Simultaneous Determination of Tetrodotoxin in the Fresh and Heat-Processed Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Materials and Instruments
2.3. Sample Pretreatment
2.4. HPLC-MS/MS Conditions
2.5. Method Validation
2.6. Statistical Analysis
3. Results and Discussion
3.1. HPLC-MS/MS Conditions
3.2. Method Validation
3.3. Detection of TTX in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Makarova, M.; Rycek, L.; Hajicek, J.; Baidilov, D.; Hudlicky, T. Tetrodotoxin: History, Biology, and Synthesis. Angew. Chem. Int. Ed. 2019, 58, 18338–18387. [Google Scholar] [CrossRef] [PubMed]
- Horstick, E.J.; Tabor, K.M.; Jordan, D.C.; Burgess, H.A. Genetic ablation, sensitization, and isolation of neurons using nitroreductase and tetrodoxin-insensitive channels. Method Mol. Biol. 2016, 1451, 355–366. [Google Scholar] [CrossRef]
- Nakamura, M.; Jang, I.S. Acid modulation of tetrodotoxin-resistant Na+ channels in rat nociceptive neurons. Neuropharmacology 2015, 90, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Rafael, G.C.; Miguel, T.; Antonia, A.C.; Francisco, R.N.; Jose, M.E.; John, W.; Cruz, M.C. Effects of tetrodotoxin in mouse models of visceral pan. Mar. Drugs 2017, 15, 188. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, T.; Arakawa, O. Tetrodotoxin-distribution and accumulation in aquatic organisms, and cases of human intoxication. Mar. Drugs 2008, 6, 220–242. [Google Scholar] [CrossRef] [Green Version]
- Kasteel, E.E.J.; Westerink, R.H.S. Comparison of the acute inhibitory effects of Tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicol. Lett. 2017, 270, 12–16. [Google Scholar] [CrossRef]
- Mischel, R.A.; Dewey, W.L.; Akbarali, H.I. Tolerance to Morphine-Induced Inhibition of TTX-R Sodium Channels in Dorsal Root Ganglia Neurons Is Modulated by Gut-Derived Mediators. iScience 2018, 2, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Narahashi, T. Pharmacology of tetrodotoxin. J. Toxicol. Toxin Rev. 2001, 20, 67–84. [Google Scholar] [CrossRef]
- Ma, K.; Zhou, Q.H.; Chen, J.; Du, D.P.; Ji, Y.H.; Jiang, W. TTX-R Na+ current-reduction by celecoxib correlates with changes in PGE2 and CGRP within rat DRG neurons during acute incisional pain. Brain Res. 2008, 120, 57–64. [Google Scholar] [CrossRef]
- Campos, F.V.; Moreira, T.H.; Beirao, P.S.L.; Cruz, J.S. Veratridine modifies the TTX-resistant Na+ channels in rat vagal afferent neurons. Toxicon 2004, 43, 401–406. [Google Scholar] [CrossRef]
- Hwang, P.A.; Tsai, Y.H.; Deng, J.F.; Cheng, C.A.; Ho, P.H.; Hwang, D.F. Identification of tetrodotoxin in a marine gastropod (Nassarius glans) responsible for human morbidity and mortality in Taiwan. J. Food Protect. 2005, 68, 1696–1701. [Google Scholar] [CrossRef] [PubMed]
- Thuy, L.V.; Yamamoto, S.; Kawaura, R.; Takemura, N.; Yamaki, K.; Yasumoto, K.; Takada, K.; Watabe, S.; Sato, S. Tissue distribution of tetrodotoxin and its analogs in Lagocephalus pufferfish collected in Vietnam. Fish. Sci. 2020, 86, 1101–1110. [Google Scholar] [CrossRef]
