Octenyl Succinic Acid Starch-Stabilized Vanilla Essential Oil Pickering Emulsion: Preparation, Characterization, Antioxidant Activity, and Storage Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Vanilla Essential Oil
2.3. Gas Chromatography–Mass Spectrometry Conditions for Vanilla Essential Oil and Fatty Acid
2.4. Measurements for Acid Value (AV), Peroxide Value (PV), Iodine Value (IV), and Saponification Number (SN)
2.5. Preparation of Pickering Emulsion
2.6. Particle Size Distribution of Pickering Emulsion
2.7. Confocal Laser Scanning Microscopy (CLSM)
2.8. Fourier Transform Infrared Spectra (FTIR)
2.9. Emulsion Stability
2.10. Determination of Antioxidant Properties
2.11. Experimental Design Diagram
2.12. Statistical Analysis
3. Results and Discussion
3.1. GC–MS Analysis
3.1.1. Volatile Constituent Analysis of Vanilla Essential Oil
3.1.2. Fatty Acid Constituent Analysis of Vanilla Essential Oil
3.2. Physicochemical Properties of Vanilla Essential Oil
3.3. Particle Size Distribution of Pickering Emulsion
3.4. Interpretation of the Response Surface Method
3.5. Optimization of Vanilla Essential Oil Process by Response Surface Methodology
3.6. Emulsion Morphology of Pickering Emulsion
3.7. FTIR
3.8. Emulsion Stability
3.8.1. The Influence of pH on Emulsion Particle Size
3.8.2. Effect of Salt Concentration on Emulsion Particle Size
3.8.3. Effect of Storage Time on Emulsion Particle Size
3.9. Determination of Antioxidant Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Pérez-Silva, A.; Odoux, E.; Brat, P.; Ribeyre, F.; Rodriguez-Jimenes, G.; Robles-Olvera, V.; García-Alvarado, M.A.; Günata, Z. GC–MS and GC–olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans. Food Chem. 2006, 99, 728–735. [Google Scholar] [CrossRef]
- De la Vega, G.R.; Cervantes, M.S.; Alvarado, M.G.; Romero-Martínez, A.; Hegel, P. Fractionation of vanilla oleoresin by supercritical CO2 technology. J. Supercrit. Fluids 2016, 108, 79–88. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Tian, J.; Chu, Z. Effect of a new shell material—Jackfruit seed starch on novel flavor microcapsules containing vanilla oil. Ind. Crop. Prod. 2018, 112, 47–52. [Google Scholar] [CrossRef]
- Dong, Z.; Gu, F.; Xu, F.; Wang, Q. Comparative Analysis of Volatile Components of Vanilla Grown in Hainan by Solid Phase Micro-Extraction and Simultaneous Distillation Extraction. Food Sci. 2014, 35, 158–163. [Google Scholar]
- Clain, E.; Baranauskienė, R.; Kraujalis, P.; Šipailienė, A.; Maždžierienė, R.; Kazernavičiūtė, R.; El Kalamouni, C.; Venskutonis, P.R. Biorefining of Cymbopogon nardus from Reunion Island into essential oil and antioxidant fractions by conventional and high pressure extraction methods. Ind. Crop. Prod. 2018, 126, 158–167. [Google Scholar] [CrossRef]
- Donelian, A.; Carlson, L.; Lopes, T.; Machado, R. Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation. J. Supercrit. Fluids 2009, 48, 15–20. [Google Scholar] [CrossRef]
- Moon, J.; Getachew, A.T.; Haque, A.T.; Saravana, P.S.; Cho, Y.; Nkurunziza, D.; Chun, B. Physicochemical characterization and deodorant activity of essential oil recovered from Asiasarum heterotropoides using supercritical carbon dioxide and organic solvents. J. Ind. Eng. Chem. 2018, 69, 217–224. [Google Scholar] [CrossRef]
- Wu, X.; Xu, N.; Cheng, C.; McClements, D.J.; Chen, X.; Zou, L.; Liu, W. Encapsulation of hydrophobic capsaicin within the aqueous phase of water-in-oil high internal phase emulsions: Controlled release, reduced irritation, and enhanced bioaccessibility. Food Hydrocoll. 2021, 123, 107184. [Google Scholar] [CrossRef]
