Red Fruits Composition and Their Health Benefits—A Review
Abstract
:1. Introduction
2. Red Fruits Composition
2.1. Vitamins and Minerals
2.1.1. Vitamins
2.1.2. Minerals
2.2. Sugars and Organic Acids
2.3. Dietary Fibers
2.4. Lipids and Fatty Acids
2.5. Polyphenols
2.5.1. Phenolic Acids and Flavonoids
2.5.2. Anthocyanins
2.6. Aroma and Flavor Compounds
3. Red Fruits: Consumers’ Perception of Health Benefits
4. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, V.R.; Pereira, P.A.; Da Silva, T.L.; Lima, L.C.O.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Rochette, N.F.; Da Silveira Vasconcelos, M.; Nabavi, S.M.; Mota, E.F.; Nunes-Pinheiro, D.C.; Daglia, M.; De Melo, D.F. Fruit as potent natural antioxidants and their biological effects. Curr. Pharm. Biotechnol. 2016, 17, 986–993. [Google Scholar] [CrossRef]
- Olas, B. Berry phenolic antioxidants—Implications for human health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ahuja, J.K.C.; Burton-Freeman, B.M. Characterization of the nutrient profile of processed red raspberries for use in nutrition labeling and promoting healthy food choices. Nutr. Healthy Aging 2019, 5, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Vicente, A.R.; Manganaris, G.A.; Sozzi, G.O.; Crisosto, C.H. Nutritional quality of fruits and vegetables. In Postharvest Handling: A Systems Approach, 2nd ed.; Florkowski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 57–106. [Google Scholar] [CrossRef]
- Badjakov, I.; Nikolova, M.; Gevrenova, R.; Kondakova, V.; Todorovska, E.; Atanassov, A. Bioactive compounds in small fruits and their influence on human health. Biotechnol. Biotechnol. Equip. 2008, 22, 1581–1587. [Google Scholar] [CrossRef]
- Jaglan, P.; Buttar, H.S.; Al-bawareed, O.A.; Chibisov, S. Potential health benefits of selected fruits: Apples, blueberries, grapes, guavas, mangos, pomegranates, and tomatoes. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Singh, R.B., Watanabe, S., Isaza, A.A., Eds.; Academic Press: San Diego, CA, USA, 2022; Chapter 24; pp. 359–370. [Google Scholar] [CrossRef]
- Huang, Y.; Park, E.; Edirisinghe, I.; Burton-Freeman, B.M. Maximizing the health effects of strawberry anthocyanins: Understanding the influence of the consumption timing variable. Food Funct. 2016, 7, 4745–4752. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Guillen, F.; Martinez-Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef]
- Pelayo-Zaldivar, C.; Ebeler, S.; Kader, A. Cultivar and harvest date effects on flavor and other quality attributes of California strawberries. J. Food Qual. 2005, 28, 78–97. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Quality and nutritional value of strawberry fruit under long term salt stress. J. Agric. Food Chem. 2008, 107, 1413–1420. [Google Scholar] [CrossRef]
- Usenik, V.; Fabcic, J.; Stampar, F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chem. 2008, 107, 185–192. [Google Scholar] [CrossRef]
- Faniadis, D.; Drogoudi, P.D.; Vasilakakis, M. Effects of cultivar, orchard elevation, and storage on fruit quality characters of sweet cherry (Prunus avium L.). Sci. Hortic. 2010, 125, 301–304. [Google Scholar] [CrossRef]
- Pinto, T.; Vilela, A.; Pinto, A.; Nunes, F.M.; Cosme, F.; Anjos, R. Influence of cultivar and of conventional and organic agricultural practices on phenolic and sensory profile of blackberries (Rubus fruticosus). J. Sci. Food Agric. 2018, 98, 4616–4624. [Google Scholar] [CrossRef] [PubMed]
- Anjos, R.; Cosme, F.; Gonçalves, A.; Nunes, F.M.; Vilela, A.; Pinto, T. Effect of agricultural practices, conventional vs organic, on the phytochemical composition of ‘Kweli’ and ‘Tulameen’ raspberries (Rubus idaeus L.). Food Chem. 2020, 2020, 126833. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; ISBN 1-57881-072-8. [Google Scholar]
- Jabłońska-Ryś, E.; Zalewska-Korona, M.; Kalbarczyk, J. Antioxidant Capacity, Ascorbic Acid and Phenolics Content in Wild Edible Fruits. J. Fruit Ornam. Plant Res. 2009, 17, 115–120. [Google Scholar]
- Stewart, D.; McDougall, G.J.; Sungurtas, J.; Verrall, S.; Graham, J.; Martinussen, I. Metabolomic approach to identifying bioactive compounds in berries: Advances toward fruit nutritional enhancement. Mol. Nutr. Food Res. 2007, 51, 645–651. [Google Scholar] [CrossRef]
- Rudy, S.; Dziki, D.; Krzykowski, A.; Gawlik-Dziki, U.; Polak, R.; Róžiło, R.; Kulig, R. Influence of pre-treatments and freeze-drying temperature on the process kinetics and selected physico-chemical properties of cranberries (Vaccinium macrocarpon Ait.). LWT-Food Sci. Technol. 2015, 63, 497–503. [Google Scholar] [CrossRef]
- Maki, K.C.; Kaspar, K.L.; Khoo, C.; Derrig, L.H.; Scild, A.L.; Gupta, K. Consumption of a cranberry juice beverage lowered the number of clinical urinary tract infection episodes in women with a recent history of urinary tract infection. Am. J. Clin. Nutr. 2016, 103, 1434–1442. [Google Scholar] [CrossRef] [Green Version]
- Dorofejeva, K.; Rakcejeva, T.; Galoburda, R.; Dukalska, L.; Kviesis, J. Vitamin C content in Latvian cranberries dried in convective and microwave vacuum driers. Procedia Food Sci. 2011, 1, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Sinelli, N.; Spinardi, A.; di Egidio, V.; Mignani, I.; Casiraghi, E. Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol. Technol. 2008, 50, 31–36. [Google Scholar] [CrossRef]
- Harb, J.; Khraiwesh, B.; Streif, J.; Reski, R.; Frank, W. Characterization of blueberry monodehydroascorbate reductase gene and changes in levels of ascorbic acid and the antioxidative capacity of water soluble antioxidants upon storage of fruits under various conditions. Sci. Hortic. 2010, 125, 390–395. [Google Scholar] [CrossRef]
- Paes, J.; Dotta, R.; Barbero, G.F.; Martínez, J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids 2014, 95, 8–16. [Google Scholar] [CrossRef]
- Gündüz, K.; Serçe, S.; Hancock, J.F. Variation among highbush and rabbit eye cultivars of blueberry for fruit quality and phytochemical characteristics. J. Food Compos. Anal. 2015, 38, 69–79. [Google Scholar] [CrossRef]
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem. 2018, 262, 242–250. [Google Scholar] [CrossRef]
- Lin, P.-H.; Aickin, M.; Champagne, C.; Craddick, S.; Sacks, F.M.; McCarron, P.; Most-Windhauser, M.M.; Rukenbrod, F.; Haworth, L. Food group sources of nutrients in the dietary patterns of the DASH-Sodium trial. J. Am. Diet. Assoc. 2003, 103, 488–496. [Google Scholar] [CrossRef]
- USDA-ARS (US Department of Agriculture, Agricultural Research Service). USDA Nutrient Database for Standard Reference, Release 25, Software 1.2.2, from the Nutrient Data Laboratory. Available online: http://www.nal.usda.gov/fnic/foodcomp (accessed on 28 December 2021).