- Leonardo, S.; Kiparissis, S.; Rambla-Alegre, M.; Almarza, S.; Roque, A.; Andree, K.B.; Christidis, A.; Flores, C.; Caixach, J.; Campbell, K.; et al. Detection of tetrodoxins in juvenile pufferfish Lagocephalus sceleratus (Gmelin, 1789) from the North Aegean Sea (Greece) by an electrochemical magnetic beas-based immunosensing tool. Food Chem. 2019, 290, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosker, A.R.; Ozogul, F.; Ayas, D.; Durmus, M.; Ucar, Y.; Regenstein, J.M.; Ozogul, Y. Tetrodotoxin levels of three pufferfish species (Lagocephalus sp.) caught in the North-Eastern Mediterranean Sea. Chemosphere 2019, 219, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Kosker, A.R.; Ozogul, F.; Durmus, M.; Ucar, Y.; Ayas, D.; Simat, V.; Ozogul, Y. First report on TTX levels of the yellow spotted pufferfish (Torquigener flavimaculosus) in the Mediterranean Sea. Toxicon 2018, 148, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Yamate, Y.; Takatani, T.; Takegaki, T. Levels and distribution of tetrodotoxin in the blue-lined octopus Hapalochlaena fasciata in Japan, with special reference to within-body allocation. J. Mollus. Stud. 2021, 87, 042. [Google Scholar] [CrossRef]
- Biessy, L.; Boundy, M.J.; Smith, K.F.; Harwood, D.T.; Hawes, I.; Wood, S.A. Tetrodotoxin in marine bivalves and edible gastropods: A mini-review. Chemosphere 2019, 236, 124404. [Google Scholar] [CrossRef]
- Dell’Aversano, C.; Tartaglione, L.; Polito, G.; Dean, K.; Giacobbe, M.; Casabianca, S.; Capellacci, S.; Penna, A.; Turner, A.D. First detection of tetrodotoxin and high levels of paralytic shellfish poisoning toxins in shellfish from Sicily (Italy) by three different analytical methods. Chemosphere 2019, 215, 881–892. [Google Scholar] [CrossRef]
- Zheng, R.J.; Guan, Q.M.; Zheng, M.; Huang, Z.X.; Huang, H.N.; Fu, W.S.; Lin, S.R.; Yang, Y. Toxin and toxicity identification of mangrove horseshoe crab Carcinoscorpius rotundicauda collected from South China. Toxicon 2019, 161, 23–27. [Google Scholar] [CrossRef]
- Xiong, X.; Yao, L.L.; Ying, X.G.; Lu, L.X.; Guardone, L.; Armani, A.; Guidi, A.; Xiong, X.H. Multiple fish species identified from China’s roasted Xue Yu fillet products using DNA and mini-DNA barcoding: Implications on human health and marine sustainability. Food Control 2018, 88, 123–130. [Google Scholar] [CrossRef]
- Kosker, A.R.; Özogul, F.; Durmus, M.; Ucar, Y.; Ayas, D.; Regenstein, J.M.; Özogul, Y. Tetrodotoxin levels in pufferfish (Lagocephalus sceleratus) caught in the Northeastern Mediterranean Sea. Food Chem. 2016, 210, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.; Vilariño, N.; Botana, L.M.; Elliott, C.T. A European perspective on progress in moving away from the mouse bioassay for marine-toxin analysis. TrAC Trends Anal. Chem. 2011, 30, 239–253. [Google Scholar] [CrossRef]
- Louzao, M.C.; Vieytes, M.R.; Cabado, A.G.; Sousa, J.M.V.B.; Botana, L.M. A fluorimetric microplate Assay for detection and quantitation of toxins causing paralytic shellfish poisoning. Chem. Res. Toxicol. 2003, 16, 433–438. [Google Scholar] [CrossRef]