- Boostani, S.; Hosseini, S.M.H.; Golmakani, M.-T.; Marefati, A.; Hadi, N.A.; Rayner, M. The influence of emulsion parameters on physical stability and rheological properties of Pickering emulsions stabilized by hordein nanoparticles. Food Hydrocoll. 2019, 101, 105520. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 627, 127220. [Google Scholar] [CrossRef]
- Yamini, Y.; Khajeh, M.; Ghasemi, E.; Mirza, M.; Javidnia, K. Comparison of essential oil compositions of Salvia mirzayanii obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chem. 2008, 108, 341–346. [Google Scholar] [CrossRef]
- AOAC. AOAC International, Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Xie, Y.; Liu, H.; Li, Y.; Tian, J.; Qin, X.; Shabani, K.I.; Liao, C.; Liu, X. Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: Effect of degree of substitute and concentration. Food Hydrocoll. 2020, 108, 105915. [Google Scholar] [CrossRef]
- Fang, S.; Zhao, X.; Liu, Y.; Liang, X.; Yang, Y. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocoll. 2019, 93, 102–110. [Google Scholar] [CrossRef]
- Chandrashekar, P.; Lokesh, B.; Krishna, A.G. Hypolipidemic effect of blends of coconut oil with soybean oil or sunflower oil in experimental rats. Food Chem. 2010, 123, 728–733. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Q.; Fei, S.; Gu, H.; Yang, L. Optimization of ultrasonic circulating extraction of samara oil from Acer saccharum using combination of Plackett–Burman design and Box–Behnken design. Ultrason. Sonochem. 2017, 35, 161–175. [Google Scholar] [CrossRef]
- Mohammed, N.K.; Samir, Z.T.; Jassim, M.A.; Saeed, S.K. Effect of different extraction methods on physicochemical properties, antioxidant activity, of virgin coconut oil. Mater. Today Proc. 2021, 42, 2000–2005. [Google Scholar] [CrossRef]
- Ariffin, A.A.; Bakar, J.; Tan, C.P.; Rahman, R.A.; Karim, R.; Loi, C.C. Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chem. 2009, 114, 561–564. [Google Scholar] [CrossRef]
- Abdulkarim, S.; Long, K.; Lai, O.-M.; Muhammad, K.; Ghazali, H. Frying quality and stability of high-oleic Moringa oleifera seed oil in comparison with other vegetable oils. Food Chem. 2007, 105, 1382–1389. [Google Scholar] [CrossRef]
- Jia, X.; Xu, R.; Shen, W.; Xie, M.; Abid, M.; Jabbar, S.; Wang, P.; Zeng, X.; Wu, T. Stabilizing oil-in-water emulsion with amorphous cellulose. Food Hydrocoll. 2014, 43, 275–282. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, R.; Yang, X.; Lin, D. Characterization of a novel konjac glucomannan film incorporated with Pickering emulsions: Effect of the emulsion particle sizes. Int. J. Biol. Macromol. 2021, 179, 377–387. [Google Scholar] [CrossRef]
- Low, L.E.; Wong, S.K.; Tang, S.Y.; Chew, C.L.; De Silva, H.A.; Lee, J.M.V.; Hoo, C.H.; Kenrick, K. Production of highly uniform Pickering emulsions by novel high-intensity ultrasonic tubular reactor (HUTR). Ultrason. Sonochem. 2019, 54, 121–128. [Google Scholar] [CrossRef]
- Tang, S.Y.; Manickam, S.; Wei, T.K.; Nashiru, B. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrason. Sonochem. 2012, 19, 330–345. [Google Scholar] [CrossRef]
- Zammel, N.; Oudadesse, H.; Allagui, I.; Lefeuvre, B.; Rebai, T.; Badraoui, R. Evaluation of lumbar vertebrae mineral composition in rat model of severe osteopenia: A Fourier Transform Infrared Spectroscopy (FTIR) analysis. Vib. Spectrosc. 2021, 115, 103279. [Google Scholar] [CrossRef]