- Hakala, M.; Lapvetelainen, A.; Houpalahti Kallio, H.; Tahvonen, R. Effects of varieties and cultivation conditions on the composition of strawberries. J. Food Compost. Anal. 2003, 16, 67–80. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, 10. [Google Scholar] [CrossRef]
- Viljakainen, S.; Visti, A.; Laakso, S. Concentrations of organic acids and soluble sugars in juices from Nordic berries. Acta Agric. Scand. B Soil Plant Sci. 2010, 52, 101–109. [Google Scholar] [CrossRef]
- Forney, C.F.; Kalt, W.; Jordan, J.A.; Vinqvist-Tymchuk, M.R.; Fillmore, S.A.E. Compositional changes in blueberry and cranberry fruit during ripening. Acta Hortic. 2012, 926, 331–337. [Google Scholar] [CrossRef]
- Cekic, C.; Ozgen, M. Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). J. Food Compost. Anal. 2010, 23, 540–544. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, J.-Y.; Li, J.; Zhang, H.; Li, Y.; Farooq, S.; Bacha, S.A.S.; Wang, J. Evaluation of sugar and organic acid composition and their levels in highbush blueberries from two regions of China. J. Integr. Agric. 2020, 19, 2352–2361. [Google Scholar] [CrossRef]
- Correia, S.; Queirós, F.; Ribeiro, C.; Vilela, A.; Aires, A.; Barros, A.I.; Schouten, R.; Silva, A.P.; Gonçalves, B. Effects of calcium and growth regulators on sweet cherry (Prunus avium L.) quality and sensory attributes at harvest. Sci. Horti. 2019, 248, 231–240. [Google Scholar] [CrossRef]
- Urün, I.; Attar, S.H.; Sönmez, D.A.; Gündesli, M.A.; Ercişli, S.; Kafkas, N.E.; Bandić, L.M.; Duralija, B. Comparison of polyphenol, sugar, organic acid, volatile vompounds, and antioxidant capacity of commercially grown strawberry cultivars in Turkey. Plants 2021, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.C.; Mucha, Â.; Ferreira, H.; Gonçalves, B.; Bacelar, E.; Marques, G. Comparative study of plant growth-promoting bacteria on the physiology, growth and fruit quality of strawberry. J. Sci. Food Agric. 2019, 99, 5341–5349. [Google Scholar] [CrossRef]
- Costa, E.; Cosme, F.; Jordão, A.M.; Mendes-Faia, A. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. OENO One 2014, 48, 51–62. [Google Scholar] [CrossRef]
- Costa, E.; Cosme, F.; Rivero-Pérez, M.D.; Jordão, A.M.; González-SanJosé, M.L. Influence of wine region provenance on phenolic composition, antioxidant capacity and radical scavenger activity of traditional Portuguese red grape varieties. Eur. Food Res. Technol. 2015, 241, 61–73. [Google Scholar] [CrossRef]
- Milivojevic, J.M.; Nikolic, M.D.; Maksimovic, J.J.D.; Radivojevic, D.D. Generative and fruit quality characteristics of primocane fruiting red raspberry cultivars. Turk. J. Agric. For. 2011, 35, 289–296. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of sugar and organic acid of fruit juices: A comparative study and implication for authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.-B.; Noh, Y.H.; Min, S.R.; Lee, H.S.; Jung, J.; Park, K.H.; Kim, D.S.; Nam, M.H.; Kim, T.I.; et al. Sugar content and expression of sugar metabolism-related gene in strawberry fruits from various cultivars. J. Plant Biotechnol. 2018, 45, 90–101. [Google Scholar] [CrossRef]
- Correia, S.; Gonçalves, B.; Aires, A.; Silva, A.; Ferreira, L.; Carvalho, R.; Fernandes, H.; Freitas, C.; Carnide, V.; Silva, A.P. Effect of harvest year and altitude on nutritional and biometric characteristics of blueberry cultivars. J. Chem. 2016, 2016, 8648609. [Google Scholar] [CrossRef]
- Ha, M.A.; Jarvis, M.; Mann, J. A definition for dietary fibre. Eur. J. Clin. Nutr. 2000, 54, 861–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine. Dietary Reference Intakes Proposed Definition of Dietary Fiber. A Report of the Panel on the Definition of Dietary Fiber and The Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Food and Nutrition Board, National Academy Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Anita, F.P.; Abraham, P. Clinical Dietetics and Nutrition; Delhi Oxford University Press: Calcutta, India, 1997; pp. 73–77. [Google Scholar] [CrossRef] [Green Version]
- Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary fibre intake in Australia. Paper II: Comparative examination of food sources of fibre among high and low fibre consumers. Nutrients 2018, 10, 1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fibre. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Chau, C.F.; Huang, Y.L. Comparison of the chemical composition and physicochemical properties of different fibres prepared from peel of the Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 2003, 51, 2615–2618. [Google Scholar] [CrossRef]
- Terry, P.; Giovannucci, E.; Michels, K.B.; Bergkvist, L.; Hansen, H.; Holmberg, L.; Wolk, A. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J. Nat. Canc. Instit. 2001, 93, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Marlett, J.A.; McBurney, M.I.; Slavin, J.L. Position of the American Dietetic Association health implications of dietary fiber. J. Am. Diet. Assoc. 2002, 102, 993–1000. [Google Scholar] [CrossRef]
- Tutelyan, V.A. Norms of physiological needs in energy and nutrients for different groups of the population of the Russian Federation. Vopr. Pitan. 2009, 78, 4–15. [Google Scholar]
- Akimov, M.Y.; Koltsov, V.A.; Zhbanova, E.V.; Akimova, O.M. Nutritional value of promising raspberry varieties. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 022078. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture Dietary Guidelines for Americans 2015–2020. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 31 August 2018).
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [Green Version]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef]
- Pacifico, S.; Di Maro, A.; Petriccione, M.; Galasso, S.; Piccolella, S.; Di Giuseppe, A.M.A.; Scortichini, M.; Monaco, P. Chemical composition, nutritional value and antioxidant properties of autochthonous Prunus avium cultivars from Campania Region. Food Res. Int. 2014, 64, 188–199. [Google Scholar] [CrossRef]
- Kafkas, E.; Gunaydin, S.; Ercisli, S.; Ozogu, Y.; Unlu, M.A. Fat and fatty acid composition of strawberry cultivars. Chem. Nat. Compd. 2009, 45, 861–863. [Google Scholar] [CrossRef]
- Kafkas, E.; Ozgen, M.; Ozogul, Y.; Turemis, N. Phytochemical and fatty acid profile of selected red raspberry cultivars: A comparative study. J. Food Qual. 2008, 31, 67–78. [Google Scholar] [CrossRef]
- Fadavi, A.; Barzegar, M.; Azizi, M.H. Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. J. Food Compos. Anal. 2006, 19, 676–680. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Geçgel, Ü.; Gülcü, M.; Hamurcu, M.; Özcan, M.M. Bioactive properties, fatty acid composition and mineral contents of grape seed and oils. S. Afr. J. Enol. Vitic. 2017, 38, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Melgarejo, P.; Artés, F. Total lipid content and fatty acid composition of oilseed from lesser known sweet pomegranate clones. J. Sci. Food Agric. 2000, 80, 1452–1454. [Google Scholar] [CrossRef]
- Al-Maiman, S.A.; Ahmad, D. Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chem. 2002, 76, 437–441. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, S.Y. Effect of storage temperatures on fruit quality of various cranberry cultivars. Acta Hortic. 2009, 810, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanis, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda, A.; Ramírez-Moreno, E. Organic acids, antioxidants, and dietary fiber of Mexican blackberry (Rubus fruticosus) residues cv. Tupy. J. Food Qual. 2018, 1, 5950761. [Google Scholar] [CrossRef] [Green Version]
- US Department of Agriculture. USDA National Nutrient Database for Standard Reference, Release April 2018. Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 26 November 2018).
