Curr. Microbiol. 2008, 56, 322–326. [Google Scholar] [CrossRef]
- Salas, L.M.; Thierry, A.; Lemaître, M.; Garric, G.; Harel-Oger, M.; Chatel, M.; Coton, E. Antifungal Activity of Lactic Acid Bacteria Combinations in Dairy Mimicking Models and Their Potential as Bioprotective Cultures in Pilot Scale Applications. Front. Microbiol. 2018, 9, 1987. [Google Scholar]
- Segun, A.A. Antimicrobial Activity of Bacteriocin-Producing Lactic Acid Bacteria Isolated from Yogurts against Candida albicans. Int. J. Microbiol. Appl. 2015, 2, 84–87. [Google Scholar]
- Coton, M.; Lebreton, M.; Leyva Salas, M.; Garnier, L.; Navarri, M.; Pawtowski, A.; Mounier, J. Biogenic amine and antibiotic resistance profiles determined for lactic acid bacteria and a propionibacterium prior to use as antifungal bioprotective cultures. Int. Dairy J. 2018, 85, 21–26. [Google Scholar] [CrossRef]
- Yépez, A.; Luz, C.; Meca, G.; Vignolo, G.; Mañes, J.; Aznar, R. Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control 2017, 78, 393–400. [Google Scholar] [CrossRef]
- Saladino, F.; Luz, C.; Manyes, L.; Fernández-Franzón, M.; Meca, G. In vitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement. Food Control 2016, 67, 273–277. [Google Scholar] [CrossRef]
- Da Silva, J.V.B.; de Oliveira, C.A.F.; Ramalho, L.N.Z. An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. Food Sci. Technol. 2022, 42, 1–9. [Google Scholar] [CrossRef]
- Ryan, L.; Dal Bello, F.; Arendt, E. The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int. J. Food Microbiol. 2008, 125, 274–278. [Google Scholar] [CrossRef]
- Awah, J.; Ukwuru, M.; Alum, E.; Kingsley, T. Bio-preservative potential of lactic acid bacteria metabolites against fungal pathogens. Afr. J. Microbiol. Res. 2018, 12, 913–922. [Google Scholar] [CrossRef]
- Perczak, A.; Goliński, O.; Bryła, M.; Waśkiewicz, A. The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arch. Ind. Hyg. Toxicol. 2018, 69, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, A.; Raeisi, M.; Ebrahimi, M.; Sadeghi, B. Antifungal Activity of Pediococcus pentosaceus Isolated from Whole Barley Sourdough. J. Food Qual. Hazards Control. 2016, 3, 30–36. [Google Scholar]
- Salas, M.L.; Mounier, J.; Valence, F.; Coton, M. Antifungal Microbial Agents for Food Biopreservation—A Review. Microorganism 2017, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Le Lay, C.; Mounier, J.; Vasseur, V.; Weill, A.; Le Blay, G.; Barbier, G.; Coton, E. In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control 2016, 60, 247–255. [Google Scholar] [CrossRef]
- Delavenne, E.; Mounier, J.; Déniel, F.; Barbier, G.; Le Blay, G. Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period. Int. J. Food Microbiol. 2012, 155, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, H.; Li, P.; Apaliya, M.T.; Yang, Q.; Peng, Y.; Zhang, X. Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biol. Control 2016, 103, 30–38. [Google Scholar] [CrossRef]
- Lynch, K.M.; Pawlowska, A.M.; Brosnan, B.; Coffey, A.; Zannini, E.; Furey, A.; McSweeney, P.L.H.; Waters, D.M.; Arendt, E.K. Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. Int. Dairy J. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Cheong, E.Y.L.; Sandhu, A.; Jayabalan, J.; Kieu Le, T.T.; Nhiep, N.T.; My Ho, H.T.; Zwielehner, J.; Bansal, N.; Turner, M.S. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control 2014, 46, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Aunsbjerg, S.D.; Honoré, A.H.; Marcussen, J.; Ebrahimi, P.; Vogensen, F.K.; Benfeldt, C.; Skov, T.; Knøchel, S. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int. J. Food Microbiol. 2015, 194, 46–53. [Google Scholar] [CrossRef]
- Fernandez, B.; Vimont, A.; Desfossés-Foucault, É.; Daga, M.; Arora, G.; Fliss, I. Antifungal activity of lactic and propionic acid bacteria and their potential as protective culture in cottage cheese. Food Control 2017, 78, 350–356. [Google Scholar] [CrossRef]
- Axel, C.; Zannini, E.; Arendt, E.K.; Waters, D.M.; Czerny, M. Quantification of cyclic dipeptides from cultures of Lactobacillus brevis R2∆ by HRGC/MS using stable isotope dilution assay. Anal. Bioanal. Chem. 2014, 406, 2433–2444. [Google Scholar] [CrossRef]