- Lan, Y.F.; Qin, G.J.; Wei, Y.L.; Dong, C.; Wang, L. Highly sensitive analysis of tetrodotoxin based on free-label fluorescence aptamer sensing system. Spectrochim. Acta Part A 2019, 219, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Z.; Jiang, A.; Hou, T.; Li, H.Y.; Li, F. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Biosens. Bioelectron. 2015, 70, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Gui, R.J.; Sun, J.; Wang, Y.F. Facilely self-assembled magnetic nanoparticles/aptamer/carbon dots nanocomposites for highly sensitive upconversion fluorescence turn-on detection of tetrodotoxin. Talanta 2018, 176, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Gertrude, F.; Tesfaye, W.; Christopher, S.; Abd, B.; Priscilla, B.; Emmanuel, I. Aptameric recognition-modulated electroactivity of poly (4-styrenesolfonic acid)-doped polyaniline films for single-shot detection of tetrodotoxin. Sensors 2015, 15, 22547–22560. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Li, X.B.; Liu, G.W.; Xu, C.C.; Xia, C.; Wu, L.; Zhang, H.Y.; Yang, W. Development of ELISA and colloidal gold-PAb conjugate-based immunochromatographic assay for detection of abrin-a. Monoclon. Antibodies Immunodiagn. Immunother. 2015, 34, 341–345. [Google Scholar] [CrossRef]
- Ling, S.M.; Chen, Q.A.; Zhang, Y.M.; Wang, R.Z.; Jin, N.; Pang, J.; Wang, S.H. Development of ELISA and colloidal gold immunoassay for tetrodotoxin detection based on monoclonal antibody. Biosens. Bioelectron. 2015, 71, 256–260. [Google Scholar] [CrossRef]
- Campas, M.; Reverte, J.; Rambla-Alegre, M.; Campbell, K.; Gerssen, A.; Diogene, J. A fast magnetic bead-based colorimetric immunoassay for the detection of tetrodotoxins in shellfish. Food Chem. Toxicol. 2020, 140, 111315. [Google Scholar] [CrossRef]
- Reverté, L.; Rambla-Alegre, M.; Leonarda, S.; Bellés, C.; Campbell, K.; Elliott, C.; Gerssen, A.; Klijnstra, M.D.; Diogène, J.; Campàs, M. Development and validation of a maleimide-based enzyme-linked immunosorbent assay for the detection of tetrodotoxin in oysters and mussels. Talanta 2018, 176, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, C.N.; Noor, N.M.; Harn, G.L.; Lajis, R.; Mohamad, S. Screening of tetrodotoxin in puffers using gas chromatography–mass spectrometry. J. Chromatogr. 2010, 1217, 7455–7459. [Google Scholar] [CrossRef] [PubMed]
- Magarlamov, T.; Melnikova, D.; Chernyshev, A. Tetrodotoxin-producing bacteria: Detection, distribution and migration of the toxin in aquatic systems. Toxins 2017, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Desch, K.; Langer, J.D.; Schuman, E.M. Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling. Cell Rep. 2021, 36, 109583. [Google Scholar] [CrossRef]
- Martelli, F.; Cirlini, M.; Dellafiora, L.; Neviani, E.; Dall’Asta, C.; Bernini, V. Mitigation of marine toxins by interactions with bacteria: The case of okadaic acid and tetrodotoxin. Food Control 2022, 131, 108428. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Wu, P.; Wang, W.Y.; Cheng, Y.Q.; Huang, L.; Bai, J.L.; Peng, Y.; Ning, B.A.; Gao, Z.X.; et al. Development of a highly sensitive detection method for TTX based on a magnetic bead-aptamer competition system under triple cycle amplification. Anal. Chim. Acta 2020, 1119, 18–24. [Google Scholar] [CrossRef]