- Pereira de Melo, I.; Carvalho, E.; Filho, J. Pomegranate seed oil (Punica granatum L.): A source of punicic acid (conjugated α-linolenic acid). J. Hum. Nutr. Food Sci. 2014, 2, 1024. [Google Scholar]
- Dziadek, K.; Kopeć, A.; Czaplicki, S. The petioles and leaves of sweet cherry (Prunus avium L.) as a potential source of natural bioactive compounds. Eur. Food Res. Technol. 2018, 244, 1415–1426. [Google Scholar] [CrossRef]
- Bastos, C.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem. 2015, 173, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Pieszka, M.; Migdał, W.; Gąsior, R.; Rudzińka, M.; Bederska-Łojewska, D.; Pieszka, M.; Szczurek, M. Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication. J. Chem. 2015, 2015, 659541. [Google Scholar] [CrossRef] [Green Version]
- Shinagawa, F.B.; Santana, F.C.; Araujo, E.; Purgatto, E.; Mancini-Filho, J. Chemical composition of cold pressed Brazilian grape seed oil. Food Sci. Technol. 2018, 38, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Parker, T.D.; Adams, D.A.; Zhou, K.; Harris, M.; Yu, L. Fatty acid composition and oxidative stability of cold-pressed edible seed Oils. J. Food Sci. 2003, 68, 1240–1243. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Lopéz-Cortés, I.; Salazar Domingo, M.; Ramalhosa, E.; Casal, S. Lipid composition of seed oils of different pomegranate (Punica granatum L.) cultivars from Spain. Int. J. Food Stud. 2015, 4, 95–103. [Google Scholar] [CrossRef]
- Celik, F.; Ercisli, S. Lipid and fatty acid composition of wild and cultivated red raspberry fruits (Rubus idaeus L.). J. Med. Plants Res. 2009, 3, 583–585. [Google Scholar]
- Li, Q.; Wang, J.; Shahidi, F. Chemical characteristics of cold-pressed blackberry, black raspberry, and blueberry seed oils and the role of the minor components in their oxidative stability. J. Agric. Food Chem. 2016, 64, 5410–5416. [Google Scholar] [CrossRef]
- Luginina, E.A.; Egoshina, T.L. Biochemical composition of fruits of wild growing berry plants. In Temperate Horticulture for Sustainable Development and Environment: Ecological Aspects; Weisfeld, L., Opalko, A.I., Bekuzarova, S.A., Eds.; Apple Academic Press Inc.: New York, NY, USA, 2018; 20p. [Google Scholar]
- Nagy, K.; Tiuca, I.-D. Importance of fatty acids in physiopathology of human body. IntechOpen 2017. Available online: https://www.intechopen.com/books/fatty-acids/importance-of-fatty-acids-in-physiopathology-of-human-body (accessed on 28 August 2018). [CrossRef] [Green Version]
- Dominguez, L.J.; Barbagallo, M. Not All Fats Are Unhealthy. In The Prevention of Cardiovascular Disease through the Mediterranean Diet; Sánchez-Villegas, A., Sánchez-Tainta, A., Eds.; Academic Press: London, UK, 2018; pp. 35–58. [Google Scholar]
- Ander, B.P.; Dupasquier, C.M.; Prociuk, M.A.; Pierce, G.N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003, 8, 164–172. [Google Scholar] [PubMed]
- Sanjeev, P.; Chaudhary, D.P.; Sreevastava, P.; Saha, S.; Rajenderan, A.; Sekhar, J.C.; Chikkappa, G.K. Comparison of fatty acid profile of specialty maize to normal maize. J. Am. Oil Chem. Soc. 2014, 91, 1001–1005. [Google Scholar] [CrossRef]
- Johnson, M.; Bradford, C. Omega-3, Omega-6 and Omega-9 fatty acids: Implications for cardiovascular and other diseases. J. Glycom. Lipidom. 2014, 4, 123. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Hussain, A.; Kuktaite, R.; Andersson, S.C.; Olsson, M.E. Contribution of organically grown crops to human health. Int. J. Environ. Res. Public Health 2014, 11, 3870–3893. [Google Scholar] [CrossRef] [PubMed]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- Balasundrama, N.; Sundramb, K.; Sammana, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Colak, N.; Primetta, A.K.; Riihinen, K.R.; Jaakola, L.; Grúz, J.; Strnad, M.; Torun, H.; Ayaz, F.A. Phenolic compounds and antioxidant capacity in different-colored and non-pigmented berries of bilberry (Vaccinium myrtillus L.). Food Biosci. 2017, 20, 67–78. [Google Scholar] [CrossRef]
- Lätti, A.K.; Riihinen, K.R.; Kainulainen, P.S. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 2008, 56, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Wu, J.; Wang, H.-X.; Li, S.-S.; Zheng, X.-C.; Du, H.; Xu, Y.-J.; Wang, L.-S. Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars. J. Funct. Foods 2015, 16, 295–304. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Soutinho, S.M.A.; Gonçalves, F.J. Phenolic compounds and antioxidant activity in red fruits produced in organic farming. Croat. J. Food Sci. Technol. 2014, 6, 15–26. Available online: http://hdl.handle.net/10400.19/2233 (accessed on 20 August 2020).
- Brown, P.N.; Shipley, P.R. Determination of anthocyanins in cranberry fruit and cranberry fruit products by high-performance liquid chromatography with ultraviolet detection: Single-laboratory validation. J. AOAC Int. 2011, 94, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, N.; Balac, P.; Narlakanti, S.K.; Enamul Haque, M.D.; Mehedi Hassan, M.D. Identification of phenolic compounds in processed cranberries by HPLC method. J. Nutr. Food Sci. 2013, 3, 181. [Google Scholar] [CrossRef] [Green Version]
- Ek, S.; Kartimo, H.; Mattila, S.; Tolonen, A. Characterization of phenolic compounds from lingonberry (Vaccinium vitis-idaea). J. Agric. Food Chem. 2006, 54, 9834–9842. [Google Scholar] [CrossRef]
- Chiang, C.-J.; Kadouh, H.; Zhou, K. Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion. LWT Food Sci. Technol. 2013, 51, 417–422. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Johansson, E.; Andersson, S.C.; Rumpunen, K. Major phenolic compounds in black currant (Ribes nigrum L.) buds: Variation due to genotype, ontogenetic stage and location. Food Chem. 2015, 63, 1274–1280. [Google Scholar] [CrossRef]
- Nour, V.; Stampar, F.; Veberic, R.; Jakopic, J. Anthocyanins profile, total phenolics and antioxidant activity of black currant ethanolic extracts as influenced by genotype and ethanol concentration. Food Chem. 2013, 141, 961–966. [Google Scholar] [CrossRef]
- Aneta, W.; Jan, O.; Magdalena, M.; Joanna, W. Phenolic profile, antioxidant and antiproliferative activity of black and red currants (Ribes spp.) from organic and conventional cultivation. Int. J. Food Sci.Techn. 2013, 48, 715–726. [Google Scholar] [CrossRef]
- Adina, F.; Cecilia, G.; Felicia, G.; Carmen, D.; Ovidiu, T. Identification and quantification of phenolic compounds from red currant (Ribes rubrum L.) and raspberries (Rubus idaeus L.). Int. J. Pharm. Phytoch. Ethnomed. 2017, 6, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Väisänen, M.; Martz, F.; Kaarlejärvi, E.; Julkunen-Tiitto, R.; Stark, S. Phenolic responses of mountain crowberry (Empetrum nigrum ssp. hermaphroditum) to global climate change are compound specific and depend on grazing by reindeer (Rangifer tarandus). J. Chem. Ecol. 2013, 39, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Može, Š.; Polak, T.; Gašperlin, L.; Koron, D.; Vanzo, A.; Ulrih, N.P.; Abram, V. Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Seruga, M.; Novak, I.; Medvidović-Kosanović, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Deulsche Lebensm. Rundsch. 2007, 103, 369–378. [Google Scholar]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef]
- Pilat, B.; Zadernowski, R.; Czaplicki, S.; Jeż, M. Cold storage, freezing and lyophilisation and its effect on transformations of phenolic compounds in lingonberry (Vaccinium vitis-idaea L.). Pol. J. Natur. Sc. 2018, 33, 101–113. [Google Scholar]
- Jakobek, L.; Seruga, M. Influence of anthocyanins, flavonols and phenolic acids on the antiradical activity of berries and small fruits. Int. J. Food Prop. 2012, 15, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Williner, M.R.; Pirovani, M.E.; Guemes, D.R. Ellagic acid content in strawberries of different cultivars and ripening stages. J. Sci. Food Agric. 2003, 83, 842–845. [Google Scholar] [CrossRef]
- Pinto, M.S.; Lajolo, F.M.; Genovese, M.I. Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chem. 2008, 107, 1629–1635. [Google Scholar] [CrossRef]
- Häkkinen, S.; Heinonen, M.; Kärenlampi, S.; Mykkänen, H.; Ruuskanen, J.; Törrönen, R. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. Int. 1999, 32, 345–353. [Google Scholar] [CrossRef]
- Gonçalves, B.; Landbo, A.-K.; Knudsen, D.; Silva, A.P.; Moutinho-Pereira, J.; Rosa, E.; Meyer, A.S. Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.). J. Agric. Food Chem. 2004, 52, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Landbo, A.-K.; Let, M.; Silva, A.P.; Rosa, E.; Meyer, A.S. Storage affects the phenolic profiles and antioxidant activities of cherries (Prunus avium L.) on human low-density lipoproteins. J. Sci. Food Agric. 2004, 84, 1013–1020. [Google Scholar] [CrossRef]
- Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Flavonoid Content of Selected Foods, Release 3.1. 2013. Available online: http://www.ars.usda.gov/nutrientdata (accessed on 18 November 2018).