- Gerez, C.L.; Fornaguera, M.J.; Obregozo, M.D.; Font de Valdez, G.; Torino, M.I. Antifungal starter culture for packed bread: Influence of two storage conditions. Rev. Argent. Microbiol. 2015, 47, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef]
- Bian, X.; Muhammad, Z.; Evivie, S.E.; Luo, G.-W.; Xu, M.; Huo, G.-C. Screening of antifungal potentials of Lactobacillus helveticus KLDS 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented soybean milk during preservation. Food Control 2016, 66, 183–189. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, J.; Li, J.; Chen, C.; Zhang, H.; Wang, H.-K.; Lu, F.-P. Characteristics and Application in Food Preservatives of Lactobacillus plantarum TK9 Isolated from Naturally Fermented Congee. Int. J. Food Eng. 2016, 12, 377–384. [Google Scholar] [CrossRef]
- Curtis, L.; Lieberman, A.; Stark, M.; Rea, W.; Vetter, M. Adverse health effects of indoor molds. J. Nutr. Environ. Med. 2004, 14, 261–274. [Google Scholar] [CrossRef]
- Ibrahim, O.O.; Menkovska, M. The Nature, Sources, Detections and Regulations of Mycotoxins That Contaminate Foods and Feeds Causing Health Hazards for Both Human and Animals. J. Agric. Chem. Environ. 2019, 8, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Abdolmaleki, K.; Khedri, S.; Alizadeh, L.; Javanmardi, F.; Oliveira, C.A.F.; Khaneghah, A.M. The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci. Technol. 2021, 115, 500–511. [Google Scholar] [CrossRef]
- Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205. [Google Scholar] [CrossRef]
- Rogowska, A.; Pomastowski, P.; Walczak, J.; Railean-Plugaru, V.; Rudnicka, J.; Buszewski, B. Investigation of zearalenone adsorption and biotransformation by microorganisms cultured under cellular stress conditions. Toxins 2019, 11, 463. [Google Scholar] [CrossRef] [Green Version]
- El-Nezami, H.; Kankaanpaa, P.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 1998, 36, 321–326. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Inês, A.; Rodrigues, A.I.; Guimarães, A.; Pereira, V.L.; Parpot, P.; Venâncio, A. Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. Int. J. Food Microbiol. 2014, 188, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food Chem. Toxicol. 2018, 112, 60–66. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Yuan, L.; Li, J. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends Food Sci. Technol. 2020, 96, 127–134. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mule, G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Mazurkiewicz, J. Degradation of ochratoxin a by Lactobacillus acidophilus K1. Electron. J. Pol. Agric. Univ. 2011, 14. Available online: http://www.ejpau.media.pl/volume14/issue2/abs-16.html (accessed on 19 September 2021).
- Barukcic, I.; Bilandzic, N.; Markov, K.; Jakopovic, K.L.; Bozanic, R. Reduction in aflatoxin M1 concentration during production and storage of selected fermented milks. Int. J. Dairy Technol. 2017, 71, 734–740. [Google Scholar] [CrossRef]
- Ye, L.; Wang, Y.; Sun, L.; Fang, Z.; Deng, Q.; Huang, Y.; Zheng, P.; Shi, Q.; Liao, J.; Zhao, J. The effects of removing aflatoxin B1 and T-2 toxin by lactic acid bacteria in high-salt fermented fish product medium under growth stress. Food Sci. Technol. 2020, 130, 109540. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Qiu, M.; Shi, Q.; Sun, L.; Liao, J.; Xu, D.; Liu, Y.; Fang, Z.; Gooneratne, R. Analysis of T-2 toxin removal factors in a Lactococcus fermentation system. J. Food Prot. 2017, 80, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Walczak, J.; Buszewski, B. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. Anal. Bioanal. Chem. 2018, 410, 943–952. [Google Scholar] [CrossRef]
- Zheng, X.; Wei, W.; Rao, S.; Gao, L.; Li, H.; Yang, Z. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01. Food Control 2020, 112, 107147. [Google Scholar] [CrossRef]
- Sezer, C.; Guven, A.; Bilge Oral, N.; Vatansever, L. Detoxification of aflatoxin B1 by bacteriocins and bacteriocinogenic lactic acid bacteria. Turk. J. Vet. Anim. Sci. 2013, 37, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Sarlak, Z.; Rouhi, M.; Mohammadi, R.; Khaksar, R.; Mortazavian, A.M.; Sohrabvandi, S.; Garavand, F. Probiotic biological strategies to decontaminate aflatoxin M1 in a traditional Iranian fermented milk drink (Doogh). Food Control 2017, 71, 152–159. [Google Scholar] [CrossRef]