- Rodríguez, I.; Alfonso, A.; González-Jartín, J.M.; Vieytes, M.R.; Botana, L.M. A single run UPLC-MS/MS method for detection of all EU-regulated marine toxins. Talanta 2018, 189, 622–628. [Google Scholar] [CrossRef]
- Rey, V.; Botana, A.M.; Antelo, A.; Alvarez, M.; Botana, L.M. Rapid analysis of paralytic shellfish toxins and tetrodotoxins by liquid chromatography-tandem mass spectrometry using a porous graphitic carbon column. Food Chem. 2018, 269, 166–172. [Google Scholar] [CrossRef]
- Ling, S.M.; Li, X.L.; Zhang, D.P.; Wang, K.; Zhao, W.W.; Zhao, Q.; Wang, R.Z.; Yuan, J.; Xin, S.J.; Wang, S.H. Detection of okadaic acid (OA) and tetrodotoxin (TTX) simultaneously in seafood samples using colloidal gold immunoassay. Toxicon 2019, 165, 103–109. [Google Scholar] [CrossRef]
- Jia, W.; Chu, X.; Ling, Y.; Huang, J.; Chang, J. High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J. Chromatogr. A 2014, 1347, 122–128. [Google Scholar] [CrossRef]
- Fong, B.M.; Tam, S.; Tsui, S.H.; Leung, K.S. Development and validation of a high-throughput double solid phase extraction-liquid chromatography-tandem mass spectrometry method for the determination of tetrodotoxin in human urine and plasma. Talanta 2011, 83, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.; Lemire, S.W.; Bragg, W.; Garrett, A.; Ojeda-Torres, G.; Hamelin, E.; Johnson, R.; Thomas, J. Development and validation of a high-throughput online solid phase extraction e Liquid chromatography e Tandem mass spectrometry method for the detection of tetrodotoxin in human urine. Toxicon 2016, 119, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Zhang, M.; Yuan, J.H.; Du, J.; Ma, A.D.; Pan, J.L. A simple, versatile, and automated pulse-diffusion-focusing strategy for sensitive milliliter-level-injection HILIC-MS/MS analysis of hydrophilic toxins. J. Hazard. Mater. 2020, 392, 122318. [Google Scholar] [CrossRef] [PubMed]
- Ochi, N. Simultaneous determination of ten paralytic shellfish toxins and tetrodotoxin in scallop and short-necked clam by ion-pair solid-phase extraction and hydrophilic interaction chromatography with tandem mass spectrometry. J. Chromatogr. A 2021, 1651, 462328. [Google Scholar] [CrossRef]
- Gosetti, F.; Mazzucco, E.; Zampieri, D.; Gennaro, M.C. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 3929–3937. [Google Scholar] [CrossRef]
- Chen, L.; Qiu, J.L.; Tang, Y.J.; Xu, J.Q.; Huang, S.Y.; Liu, Y.; Ouyang, G.F. Rapid in Vivo Determination of Tetrodotoxin in Pufferfish (Fugu) Muscle by Solid-phase Microextraction Coupled to High-Performance Liquid Chromatography Tandem Mass Spectrometry. Talanta 2017, 171, 179–184. [Google Scholar] [CrossRef]
- Bane, V.; Hutchinson, S.; Sheehan, A.; Brosnan, B.; Barnes, P.; Lehane, M.; Furey, A. LC-MS/MS method for the determination of tetrodotoxin (ttx) on triple quadruple mass spectrometer. Food Addit. Contam. 2016, 33, 1728–1740. [Google Scholar] [CrossRef]