- Harnly, J.M.; Doherty, R.F.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Bhagwat, S.; Gebhardt, S. Flavonoid content of U.S. fruits, vegetables and nuts. J. Agric. Food Chem. 2006, 54, 9966–9977. [Google Scholar] [CrossRef]
- Mattila, P.H.; Hellström, J.; Karhu, S.; Pihlava, J.-M.; Veteläinen, M. High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chem. 2016, 204, 14–20. [Google Scholar] [CrossRef]
- Tulio, A.Z., Jr.; Reese, R.N.; Wyzgoski, F.J.; Rinaldi, P.L.; Fu, R.; Scheerens, J.C.; Miller, A.R. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside as primary phenolic antioxidants in black raspberry. J. Agric. Food Chem. 2008, 56, 1880–1888. [Google Scholar] [CrossRef]
- Gonçalves, B.; Silva, A.P.; Moutinho-Pereira, J.; Bacelar, E.; Rosa, E.; Meyer, A.S. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chem. 2007, 103, 976–984. [Google Scholar] [CrossRef]
- Aires, A.; Carvalho, R.; Matos, M.; Carnide, V.; Silva, A.P.; Gonçalves, B. Variation of chemical constituents, antioxidant activity, and endogenous plant hormones throughout different ripening stages of highbush blueberry (Vaccinium corymbosum L.) cultivars produced in centre of Portugal. J. Food Biochem. 2017, 41, e12414. [Google Scholar] [CrossRef]
- Correia, S.; Aires, A.; Queirós, F.; Carvalho, R.; Schouten, R.; Silva, A.P.; Gonçalves, B. Climate conditions and spray treatments induce shifts in health promoting compounds in cherry (Prunus avium L.) fruits. Sci. Hortic. 2020, 263, 109147. [Google Scholar] [CrossRef]
- Kassim, A.; Poette, J.; Paterson, A.; Zait, D.; McCallum, S.; Woodhead, M.; Smith, K.; Hackett, C.; Graham, J. Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traitsloci (QTL). Mol. Nutr. Food Res. 2009, 53, 625–634. [Google Scholar] [CrossRef]
- Corona, G.; Tang, F.; Vauzour, D.; Rodriguez-Mateos, A.; Spencer, J.P.E. Assessment of the anthocyanidin content of common fruits and development of a test diet rich in a range of anthocyanins. J. Berry Res. 2011, 1, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Sakakibara, H.; Iwata, R.; Ishii, T.; Sato, T.; Goda, T.; Shimoi, K.; Kumazawa, S. Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries. J. Agric. Food Chem. 2008, 56, 4457–4462. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Finn, C.E. Lingonberry (Vaccinium vitis-idaea L.) grown in the Pacific Northwest of North America: Anthocyanin and free amino acid composition. J. Funct. Foods 2012, 4, 213–218. [Google Scholar] [CrossRef]
- Zoratti, L.; Jaakola, L.; Häggman, H.; Giongo, L. Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps. J. Agric. Food Chem. 2015, 63, 8641–8650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents in anthocyanins and ellagitannins in selected foods consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef]
- Karaaslan, N.M.; Mehmet, Y. Determination of anthocyanins in cherry and cranberry by high performance liquid chromatography–electrospray ionization–mass spectrometry. Eur. Food Res. Technol. 2016, 242, 127–135. [Google Scholar] [CrossRef]
- Köhkönen, M.P.; Heinämäki, J.; Ollilainen, V.; Heinonen, M. Berry anthocyanins: Isolation, identification and antioxidant activities. J. Sci. Food Agric. 2003, 83, 1403–1411. [Google Scholar] [CrossRef]
- da Silva, F.L.; Escribano-Bailón, M.T.; Alonso, J.J.P.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanin pigments in strawberry. LWT-Food Sci.Technol. 2007, 40, 374–382. [Google Scholar] [CrossRef]
- Afonso, S.; Oliveira, I.V.; Meyer, A.S.; Aires, A.; Saavedra, M.J.; Gonçalves, B. Phenolic profile and bioactive potential of stems and seed kernels of sweet cherry fruit. Antioxidants 2020, 9, 1295. [Google Scholar] [CrossRef]
- Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Factors affecting quality and health promoting compounds during growth and postharvest life of sweet cherry (Prunus avium L.). Front. Plant Sci. 2017, 8, 2166. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, B.; Moutinho-Pereira, J.; Santos, A.; Silva, A.P.; Bacelar, E.; Correia, C.; Rosa, E. Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiol. 2006, 26, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, B.; Morais, M.C.; Sequeira, A.; Ribeiro, C.; Guedes, F.; Silva, A.P.; Aires, A. Quality preservation of sweet cherry cv. ‘Staccato’ by using glycine-betaine or Ascophyllum nodosum. Food Chem. 2020, 322, 126713. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Soares, B.; Goufo, P.; Castro, I.; Cosme, F.; Pinto-Sintra, A.L.; Inês, A.; Oliveira, A.A.; Falco, V. Chitosan upregulates the genes of the ROS pathway and enhances the antioxidant potential of Grape (Vitis vinifera L. ‘Touriga Franca’ and ’Tinto Cão’) tissues. Antioxidants 2019, 8, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Afonso, J.; Nogueira, M.; Oliveira, A.A.; Cosme, F.; Falco, V. Silicates of potassium and aluminium (kaolin); comparative foliar mitigation treatments and biochemical insight on grape berry quality in Vitis vinifera L. (cv. Touriga National and Touriga Franca). Biology 2020, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Cosme, F.; Ricardo-da-Silva, J.M.; Laureano, O. Tannin profiles of Vitis vinifera L. cv. red grapes growing in Lisbon and from their monovarietal wines. Food Chem. 2009, 112, 197–204. [Google Scholar] [CrossRef]
- Howard, L.R.; Clark, J.R.; Brownmiller, C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Yu, O.; Tang, J.; Gu, X.; Wan, X.; Fang, C. Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. J. Exp. Bot. 2011, 62, 1103–1118. [Google Scholar] [CrossRef]
- Beekwilder, J.; Jonker, H.; Meesters, P.; Hall, R.D.; van der Meer, I.M.; Ric de Vos, C.H. Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J. Agric. Food Chem. 2005, 53, 3313–3320. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Dodds, P.A.A.; Ford, Y.Y.; Le Mière, J.; Taylor, J.M.; Blake, P.S.; Paul, N. Effects of cultivar, fruit number and reflected photosynthetically active radiation on Fragaria x ananassa productivity and fruit ellagic acid and ascorbic acid concentrations. Ann. Bot. 2006, 97, 429–441. [Google Scholar] [CrossRef]
- Vyas, P.; Curran, N.H.; Igamberdiev, A.U.; Debnath, S.C. Antioxidant properties of lingonberry (Vaccinium vitis-idaea L.) leaves within a set of wild clones and cultivars. Can. J. Plant Sci. 2015, 95, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Kozos, K.; Ochmian, I.; Chełpiński, P. The effects of rapid chilling and storage conditions on the quality of Brigitta Blue cultivar highbush blueberries. Folia Hortic. 2014, 26, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Akoh, C.C.; Yi, W.; Fischer, J.; Krewer, G. Effect of storage conditions on the biological activity of phenolic compounds of blueberry extract packed in glass bottles. J. Agric. Food Chem. 2007, 55, 2705–2713. [Google Scholar] [CrossRef]
- Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Zavala, J.F.; Wang, S.Y.; Wang, C.Y.; González-Aguilar, A. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT Food Sci. Technol. 2004, 37, 687–695. [Google Scholar] [CrossRef]
- Pappas, E.; Schaich, K. Phytochemicals of cranberries and cranberry products: Characterization, potential health effects, and processing stability. Crit. Rev. Food Sci. Nutr. 2009, 49, 741–781. [Google Scholar] [CrossRef] [PubMed]