- Niderkorn, V.; Morgavi, D.P.; Pujos, E.; Tissandier, A.; Boudra, H. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Addit. Contam. 2007, 24, 406–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Złoch, M.; Rogowska, A.; Pomastowski, P.P.; Railean-Plugaru, V. Use of Lactobacillus paracasei strain for zearalenone binding and metabolization. Toxicon 2020, 181, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Juodeikiene, G.; Bartkiene, E.; Cernauskas, D.; Cizeikiene, D.; Zadeike, D.; Krungleviciute, V.; Bartkevics, V. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. Food Sci. Technol. 2018, 89, 307–314. [Google Scholar] [CrossRef]
- Niderkorn, V.; Morgavi, D.P.; Aboab, B.; Lemaire, M.; Boudra, H. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. J. Appl. Microbiol. 2009, 106, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Cvek, D.; Markov, K.; Frece, J.; Friganovic, M.; Durakovic, L.; Delas, F. Adhesion of Zearalenone to the Surface of Lactic Acid Bacteria Cells. Croat. J. Food Technol. Biotechnol. Nutr. 2012, 7, 49–52. [Google Scholar]
- Niderkorn, V.; Boudra, H.; Morgavi, D.P. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J. Appl. Microbiol. 2006, 101, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, X.; Zhang, J.; Zhang, J.; Zhang, B. The mechanism of Lactobacillus strains for their ability to remove fumonisins B1 and B2. Food Chem. Toxicol. 2016, 97, 40–46. [Google Scholar] [CrossRef]
- Dawlal, P.; Brabet, C.; Thantsha, M.S.; Buys, E.M. Potential of lactic acid bacteria for the reduction of fumonisin exposure in African fermented maize based foods. World Mycotoxin J. 2017, 10, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Dalie, D.K.D.; Deschamps, A.M.; Richard-Forget, F. Lactic acid bacteria—Potential for control of mould growth and mycotoxins: A review. Food Control 2010, 21, 370–380. [Google Scholar] [CrossRef]
- Taheur, F.B.; Kouidhi, B.; Qurashi, Y.M.A.A.; Salah-Abbes, J.B. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019, 160, 12–22. [Google Scholar] [CrossRef]
Chemical Food Preservatives | Type of Food | Negative Effects | References |
---|---|---|---|
Sulphur dioxide (E220) | Dried fruits, juices | Asthma episodes, diarrhea, nausea and other gastric effects, loss of vitamin B1 | [9,10,11] |
Potassium nitrate (E249) | Cured and canned meat products | May cause lower oxygen carrying capacity of blood | [9,10] |
Sodium benzoate (E211) | Pickles, sauces | Suspected neurotoxicity and cancerogenic properties, aggressive asthma episodes | [9,10] |
Calcium benzoate (E213) | Cereals, meat products, low sugar products | Inhibition of digestive enzyme function | [9,10] |
Benzoic acid (E210) | Pickles, sauces, meat products | Possible allergic reaction | [9,11] |
Sorbic acid (E200) | Beverages, cheese, pickles, fish and meat products | Possible allergic reaction | [9,11] |
Fermented Foods | Main Ingredients | Dominant Microflora | Collaborators | Country | References |
---|---|---|---|---|---|
Kefir | Milk | Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus | Acetic acid bacteria, yeast | International | [52,53,54] |
Yogurt | Milk | Streptococcus thermophilus, Lactobacillus bulgaricus | - | International | [53,55,56] |
Cheese | Milk | Lactobacillus lactis, Streptococccus thermophilus, Lactobacillus shermanii, Lactobacillus bulgaricus, Propionibacterium shermanii | Molds (Penicillium) | International | [55,56,57,58] |
Kimchi | Cabbage, radish, salt | Lactobacillus, Leuconostoc, Pediococcus, Weissella | Yeast | Korea | [54,58,59,60] |
Sourdough | Flour, water | Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Streptococcus, Weissella | Yeast | International | [54,58,61] |
Cucumbers | Cucumbers, garlic, salt | Enterobacter, Leuconostoc mesenteroides, Levilactobacillus brevis (Lactobacillus brevis), Lactiplantibacillus plantarum (Lactobasillus plantarum) | - | International | [62,63] |
Villi | Milk | Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Leuconostoc mesenteries | Geotrichum candidum | Nordic countries | [64,65] |