- Bane, V.; Brosnan, B.; Barnes, P.; Lehane, M.; Furey, A. High resolution mass spectrometry analysis of Tetrodotoxin (TTX) and its analogues in puffer fish and shellfish. Food Addit. Contam. 2016, 33, 1468–1489. [Google Scholar] [CrossRef]
- Lago, J.; Rodríguez, L.P.; Blanco, L.; Vieites, J.M.; Cabado, A.G. Tetrodotoxin, an extremely potent marine neurotoxin: Distribution, toxicity, origin and therapeutical uses. Mar. Drugs 2015, 13, 6384–6406. [Google Scholar] [CrossRef]
Time/min | Mobile Phase A/% | Mobile Phase B/% | Hold Time/min |
---|---|---|---|
0 | 25 | 75 | 1.00 |
1.0 | 25 | 75 | 0.10 |
1.1 | 95 | 5 | 2.90 |
4.0 | 95 | 5 | 0.10 |
4.1 | 25 | 75 | 4.90 |
Matrix | LR (ng/g) | CV | R2 | LOD (ng/g) | LOQ (ng/g) | ME (%) | Repeatability (%) |
---|---|---|---|---|---|---|---|
- | 0.2–100 | y = −5007.64 + 13988.30x | 0.9998 | - | - | - | - |
T. obscurus | y = −3549.34 + 11416.6x | 0.9992 | 0.2 | 0.5 | 18.3 | 5.79 | |
Heat-processed Gadus | y = −2230.15 + 14082.1x | 0.9992 | 0.2 | 0.5 | −0.671 | 7.57 |
Linear Range | LOD | Matrix | Ref. |
---|---|---|---|
- | 3 ng/g | mangrove horseshoe crab | [19] |
1.56–100 ng/mL | 1.56 ng/g | shellfish | [37] |
3–25,800 ng/g | 6.245 ng/g | mussel | [38] |
10–1000 ng/g | 2.3 ng/g | pufferfish muscle | [46] |
50–37,500 ng/g | 410 ng/g | puffer fish | [47] |
- | 41 ng/g | mackerel fish extracts | [48] |
0.2–100 ng/g | 0.2 ng/g | pufferfish and high-processed Gadus | This work |
Samples | Initial Amount (ng/g) | Spiked (ng/g) | Measured Average (ng/g) | Recovery (%) | Precision (%) |
---|---|---|---|---|---|
T. obscurus (Skin) | N.D. | 0.5 | 0.536 | 107.2 | 3.92 |
N.D. | 2.5 | 2.657 | 106.3 | 2.45 | |
N.D. | 10.0 | 9.953 | 99.5 | 6.16 | |
T. obscurus (Muscle) | N.D. | 0.5 | 0.453 | 90.5 | 1.60 |
N.D. | 2.5 | 2.373 | 94.9 | 2.40 | |
N.D. | 10.0 | 9.980 | 99.8 | 6.59 | |
T. obscurus (Liver) | N.D. | 0.5 | 0.517 | 103.4 | 3.36 |
N.D. | 2.5 | 2.320 | 92.8 | 3.95 | |
N.D. | 10.0 | 10.400 | 104.0 | 3.47 | |
Heat-processed Gadus | N.D. | 0.5 | 0.501 | 100.1 | 3.35 |
N.D. | 2.5 | 2.410 | 96.4 | 2.59 | |
N.D. | 10.0 | 10.410 | 104.1 | 7.05 |
Number | Samples | Sampling City | Collection Date | Tissues | Measured * (ng/g) |
---|---|---|---|---|---|
1 | T. obscurus | Zhangzhou, Fujian Province | 10 January | Skin | N.D. |
Muscle | N.D. | ||||
Liver | N.D. | ||||
2 | T. obscurus | Zhangzhou, Fujian Province | 8 April | Skin | N.D. |
Muscle | 8.41 (5.71%) | ||||
3 | T. obscurus | Taizhou, Jiangsu Province | 11 May | Skin | N.D. |
Muscle | N.D. | ||||
4 | T. obscurus (1#) | Guangzhou, Guangdong Province | 12 June | Skin | N.D. |
Muscle | N.D. | ||||
Liver | N.D. | ||||
5 | T. obscurus (2#) | Dongguan, Guangdong Province | 12 June | Skin | N.D. |
Muscle | N.D. | ||||
Liver | N.D. | ||||
6 | T. obscurus | Dongguan, Guangdong Province | 12 June | Skin | N.D. |
Muscle | N.D. | ||||
Liver | N.D. | ||||
7 | T. obscurus | Yangjiang, Guangdong Province | 12 June | Skin | N.D. |
Muscle | N.D. | ||||
Liver | N.D. | ||||
8 | T. flavidus | Shanghai | 11 August | Skin | N.D. |