- Buchert, J.; Koponen, J.M.; Suutarinen, M.; Mustranta, A.; Lille, M.; Törrönen, R.; Poutanen, K. Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices. J. Sci. Food Agric. 2005, 85, 2548–2556. [Google Scholar] [CrossRef]
- Skrede, G.; Wrolstad, R.E.; Durst, R.W. Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J. Food Sci. 2000, 65, 357–364. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Impact of juice processing on blueberry anthocyanins and polyphenolics: Comparison of two pretreatments. J. Food Sci. 2002, 67, 1660–1667. [Google Scholar] [CrossRef]
- Narwojsz, A.; Borowska, E.J. Cranberry and strawberry juices-influence of method production on antioxidants content and antioxidative capacity. Pol. J. Nat. Sci. 2010, 25, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-O.; Padilla-Zakour, O.I. Jam processing effect on phenolics and antioxidant capacity in anthocyanin-rich fruits: Cherry, plum, and raspberry. J. Food Sci. 2004, 69, S395–S400. [Google Scholar] [CrossRef]
- Savikin, K.; Zdunić, G.; Janković, T.; Tasić, S.; Menković, N.; Stević, T.; Dordević, B. Phenolic content and radical scavenging capacity of berries and related jams from certificated area in Serbia. Plant Foods Hum. Nutr. 2009, 64, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Amakura, Y.; Umino, Y.; Tsuji, S.; Tonogai, Y. Influence of jam processing on the radical scavenging activity and phenolic content in berries. J. Agric. Food Chem. 2000, 48, 6292–6297. [Google Scholar] [CrossRef]
- Pinto, M.S.; Lajolo, F.M.; Genovese, M.I. Bioactive compounds and antioxidant capacity of strawberry jams. Plant Foods Hum. Nutr. 2007, 62, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving human health and healthy aging, and promoting quality life-A Review. Plant Foods Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef]
- Du, X.; Qian, M. Flavor Chemistry of Small Fruits: Blackberry, Raspberry, and Blueberry. Flavor and Health Benefits of Small Fruits, In. Flavor and Health Benefits of Small Fruits; Du, X., Qian, M., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2010; pp. 27–43. [Google Scholar] [CrossRef]
- Colquhon, T.; Levin, L.; Mosckowitz, H.; Whiteker, V.; Clark, D.; Folta, K. Framing the perfect strawberry: An exercise in a consumer-assisted selection of fruit crops. J. Berry Res. 2012, 2, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Jetti, R.R.; Yang, E.; Kurnianta, A.; Finn, C.; Qian, M.C. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J. Food Sci. 2007, 72, S487–S496. [Google Scholar] [CrossRef] [PubMed]
- Negri, A.S.; Allegra, D.; Simoni, L.; Rusconi, F.; Tonelli, C.; Espen, L.; Galbiati, M. Comparative analysis of fruit aroma patterns in the domesticated wild strawberries “Profumata di Tortona” (F. moschata) and “Regina delle Valli” (F. vesca). Front. Plant Sci. 2015, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, D.; Hoberg, E. Flavour analysis in plant breeding research on strawberries. In Frontiers of Flavour Sciences; Schieberle, P., Engel, K.-H., Eds.; Deutsche Forschungsanstalt Lebensmittelchemie: Garching, Germany, 2000; pp. 161–163. [Google Scholar]
- Urruty, L.; Giraudel, J.L.; Lek, S.; Roudeillac, P.; Montury, M. Assessment of strawberry aroma through SPME/GC and ANN methods. Classification and discrimination of varieties. J. Agric. Food Chem. 2002, 50, 3129–3136. [Google Scholar] [CrossRef]
- Pet’ka, J.; Leitner, E.; Parameswaran, B. Musk strawberries: The flavor of a formerly famous fruit reassessed. Flavour Fragr. J. 2002, 27, 273–279. [Google Scholar] [CrossRef]
- Ulrich, D.; Olbricht, K. Diversity of volatile patterns in sixteen Fragaria vesca L. accessions in comparison to cultivars of Fragaria × ananassa. J. App. Bot. Food Qual. 2013, 86, 37–46. [Google Scholar] [CrossRef]
- Ulrich, D.; Olbricht, K. Diversity of metabolite patterns and sensory characters in wild and cultivated strawberries. J. Berry Res. 2014, 4, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Barbey, C.R.; Hogshead, M.H.; Harrison, B.; Schwartz, A.E.; Verma, S.; Oh, Y.; Lee, S.; Folta, K.M.; Whitaker, V.M. Genetic Analysis of Methyl Anthranilate, Mesifurane, Linalool, and Other Flavor Compounds in Cultivated Strawberry (Fragaria × ananassa). Front Plant Sci. 2021, 12, 615749. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef]
- Ueda, Y.; Tsuda, A.; Bai, J.H.; Fujishita, N.; Chachin, K. Characteristic pattern of aroma ester formation from banana, melon, and strawberry with reference to the substrate specificity of ester synthetase and alcohol contents in pulp. J. Jpn. Soc. Food Sci. Technol. 1992, 39, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Olias, J.M.; Sanz, C.; Rios, J.J.; Perez, A.G. Substrate specificity of alcohol acyltransferase from strawberry and banana fruits. In Fruit Flavors: Biogenesis, Characterization and Authentication; Rouseff, R.L., Leahy, M.M., Eds.; American Chemical Society: Washington, DC, USA, 1995; pp. 134–141. [Google Scholar]
- Aharoni, A.; Keizer, L.C.; Bouwmeester, H.J.; Sun, Z.; Alvarez-Huerta, M.; Verhoeven, H.A.; Blaas, J.; van Houwelingen, A.M.; De Vos, R.C.; van der Voet, H.; et al. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 2000, 12, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Schwieterman, M.L.; Colquhoun, T.A.; Jaworski, E.A.; Bartoshuk, L.M.; Gilbert, J.L.; Tieman, D.M.; Odabasi, A.Z.; Moskowitz, H.R.; Folta, K.M.; Klee, H.J.; et al. Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS ONE 2014, 9, e88446. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, D.; Kecke, S.; Olbricht, K. What do we know about the chemistry of strawberry aroma? J. Agric. Food Chem. 2018, 66, 3291–3301. [Google Scholar] [CrossRef] [PubMed]
- Aprea, E.; Carlin, S.; Giongo, L.; Grisenti, M.; Gasperi, F. Characterization of 14 raspberry cultivars by solid-phase microextraction and relationship with Gray Mold susceptibility. J. Agric. Food Chem. 2010, 58, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Forney, C.F.; Kalt, W.; Jordan, M.A. The composition of strawberry aroma is influenced by cultivar, maturity, and storage. HortScience 2000, 35, 1022–1026. [Google Scholar] [CrossRef] [Green Version]
- Ikan, R. Naturally Occurring Glycosides; John Wiley: Chichester, UK; New York, NY, USA, 1999. [Google Scholar]
- Honkanen, E.; Pyysalo, T.; Hirvi, T. The aroma of finnish wild raspberries, Rubus idaeus, L. Z. Lebensm. Unters. Forsch. 1980, 171, 180–182. [Google Scholar] [CrossRef]
- Georgilopoulos, D.N.; Gallois, A.N. Flavour compounds of a commercially concentrated blackberry juice. Food Chem. 1988, 28, 141–148. [Google Scholar] [CrossRef]