Sauerkraut | Cabbage, salt | Leuconostoc mesenteroides, Lactococcus lactis, Levilactobacillus brevis (Lactobacillus brevis), Lactiplantibacillus plantarum (Lactobacillus plantarum), Lactobacillus pentoaceticus | - | International | [58,66,67] |
LAB Strains | Food Field | Source of LAB | Method of Application | Inhibited Microorganism | References |
---|---|---|---|---|---|
Lactobacillus harbinensis K.V9.3.1Np, Lacticaseibacillus rhamnosus K.C8.3.1I (Lactobacillus rhamnosus K.C8.3.1I), and Lacticaseibacillus paracasei K.C8.3.1Hc1 (Lactobacillus paracasei K.C8.3.1Hcl) | yogurt | cow and goat milk | cells as adjunct culture | Debaryomyces hansenii, Kluyveromyces lactis, Kluyveromyces marxianus, Penicillium brevicompactum, Rhodotorula mucilaginosa, and Yarrowia lipolytica | [96] |
Lacticaseibacillus casei AST18 (Lactobacillus casei AST18) | yogurt | chinese dairy products | cells as adjunct culture | Penicillium sp. | [97] |
Lactobacillus amylovorus DSM 19280 | cheddar cheese | cereal environment | cells as adjunct culture | Penicillium expansum and environmental molds | [98] |
12 strains of Lactiplantibacillus plantarum (Lactobacillus plantarum) | cottage cheese | fresh herbs, fruits, and vegetables | cells as added to the finished product | Penicillium commune | [99] |
Lacticaseibacillus paracasei DCS302 (Lactobacillus paracasei DCS302) | yogurt | no data | cells as adjunct culture | Penicillium sp. nov. DCS 1541, Penicillium solitum | [100] |
Lactobacillus harbinensis K.V9.3.1Np | yogurt | cow milk | cells as adjunct culture | Yarrowia lipolytica | [96] |
L. rhamnosus A238, L. rhamnosus A119 (2/5) The association of L. rhamnosus A238 with B. animalis subsp. lactis A026, and L. rhamnosus A119 with B. animalis subsp. lactis A026 | cottage cheese | no data | cells added to the finished product | Penicillium chrysogenum | [101] |
Lactobacillus amylovorus DSM19280 | sourdough quinoa bread | cereal isolate | cells in sourdough | environmental molds | [102] |
Lactiplantibacillus plantarum CRL778 (Lactobacillus plantarum CRL778) | wheat bread | homemade wheat dough | SL778: fermentate as ingredient | environmental molds | [103] |
Lactobacillus amylovorus DSM19280 | sourdough wheat bread | cereal isolate | cells as starter | Fusarium culmorum | [102] |
Lactiplantibacillus plantarum (Lactobacillus plantarum) UFG 121 (only 1 in situ from best 2/88 in vitro) | oat-based product | food | cells in sourdough | Fusarium culmorum (only 1 tested in situ), Penicillium chrysogenum, Penicillium expansum, Penicillium roqueforti, and Aspergillus flavus (5/7 in vitro) | [104] |
Lactobacillus bulgaricus CECT 4005, L. plantarum CECT 749 (active in situ 2/6), Lactobacillus johnsonii CECT 289, L. rhamnosus CECT 288, L. ruminis CECT 1324 and Bifidobacterium bifidum CECT 870T (6 active in vitro/16) | bread | no data | cells in sourdough | Aspergillus parasiticus (only one tested in situ) and Penicillium expansum | [88] |
L. delbrueckii group, L. alimentarius group, L. plantarum group, L. casei group, L. buchneri group, L. perolens group, L. sakei group, L. fructivorans group, L. reuteri group, L. brevis group L. rossiae, Leuconostoc spp., Pediococcus spp., Carnobacterium spp., Weissella spp., L. lactis subsp. Lactis, Propionibacterium spp. | cakes and milk bread rolls | bread roll sourdough | sprayed on the Surface of product | Species of Aspergillus, Penicillium, Cladosporium, Wallemia, Eurotium | [95] |
Lactobacillus helveticus KLDS 1.8701 | fermented soybean milk | dairy products | cells as adjunct culture | Penicillium sp. | [105] |
Lactiplantibacillus plantarum TK9 (Lactobacillus plantarum TK9) | citrus, apples and yogurt | chinese naturally fermented congee | cells | Penicillium roqueforti, Penicillium citrinum, Penicillium oxalicum, Aspergillus fumigatus, Aspergillus flavus and Rhizopus nigricans | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. https://doi.org/10.3390/foods11091283
Zapaśnik A, Sokołowska B, Bryła M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods. 2022; 11(9):1283. https://doi.org/10.3390/foods11091283
Chicago/Turabian StyleZapaśnik, Agnieszka, Barbara Sokołowska, and Marcin Bryła. 2022. "Role of Lactic Acid Bacteria in Food Preservation and Safety" Foods 11, no. 9: 1283. https://doi.org/10.3390/foods11091283