Muscle | N.D. | ||||
Liver | N.D. | ||||
9 | T. rubripes (1#) | Weihai, Shandong Province | 18 September | Skin | N.D. |
Muscle | N.D. | ||||
10 | T. rubripes (2#) | Weihai, Shandong Province | 18 September | Skin | N.D. |
Muscle | N.D. | ||||
11 | T. obscurus (1#) | Jiangyin, Jiangsu Province | 11 October | Skin | N.D. |
Muscle | N.D. | ||||
12 | T. obscurus (2#) | Jiangyin, Jiangsu Province | 11 October | Skin | N.D. |
Muscle | N.D. | ||||
13 | T. obscurus (1#) | Taizhou, Jiangsu Province | 11 October | Skin | N.D. |
Muscle | N.D. | ||||
14 | T. obscurus (2#) | Taizhou, Jiangsu Province | 11 October | Skin | N.D. |
Muscle | N.D. | ||||
15 | T. obscurus | Shanghai | 26 November | Skin | N.D. |
Muscle | N.D. | ||||
16 | T. rubripes | Tangshan, Hebei Province | 3 December | Skin | N.D. |
Muscle | N.D. |
Number | Heat-Processed Fishes | Collection Date | Measured (ng/g) |
---|---|---|---|
1 | Trichogaster leeri | 30 May | N.D. |
2 | Gadus | 30 May | N.D. |
3 | Gadus | 30 May | N.D. |
4 | Trichogaster leeri | 1 June | N.D. |
5 | Gadus | 1 June | N.D. |
6 | Redeye mullet | 1 June | N.D. |
7 | Gadus | 4 June | N.D. |
8 | Anguillidae | 4 June | N.D. |
9 | Gadus | 4 June | N.D. |
10 | Gadus | 5 June | N.D. |
11 | Gadus | 1 August | N.D. |
12 | Scomberomorus niphonius | 1 August | N.D. |
13 | Lophiiformes | 1 August | N.D. |
14 | Gadus | 1 August | N.D. |
15 | Scomberomorus niphonius | 1 August | N.D. |
16 | Gadus | 1 August | N.D. |
17 | Gadus | 1 August | N.D. |
18 | Gadus | 1 August | N.D. |
19 | Gadus | 1 August | N.D. |
20 | Lophiiformes | 1 August | N.D. |
21 | Rajiformes | 2 August | N.D. |
22 | Anguillidae | 2 August | N.D. |
23 | Gadus | 2 August | N.D. |
24 | Trichogaster leeri | 2 August | N.D. |
25 | Gadus | 2 August | N.D. |
26 | Thamnaconus septentrionalis | 3 August | 219 (1.59%) |
27 | Gadus | 3 August | N.D. |
28 | Gadus | 3 August | N.D. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Xi, Y.; Tian, L.; Huang, D.; Huang, X.; Shen, X.; Cai, Y.; Wangs, Y. Simultaneous Determination of Tetrodotoxin in the Fresh and Heat-Processed Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Foods 2022, 11, 925. https://doi.org/10.3390/foods11070925
Ye H, Xi Y, Tian L, Huang D, Huang X, Shen X, Cai Y, Wangs Y. Simultaneous Determination of Tetrodotoxin in the Fresh and Heat-Processed Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Foods. 2022; 11(7):925. https://doi.org/10.3390/foods11070925
Chicago/Turabian StyleYe, Hongli, Yinfeng Xi, Liangliang Tian, Dongmei Huang, Xuanyun Huang, Xiaosheng Shen, Youqiong Cai, and Yuan Wangs. 2022. "Simultaneous Determination of Tetrodotoxin in the Fresh and Heat-Processed Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry" Foods 11, no. 7: 925. https://doi.org/10.3390/foods11070925
APA StyleYe, H., Xi, Y., Tian, L., Huang, D., Huang, X., Shen, X., Cai, Y., & Wangs, Y. (2022). Simultaneous Determination of Tetrodotoxin in the Fresh and Heat-Processed Aquatic Products by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Foods, 11(7), 925. https://doi.org/10.3390/foods11070925