- Gilbert, J.L.; Guthart, M.J.; Gezan, S.A.; De Carvalho, M.P.; Schwieterman, M.L.; Colquhoun, T.A.; Bartoshuk, L.M.; Sims, C.A.; Clark, D.G.; Olmstead, J.W. Identifying breeding priorities for blueberry flavor using biochemical, sensory, and genotype by environment analyses. PLoS ONE 2015, 10, e0138494. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.C.; Stein-Chisholm, R.E.; Boykin, D.L. Qualitative analysis of volatiles in Rabbiteye blueberry cultivars at various maturities using Rapid Solid-phase Microextraction. J. Am. Soc. Hortic. Sci. 2014, 139, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Farneti, B.; Khomenko, I.; Grisenti, M.; Ajelli, M.; Betta, E.; Algarra, A.A.; Giongo, L. Exploring blueberry aroma complexity by chromatographic and Direct-Injection Spectrometric Techniques. Front. Plant Sci. 2017, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Hirvi, T.; Honkanen, E.; Pyysalo, T. The aroma of cranberries. Z. Lebensm. Unters. Forsch. 1981, 172, 365–367. [Google Scholar] [CrossRef]
- Zhu, J.C.; Chen, F.; Wang, L.Y.; Niu, Y.W.; Chen, H.; Wang, W.; Xiao, Z. Characterization of the key aroma volatile compounds in cranberry (Vaccinium macrocarpon Ait.) using Gas Chromatography-Olfactometry (GC-O) and Odor Activity Value (OAV). J. Agric. Food Chem. 2016, 64, 4990–4999. [Google Scholar] [CrossRef] [PubMed]
- Caswell, J.A.; Noelke, C.M.; Mojduszka, E.M. Unifying Two Frameworks for Analyzing Quality and Quality Assurance for Food Products. In Global Food Trade and Consumer Demand for Quality; Krissoff, B., Bohman, M., Caswell, J.A., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 43–61. [Google Scholar]
- Grunert, K.G. Food quality and safety: Consumer perception and demand. Eur. Rev. Agric. Econ. 2005, 32, 369–391. [Google Scholar] [CrossRef]
- Poole, N.D.; Martínez, L.M.C.; Jiménez, F.V. Quality perceptions under evolving information conditions: Implications for diet, health and consumer satisfaction. Food Policy 2007, 32, 175–188. [Google Scholar] [CrossRef]
- Mai, R.; Hoffmann, S. How to combat the unhealthy = tasty intuition: The influencing role of health consciousness. J. Public Policy Mark. 2015, 34, 63–83. [Google Scholar] [CrossRef]
- Dixon, H.; Mullins, R.; Wakefield, M.; Hill, D. Encouraging the consumption of fruit and vegetables by older Australians: An experimental study. J. Nutr. Educ. Behav. 2004, 36, 245–249. [Google Scholar] [CrossRef]
- Batt, P.J. Consumer sovereignty: Exploring consumer needs. In Agri-Product Supply-Chain Management in Developing Countries; Johnson, G.I., Hofman, P.J., Eds.; ACIAR: Canberra, Australia, 2004; pp. 77–87. [Google Scholar]
- Riediger, N.D.; Shooshtari, S.; Moghadasian, M.H. The influence of sociodemographic factors on patterns of fruit and vegetable consumption in Canadian adolescents. J. Am. Diet. Assoc. 2007, 107, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.C.; Ickes, S.B.; Lowenstein, L.M.; Shuval, K.; Ammerman, A.S.; Farris, R.; Katz, D.L. Understanding barriers and facilitators of fruit and vegetable consumption among a divers multi-ethnic population in the USA. Health Promot. Int. 2008, 23, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irmak, C.; Vallen, B.; Robinson, S. The impact of product name on dieters’ and nondieters’ food evaluations and consumption. J. Consum. Res. 2011, 38, 390–405. [Google Scholar] [CrossRef] [Green Version]
- Mai, R.; Symmank, C.; Seeberg-Elverfeldt, B. Light and pale colors in food packaging: When does this package cue signal superior healthiness or inferior tastiness? J. Retail. 2016, 92, 426–444. [Google Scholar] [CrossRef]
- Vila-López, N.; Küster-Boluda, I. Commercial versus technical cues to position a new product: Do hedonic and functional/healthy packages differ? Soc. Sci. Med. 2018, 198, 85–94. [Google Scholar] [CrossRef]
- Shaikh, A.R.; Yaroch, A.L.; Nebeling, L.; Yeh, M.-C.; Resnicow, K. Psychosocial predictors of fruit and vegetable consumption in adults. Am. J. Prev. Med. 2008, 34, 535–543. [Google Scholar] [CrossRef]
- Werle, C.; Trendel, O.; Ardito, G. Unhealthy food is not tastier for everybody: The “healthy = tasty” French intuition. Food Qual Prefer 2013, 28, 116–121. [Google Scholar] [CrossRef]
- Verbeke, W. Functional foods: Consumer willingness to compromise on taste for health? Food Qual Prefer 2006, 17, 126–131. [Google Scholar] [CrossRef]
- Patil, B.S.; Uckoo, R.M.; Jayaprakasha, G.K.; Palma, M.A. Consumers’ changing perceptions of quality: Revisiting the science of fruit and vegetable cultivation for improved health benefits. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): International Symposia on Postharvest Knowledge for the Future and Consumer and Sensory Driven Improvements to Fruits and Nuts, Brisbane, Australia, 17 August 2014; Volume 1120, pp. 459–468. [Google Scholar]
- Samoggia, A.; Nicolodi, S. Consumer’s Perception of Fruit Innovation. J. Int. Food Agribus. Mark. 2017, 9, 92–108. [Google Scholar] [CrossRef]
- Van Duyn, M.A.S. Year 2000 Dietary Guidelines: The Case for Fruits and Vegetables First; Produce for Better Health Foundation: Wilmington, DE, USA, 1999. [Google Scholar]
- Kader, A. Importance of fruits, nuts and vegetables in human nutrition and health. Perish. Handl. Q. 2001, 106, 6. [Google Scholar]
- Ströhle, A. Vegetables and fruits in prevention: The German Nutrition Society (DGE) opinion confirms: High consumption of vegetables and fruits reduces risk of contracting diseases. Dtsch. Apoth. Ztg. 2012, 152, 75–77. [Google Scholar]
- Scheerens, J.C. Phytochemicals and the consumer: Factors affecting fruit and vegetable consumption and the potential for increasing small fruit in the diet. Hort Technol. 2001, 11, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Yahia, E.M. The contribution of fruit and vegetable consumption to human health. In Fruit and Vegetable Phytochemicals; De La Rosa, L.A., Alvarez-Parrilla, E., González-Aguilar, G.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 3–51. [Google Scholar]
- Association, A.D. A Place on the Plate for Functional Foods. 2011. Available online: http://www.foodinsight.org/Content/3842/REVISED%20ADA%20Functional%20Foods%20Webcast%20Deck%207.26.2011%20V2.pdf (accessed on 15 November 2018).
- Rekhy, R.; Khan, A.; Eason, J.; Mactavish-West, H.; Lister, C.; Mcconchie, R. Australian consumer awareness of health benefits associated with vegetable consumption. Nutr. Diet. 2017, 74, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, W. Consumer acceptance of functional foods: Sociodemographic, cognitive and attitudinal determinants. Food Qual. Prefer. 2005, 16, 45–57. [Google Scholar] [CrossRef]
- Hidalgo, G.-I.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Bunea, A.; Rugina, D.O.; Pintea, A.M.; Sconta, Z.; Bunea, C.I.; Socaciu, C. Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Not. Bot. Horti Agrobo. 2011, 39, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Connor, A.M.; Luby, J.J.; Tong, C.B.S. Variability in antioxidant activity in blueberry and correlations among different antioxidant activity assays. J. Am. Soc. Hortic. Sci. 2002, 127, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, E.; Poerner, N.; Rockenbach, I.I.; Gonzaga, L.V.; Mendes, C.R.; Fett, R. Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Ciência Tecnol. Aliment. 2011, 31, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Wang, Y.S. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef]
- Yu, L.L.; Zhou, K.K.; Parry, J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem. 2005, 91, 723–729. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. 2010. Available online: http://www.ars.usda.gov/nutrientdata (accessed on 18 November 2018).