- Simsek, S.; Ovando-Martínez, M.; Marefati, A.; Sjӧӧ, M.; Rayner, M. Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches. Food Res. Int. 2015, 75, 41–49. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J.M. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. Int. J. Biol. Macromol. 2021, 192, 1084–1097. [Google Scholar] [CrossRef]
- Li, X.-M.; Zhu, J.; Pan, Y.; Meng, R.; Zhang, B.; Chen, H.-Q. Fabrication and characterization of pickering emulsions stabilized by octenyl succinic anhydride -modified gliadin nanoparticle. Food Hydrocoll. 2018, 90, 19–27. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, C.; Abbas, S.; Eric, K.; Zhang, X.; Xia, S.; Jia, C. The effect of soy protein structural modification on emulsion properties and oxidative stability of fish oil microcapsules. Colloids Surfaces B Biointerfaces 2014, 120, 63–70. [Google Scholar] [CrossRef]
- Biduski, B.; Kringel, D.H.; Colussi, R.; Hackbart, H.C.D.S.; Lim, L.-T.; Dias, A.R.G.; Zavareze, E.D.R. Electrosprayed octenyl succinic anhydride starch capsules for rosemary essential oil encapsulation. Int. J. Biol. Macromol. 2019, 132, 300–307. [Google Scholar] [CrossRef]
- Emadzadeh, B.; Ghorani, B.; Naji-Tabasi, S.; Charpashlo, E.; Molaveisi, M. Fate of β-cyclodextrin-sugar beet pectin microcapsules containing garlic essential oil in an acidic food beverage. Food Biosci. 2021, 42, 101029. [Google Scholar] [CrossRef]
- Shah, B.R.; Zhang, C.; Li, Y.; Li, B. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Res. Int. 2016, 89, 399–407. [Google Scholar] [CrossRef]
- Calva-Estrada, S.; Mendoza, M.; García, O.; Jiménez-Fernández, V.; Jimenez, M. Microencapsulation of vanilla (Vanilla planifolia Andrews) and powder characterization. Powder Technol. 2017, 323, 416–423. [Google Scholar] [CrossRef]
Level | OSA Concentration (%) | Ultrasonic Power (W) | Ultrasound Time (min) |
---|---|---|---|
−1 | 2 | 350 | 2 |
0 | 2.5 | 450 | 3 |
1 | 3 | 550 | 4 |
No. | Compound | RI(lit.) | RI(calc.) | Retention Time | Formula | Relative Content (%) |
---|---|---|---|---|---|---|
1 | Styrene | 795 | 790 | 6.30 | C8H8 | 0.23 ± 0.14 d |
2 | 2,2,4,6,6-pentamethyl-heptane, | 980 | 981 | 9.72 | C12H26 | 0.15 ± 0.11 d |
3 | 4-methoxy-benzaldehyde, | 1244 | 1249 | 25.65 | C8H8O2 | 0.14 ± 0.10 d |
4 | 4-methoxy-benzenemethanol, | 1278 | 1283 | 28.25 | C8H10O2 | 8.69 ± 2.13 b |
5 | 4-methoxy-benzoic acid methyl ester | 1371 | 1368 | 34.78 | C9H10O3 | 0.17 ± 0.12e d |
6 | 3-phenyl-2-Propenoic acid methyl ester (E)- | 1380 | 1388 | 35.45 | C10H10O2 | 0.03 ± 0.01 d |
7 | Vanillin | 1403 | 1421 | 37.53 | C8H8O3 | 30.54 ± 1.59 a |
8 | Caryophyllene | 1492 | 1472 | 37.94 | C15H24 | 0.10 ± 0.08 d |
9 | 4-methoxy-benzenemethanol acetate | 1524 | 1533 | 38.48 | C10H12O3 | 0.18 ± 0.11 d |
10 | 4-methoxy benzoic acid | 1570 | 1575 | 41.84 | C8H8O3 | 0.84 ± 0.08 d |
11 | Dodecanoic acid | 1586 | 1587 | 50.30 | C12H24O2 | 0.06 ± 0.01 d |
12 | Myristic acid | 1770 | 1769 | 57.29 | C14H28O2 | 0.08 ± 0.05 d |
13 | 2-Pentadecanone, 6,10,14-trimethyl- | 1848 | 1840 | 58.60 | C18H36O | 0.12 ± 0.06 d |
14 | Hexadecanoic acid, methyl ester | 1927 | 1925 | 59.72 | C17H34O2 | 0.12 ± 0.07 d |
15 | n-Hexadecanoic acid | 1961 | 1974 | 60.30 | C16H32O2 | 4.83 ± 0.12 c |
16 | Hexadecanoic acid, ethyl ester | 1996 | 1986 | 60.54 | C18H36O2 | 0.15 ± 0.07 d |