- Moyer, A.R.; Hummer, E.K.; Finn, E.C.; Frei, B.; Wrolstad, E.R. Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry varieties with cultivar and developmental stage. J. Agric. Food Chem. 2000, 18, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.-O.; Dommes, J.; Pincemail, J. evolution of antioxidant capacity during storage of selected fruits and vegetables. J. Agric. Food Chem. 2007, 55, 8596–8603. [Google Scholar] [CrossRef] [PubMed]
- Tulipani, S.; Alvarez-Suarez, J.M.; Busco, F.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative haemolysis in humans. Food Chem. 2011, 128, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, I.; Katsargyris, A.; Theocharis, S.; Giaginis, C. Current clinical status on the preventive effects of cranberry consumption against urinary tract infections. Nutr. Res. 2013, 33, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Riso, P.; Klimis-Zacas, D.; Del Bo’, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; De Maria, R.; Marisa Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Xin, X.; Yuan, Q.; Su, D.; Liu, W. Phytochemical properties and antioxidant capacities of various colored berries. J. Sci. Food Agric. 2014, 94, 180–188. [Google Scholar] [CrossRef]
- McCarron, D.A.; Reusser, M.E. Are low intakes of calcium and potassium important causes of cardiovascular disease? Am. J. Hypertens. 2001, 14, S206–S212. [Google Scholar] [CrossRef] [Green Version]
- Zerwekh, J.E.; Odvina, C.V.; Wuermser, L.-A.; Pak, C.Y.C. Reduction of renal stone risk by potassium-magnesium citrate during 5 weeks of bed rest. J. Urol. 2007, 177, 2179–2184. [Google Scholar] [CrossRef]
- Ignarro, L.J.; Balestrieri, M.L.; Napoli, C. Nutrition, physical activity, and cardiovascular disease: An update. Cardiovasc. Res. 2007, 73, 326–340. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Roe, F.J.C. Review of risk factors for osteoporosis with particular reference to a possible aetiological role of dietary salt. Food Chem. Toxicol. 2000, 38, 237–253. [Google Scholar] [CrossRef]
- Köster, E.P. Diversity in the determinants of food choice: A psychological perspective. Food Qual. Prefer. 2009, 20, 70–82. [Google Scholar] [CrossRef]
- Grunert, K.G.; Larsen, H.H.; Madsen, T.K.; Baadsgaard, A. Market Orientation in Food and Agriculture; Kluwer Academic: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Brunsø, K.; Birch, D.; Memery, J.; Temesi, Á.; Lakner, Z.; Lang, M.; Dean, D.; Grunert, K.G. Core dimensions of food-related lifestyle: A new instrument for measuring food involvement, innovativeness and responsibility. Food Qual. Prefer. 2021, 91, 104192. [Google Scholar] [CrossRef]
Red Fruits | |||||||
---|---|---|---|---|---|---|---|
Sweet Cherry | Cranberry | Blackberry | Blueberry | Raspberry | Strawberry | References | |
Vitamin C (Ascorbic acid) | 62.4 a | 10 b | 34–52 a | 10–100 a | 5–92.2 a | 5–90 a | [2,19,23,24,25,26,27] |
Vitamin B6 (Pyridoxine) | 790 c | 606 c | 1999 c | 1744 c | [28] | ||
Vitamin B2 (Riboflavin) | 247 c | 69 c | 216 c | 93 c | [28] |
Sweet Cherry | Blackberry | Blueberry | Raspberry | Strawberry | References | |
---|---|---|---|---|---|---|
Phosphorus (P) | 12.2 | 7–29 | 8.6 | 5.7 | 6.6 | [2,30,31] |
Potassium (K) | 90.9 | 77–349 | 70.1 | 71.8 | 51.2 | [2,30,31] |
Calcium (Ca) | - | 6–29 | - | 1.14 | 2.20 | [2,30] |
Magnesium (Mg) | 12.2 | 6–44.8 | 4.9 | 15.9 | 8.78 | [2,30,31] |
Zinc (Zn) | 0.69 | 0.07–0.44 | 0.13 | 0.37 | 0.13 | [2,30,31] |
Iron (Fe) | 1.16 | 0.28–1.28 | 1.24 | 1.06 | 1.0 | [2,30,31] |
Red Fruits | Main Sugars | Main Organic Acids | References |
---|---|---|---|
Berries | Fructose (18.0–57.2 g/L) Glucose (22.2–50.0 g/L) Sucrose (0.2–5.1 g/L) | Citric acid (2.9–16.2 g/L) Malic acid (3.3–24.7 g/L) | [33] |
Raspberry (Rubus idaeus) | Fructose 35–45% of total sugars Glucose 30–35% of total sugars Sucrose 30–35% of total sugars | [42] | |
Strawberry (Fragaria × ananassa) | Frutose (1.07–3.079 g/100 g) Glucose (2.236–4.802 g/100 g) Sucrose (0.352–7.571 g/100 g) | Citric acid (643.32 mg/100 mL) Malic acid (203.98 mg/100 mL) | [43,44] |
Blueberry (Vaccinium corymbosum) | Fructose (70.40–304.52 mg/g DW) Glucose (13.86–57.36 mg/g DW) Sucrose (0.56–7.90 mg/g DW) | Citric acid (13.34–75.11 mg/g DW) Quinic acid (2.86–11.56 mg/g DW) Malic acid (1.02–7.21 mg/g DW) | [45] |
Sweet cherry (Prunus avium) | Malic acid Oxalic acid Shikimic acid | [37] |
Red Fruits | |||||||
---|---|---|---|---|---|---|---|
Sweet Cherry | Cranberry | Blackberry | Blueberry | Raspberry | Strawberry | References | |
Dietary fiber (mg/100 g FW) | 2.1 | 35.7 c | 4.5–5.3 | 1.9–2.4 | 5.8–6.5 | 1.3–2.2 | [2,30,31] |
Estimated Fiber Components a | |||||||
Serving Size a | 1 cup(138 g) | 1 cup(144 g) | 1 cup(148 g) | 1 cup(123 g) | 1 cup(152 g) | ||
Total (100 g) | 2.2 | 5.3 | 2.8 | 6.5 | 2.0 | [56,57,58] | |
Insoluble (100 g) | 1.6 | 4.7 | 2.4 | 5.3 | 1.5 | ||
Soluble (100 g) | 0.6 | 0.6 | 0.3 | 1.2 | 0.5 | ||
Pectin b (100 g) | 0.7 | 1.4 | 0.8 | 1.6 | 0.7 |
Red Fruits | Total Fat | Fatty Acids | ||
---|---|---|---|---|
Saturated | Monounsaturated | Polyunsaturated | ||
Raspberry (Rubus idaeus) | 0.65 | 0.019 | 0.064 | 0.375 |
Sweet cherry (Prunus avium) | 0.20 | 0.038 | 0.049 | 0.052 |
Strawberry (Fragaria × ananassa) | 0.30 | 0.015 | 0.043 | 0.155 |
Grapefruit, pink and red (Citrus × paradisi) | 0.14 | 0.021 | 0.020 | 0.036 |
Cranberry (Vaccinium oxycoccos) | 0.13 | 0.008 | 0.018 | 0.055 |
Pomegranate (Punica granatum) | 1.17 | 0.120 | 0.093 | 0.079 |
Blackberry (Rubus fruticosus) | 0.49 | 0.014 | 0.047 | 0.280 |
Blueberry (Vaccinium corymbosum) | 0.33 | 0.028 | 0.047 | 0.146 |
Red Fruits | Main Fatty Acids | References |
---|---|---|
Sour cherry (Prunus cerasus) | Linoleic acid, oleic acid, palmitic acid, α-linolenic acid and stearic acid | [70] |
Sweet cherry (Prunus avium) | Linoleic acid, oleic acid, palmitic acid, α-linolenic acid, and myristic acid | [71] |
Strawberry (Fragaria × ananassa) | Linoleic acid, linolenic acid, oleic acid, palmitic acid and stearic acid | [61,72] |
Grapefruit (Citrus × paradisi) | Linoleic acid, oleic acid, palmitic acid, stearic acid, and linolenic acid | [73] |
Cranberry (Vaccinium oxycoccos) | Linoleic acid, oleic acid, linolenic acid, palmitic acid, and stearic acid | [74] |
Pomegranate (Punica granatum) | Punicic acid, linoleic acid, oleic acid and palmitic acid | [75] |
Raspberry (Rubus idaeus) | Linoleic acid, linolenic acid, oleic acid, palmitic acid and stearic acid | [72,76] |
Blackberry (Rubus fruticosus) | Linoleic acid, α-linolenic acid, oleic acid, palmitic acid, and stearic acid | [77] |
Blueberry (Vaccinium corymbosum) | Linoleic acid, α-linolenic acid, oleic acid, palmitic acid, and stearic acid | [77] |
Red Fruits | Polyphenols | References |
---|---|---|
Bilberry (Vaccinium mytillus) | Delphinidin, cyanidin, petunidin, peonidin, malvidin, gallic acid, protocatechuic acid, 4-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, sinapic acid | [90,91] |
Blueberry (Vaccinium corymbosum) | Cyanidin 3-O-glucoside, cyanidin 3-O-glucuronide, cyanidin 3-O-arabinoside, malvidin 3-acetylglucoside, malvidin 3-O-glucoside, peonidin-3-O-glucoside, petunidin 3-acetylglucoside, petunidin-3-O-glucoside, quercetin-3-O-rutinoside, quercetin-3-O-galactoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside, quercetin-3-O-diglycoside, quercetin 3-O-arabinoside, trans-5-caffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid | [92,93] |
Cranberry (Vaccinium oxycoccos) | Cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, peonidin-3-O-galactoside, peonidin-3-O-arabinoside, gallic acid, catechin, epicatechin, procyanidin A2 and p-coumaric acid, rutin, benzoic acid, caffeic acid | [94,95] |
Lingonberry (Vaccinium vitis-idaea) | Cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, proanthocyanidin A, proanthocyanidin B, ferulic acid, quercetin-3-O-glactoside, quercetin-3-O-glucoside, quercetin-3-O-arabinoside, quercetin-3-O-rhamnoside, kaempferol-pentoside, kaempferol-rhamnoside | [96] |
Gooseberry (Ribes uva-crispa) | Cyanidin3-O-glucoside, petunidin-3-O-glucoside, pelargonidin chloride, caffeic acid, epigallocatechin gallate, p-coumaric acid, rutin, kaempferol, resveratrol | [93,97] |
Black currant (Ribes nigrum) | Delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, petunidin-3-O-rutinoside, pelargonidin-3-O-rutinoside, peonidin-3-O-rutinoside, epigallocatechin, catechin, epicatechin, neochlorogenic acid, chlorogenic acid, myricetin-malonylglucoside; quercetin-3-O-galactoside, quercetin-3-O-glucoside, quercetin-3-O-rutinoside, quercetin-3-6-malonylglucoside, kaempferol-3-O-glucoside, isorhamnetin-3-O-glucoside, kaempferol-malonylglucoside | [98,99,100] |
Red currant (Ribes pallidum) | Cyanidin-3-O-glucoside, cyanidin-3-O-sophoroside, cyanidin-3-O-rutinoside, cyanidin-3-O-xylosylrutinoside, gallic acid, catechin, syringic acid, cinnamic acid, chlorogenic acid, ferulic acid | [100,101] |
Red raspberry (Rubus idaeus) | Cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, petunidin-3-O-glucoside, gallic acid, syringic acid, ferulic acid, quercetin | [93,101] |
Strawberry (Fragaria × ananassa) | Cyanidin-3-O-glucoside, cyanidin-3-O-glucoside, cyanidin-3-O-malonylglucoside, pelargonidin-3-O-glucoisde, pelargonidin-3-O-rutinoside, pelargonidin-3-O-acetylglucoside, procyaniin dímers and pentamers, gallic acid, catechin, epicatechin, ferulic acid, p-coumaric acid, cinnamic acid, ellagic acid, quercetin-3-malonylglucoside, kaempferol-3-O-glucuronide, kaempferol-3-O-malonylglucoside | [102] |
Crowberry (Empetrum nigrum) | Cyanidin-3-galactoside, chlorogenic acid, protocatechuic acid, batatasin-II, epicatechin, quercetin, kaempferol | [103] |
Red Fruits | Phenolic Acids (mg/kg FW) | References | |||||
---|---|---|---|---|---|---|---|
p-Coumaric | Caffeic | Chlorogenic | Ferulic | Gallic | Ellagic | ||
Bilberry (Vaccinium mytillus) | 2.0–3.0 | 1.0–5.0 | 210.0–297.0 | 2.0–8.0 | 52.0–85.0 | 8.0–14.0 | [104] |
Blueberry (Vaccinium corymbosum) | n.d.-55.29 | 2.0–27.35 | n.d.-700.0 | 9.60–22.0 | n.d.-18.0 | n.d.-1.0 | [104,105] |
Cranberry (Vaccinium oxycoccos) | n.d. | 20.7–25.3 | n.d. | 60.5 | n.d. | n.d. | [106] |
Lingonberry (Vaccinium vitis-idaea) | 37.6–251.1 | 20.1–48.5 | n.d. | 16.2–221.7 | n.d.-47.5 | n.d. | [106,107] |
Gooseberry (Ribes uva-crispa) | 43.0–49.0 | 1.67–3.53 | n.d. | 6.0–6.4 | n.d. | n.d. | [106] |
Black currant (Ribes nigrum) | 31.66–31.72 | n.d | 21.30–21.32 | 17.47–17.49 | n.d. | 3.14–3.16 | [105] |
Red currant (Ribes xpallidum) | 8.24–8.28 | 12.73–12.79 | n.d. | n.d. | n.d | n.d. | [105] |
Red raspberry (Rubus idaeus) | 1.0–18.0 | 3.22–10.8 | n.d. | 0.6–9.4 | 210.0–220.0 | n.d.-41.42 | [105,106,108] |
Strawberry (Fragaria × ananassa) | 20.0–49.0 | 1.71–4.2 | n.d. | n.d.-3.2 | 21.0–41.0 | n.d.-68.4 | [105,106,109,110] |
Red Fruits | Flavonoids (mg/kg FW) | References | |||
---|---|---|---|---|---|
Kaempferol | Myricetin | Quercetin | Luteolin | ||
Bilberry (Vaccinium mytillus) | n.d. | n.d.-21.0 | n.d.-41.2 | n.d. | [104,114] |
Blueberry (Vaccinium corymbosum) | 18.0 | n.d.-34.0 | 31.0–83.0 | n.d.-8.0 | [104,115] |
Cranberry (Vaccinium oxycoccos) | n.d.-6.1 | 43.0–230.0 | 73.0–250.0 | n.d. | [114,115] |
Lingonberry (Vaccinium vitis-idaea) | n.d.-10.3 | n.d. | n.d.-34.7 | n.d. | [114] |
Gooseberry (Ribes uva-crispa) | n.d.-19.0 | n.d. | n.d.-22.0 | n.d. | [114] |
Black currant (Ribes nigrum) | n.d.-23.0 | n.d.-245.0 | 22.7–122.0 | n.d. | [114] |
Red currant (Ribes xpallidum) | n.d.-8.8 | n.d.-42.9 | n.d.-29.0 | n.d. | [114,116] |
Red raspberry (Rubus idaeus) | n.d.-1.0 | n.d. | 6.5–90.0 | n.d. | [108,115] |
Strawberry (Fragaria × ananassa) | n.d.-5.0 | n.d. | 6.0–19.0 | n.d. | [108,115] |
Crowberry (Empetrum nigrum) | n.d. | 44.0–49.0 | 53.0–56.0 | n.d. | [114] |
Red Fruits | Anthocyanin (mg/kg FW) | References | |||||
---|---|---|---|---|---|---|---|
Delphinidin | Cyanidin | Petunidin | Pelargonidin | Peonidin | Malvidin | ||
Bilberry (Vaccinium mytillus) | 562.0–2913.0 | 488.0–955.0 | 437.0–705.0 | n.d. | 33.0–560.0 | 492.0–937.0 | [123,124,125] |
Blueberry (Vaccinium corymbosum) | 405.0–768.0 | 82.8–379.0 | 294.8–319.0 | n.d. | 20.6–50.0 | 524.0–669.0 | [110,123,125,126,127] |
Cranberry (Vaccinium oxycoccos) | n.d.-10.8 | 13.2–313.0 | n.d.-10.0 | n.d.-185.3 | n.d.-310.0 | n.d.-25.0 | [110,123,126,127] |
Lingonberry (Vaccinium vitis-idaea) | n.d. | 19–769.0 | n.d. | n.d. | n.d.-6.0 | n.d | [124,126] |
Gooseberry (Ribes uva-crispa) | 72.6–84.6 | 43.5–323.0 | n.d. | n.d. | n.d. | n.d | [126,128] |
Black currant (Ribes nigrum) | 270.0–2940 | 166.5–1100.0 | n.d.-2.0 | n.d. | 8.0–110 | n.d.-180 | [123,125,128] |
Red currant (Ribes xpallidum) | n.d. | 360.0–217.0 | n.d. | n.d. | n.d. | n.d. | [123,126] |
Red raspberry (Rubus idaeus) | n.d. | 385.0–980.0 | n.d. | 9.0–660.0 | n.d. | n.d.-44.9 | [110,123,126] |
Strawberry (Fragaria × ananassa) | n.d. | 10.0–66.0 | n.d. | 162.0–336.4 | n.d. | n.d.-8.5 | [110,123,126,129] |
Crowberry (Empetrum nigrum) | 430.0–1183.0 | 550.0–775.0 | 240.0–421.0 | n.d. | 220–1037.0 | 997.0–1550.0 | [123,126] |
Red Fruits | Antioxidant Activity | References |
---|---|---|
ORAC (µmol Trolox/g FW) | ||
Bilberry (Vaccinium myrtillus) | 14.4–122.7 | [90,208] |
Blueberry (Vaccinium corymbosum) | 10.3–51.9 | [108,209,210] |
Cranberry (Vaccinium oxycoccos) | 18.5–96.8 | [211,212,213] |
Lingonberry (Vaccinium vitis-idaea) | 38.1 | [211] |
Gooseberry (Ribes uva-crispa) | 17.0–41.5 | [214] |
Black currant (Ribes nigrum) | 36.9–93.1 | [214] |
Red currant (Ribes xpallidum) | 1.27–32.6 | [213] |
Red raspberry (Rubus idaeus) | 7.8–45.2 | [108,214,215] |
Strawberry (Fragaria × ananassa) | 20.2–22.1 | [108,216] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red Fruits Composition and Their Health Benefits—A Review. Foods 2022, 11, 644. https://doi.org/10.3390/foods11050644
Cosme F, Pinto T, Aires A, Morais MC, Bacelar E, Anjos R, Ferreira-Cardoso J, Oliveira I, Vilela A, Gonçalves B. Red Fruits Composition and Their Health Benefits—A Review. Foods. 2022; 11(5):644. https://doi.org/10.3390/foods11050644
Chicago/Turabian StyleCosme, Fernanda, Teresa Pinto, Alfredo Aires, Maria Cristina Morais, Eunice Bacelar, Rosário Anjos, Jorge Ferreira-Cardoso, Ivo Oliveira, Alice Vilela, and Berta Gonçalves. 2022. "Red Fruits Composition and Their Health Benefits—A Review" Foods 11, no. 5: 644. https://doi.org/10.3390/foods11050644