17 | 9,12-Octadecadienoic acid (Z, Z)-, methyl ester | 2100 | 2089 | 61.77 | C19H34O2 | 0.65 ± 0.26 d |
18 | 11-Octadecenoic acid, methyl ester | 2101 | 2095 | 61.84 | C19H36O2 | 0.17 ± 0.11 d |
19 | Linoleic acid | 2104 | 2106 | 62.47 | C18H32O2 | 3.81 ± 2.59 c |
20 | 9,12-Octadecadienoic acid, ethyl ester | 2134 | 2139 | 62.68 | C20H36O2 | 1.16 ± 0.58 d |
21 | Oleic Acid | 2167 | 2161 | 62.76 | C18H34O2 | 0.73 ± 0.45 d |
22 | Heneicosane | 2200 | 2199 | 63.13 | C21H44 | 0.56 ± 0.06 d |
23 | Tetracosane | 2300 | 2305 | 64.20 | C24H50 | 1.39 ± 0.98 d |
24 | Nonadecane-2,4-dione | 2400 | 2396 | 65.13 | C19H36O2 | 1.06 ± 0.77 d |
25 | 1-Octacosanol | 2456 | 2465 | 65.58 | C28H58O | 1.58 ± 0.56 d |
26 | Octacosane | 2600 | 2595 | 65.75 | C28H58 | 4.31 ± 0.35 c |
27 | Heptacosane | 2700 | 2698 | 67.36 | C27H56 | 3.43 ± 0.44 c |
No. | Fatty Acid | Formula | Retention Time | Relative Content (%) |
---|---|---|---|---|
1 | Myristic acid (C14:0) | C14H28O2 | 30.461 | 0.07 ± 0.04 e |
2 | Palmitic acid (C16:0) | C16H32O2 | 36.069 | 19.91 ± 0.21 b |
3 | Stearic acid (C18:0) | C18H36O2 | 42.662 | 7.88 ± 0.12 d |
4 | Oleic acid (C18:1 n − 9) | C18H34O2 | 43.856 | 13.32 ± 1.62 c |
5 | Linoleic acid (C18:2 n − 6) | C18H32O2 | 46.734 | 58.07 ± 3.49 a |
6 | Linolenic acid (C18:3 n − 3) | C18H30O2 | 50.490 | 0.74 ± 0.28 e |
AV (mg KOH/g Oil) | PV (mg/g) | IV (mg/100 g Oil) | SN (mg KOH/g Oil) |
---|---|---|---|
0.68 ± 0.15 | 0.36 ± 0.02 | 59.22 ± 0.32 | 147.26 ± 1.58 |
Run No. | OSA Concentration (%) | Ultrasonic Power (W) | Ultrasound Time (min) | Particle Size D4,3 (μm) |
---|---|---|---|---|
1 | 0 (2.5) | 1 (550) | 1 (4) | 0.487 ± 0.023 c |
2 | 1 (3) | 1 | 0 (3) | 0.529 ± 0.052 bc |
3 | −1 (2) | 0 (450) | −1 (2) | 0.645 ± 0.156 abc |
4 | −1 | 1 | 0 | 0.531 ± 0.112 bc |
5 | 1 | −1 (350) | 0 | 0.565 ± 0.056 bc |
6 | 0 | 0 | 0 | 0.566 ± 0.063 bc |
7 | −1 | −1 | 0 | 0.612 ± 0.058 abc |
8 | 0 | 0 | 0 | 0.560 ± 0.066 bc |
9 | −1 | 0 | 1 | 0.526 ± 0.152 bc |
10 | 0 | −1 | −1 | 0.782 ± 0.231 a |
11 | 1 | 0 | 1 | 0.499 ± 0.059 c |
12 | 0 | 0 | 0 | 0.561 ± 0.032 bc |
13 | 0 | −1 | 1 | 0.543 ± 0.045 bc |
14 | 0 | 1 | −1 | 0.791 ± 0.011 a |
15 | 0 | 0 | 0 | 0.562 ± 0.044 bc |
16 | 0 | 0 | 0 | 0.563 ± 0.036 bc |
17 | 1 | 0 | −1 | 0.693 ± 0.143 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, B.; Zhu, L.; Wang, P.; Xu, F.; Zhang, Y. Octenyl Succinic Acid Starch-Stabilized Vanilla Essential Oil Pickering Emulsion: Preparation, Characterization, Antioxidant Activity, and Storage Stability. Foods 2022, 11, 987. https://doi.org/10.3390/foods11070987
Wang Y, Li B, Zhu L, Wang P, Xu F, Zhang Y. Octenyl Succinic Acid Starch-Stabilized Vanilla Essential Oil Pickering Emulsion: Preparation, Characterization, Antioxidant Activity, and Storage Stability. Foods. 2022; 11(7):987. https://doi.org/10.3390/foods11070987
Chicago/Turabian StyleWang, Yitong, Bo Li, Libin Zhu, Ping Wang, Fei Xu, and Yanjun Zhang. 2022. "Octenyl Succinic Acid Starch-Stabilized Vanilla Essential Oil Pickering Emulsion: Preparation, Characterization, Antioxidant Activity, and Storage Stability" Foods 11, no. 7: 987. https://doi.org/10.3390/foods11070987
APA StyleWang, Y., Li, B., Zhu, L., Wang, P., Xu, F., & Zhang, Y. (2022). Octenyl Succinic Acid Starch-Stabilized Vanilla Essential Oil Pickering Emulsion: Preparation, Characterization, Antioxidant Activity, and Storage Stability. Foods, 11(7), 987. https://doi.org/10.3390/foods11070987