Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Study
2.2. Modelling
3. Results
3.1. Technologies for β-Carotene Encapsulation in Dried Systems
3.2. Water Activity and Glass Transition Temperature Effect on Dried Product Stability
3.3. Rate of β-Carotene Degradation in Carrot Powder
3.4. Rate of Encapsulated β-Carotene Degradation in Dried Systems
3.5. Activation Energy for β-Carotene Degradation
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Awasthi, S.; Awasthi, A. Role of vitamin A in child health and nutrition. Clin. Epidemiol. Glob. Health 2020, 8, 1039–1042. [Google Scholar] [CrossRef]
- Stephensen, C.B.; Lietz, G. Vitamin A in resistance to and recovery from infection: Relevance to SARS-CoV2. Br. J. Nutr. 2021, 126, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Afolami, I.; Samuel, F.; Borgonjen-van den Berg, K.; Mwangi, M.N.; Kalejaiye, O.; Sanusi, R.A.; Putri, L.A.R.; Brivio, F.; Brouwer, I.D.; Melse-Boonstra, A. The contribution of provitamin A biofortified cassava to vitamin A intake in Nigerian pre-schoolchildren. Br. J. Nutr. 2021, 126, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Melendez-Martinez, A.J. An overview of carotenoids, apocarotenoids and vitamin A in agro-food, nutrition, health and disease. Mol. Nutr. Food Res. 2019, 63, 1801045. [Google Scholar] [CrossRef] [Green Version]
- Kawata, A.; Murakami, Y.; Suzuki, S.; Fujisawa, S. Anti-inflammatory activity of β-carotene, lycopene and tri-n-butylborane, a scavenger of reactive oxygen species. In Vivo 2018, 32, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Boccardi, V.; Arosio, B.; Cari, L.; Bastiani, P.; Scamosci, M.; Casati, M.; Ferri, E.; Bertagnoli, L.; Ciccone, S.; Rossi, P.D.; et al. Beta-carotene, telomerase activity and Alzheimer’s disease in old age. Eur. J. Nutr. 2020, 59, 119–126. [Google Scholar] [CrossRef]
- Yusuf, I.F.; Lesmana, R.; Goenawan, H.; Achadiyani, A.; Khairani, A.F.; Fatimamah, S.N. The roles of β-carotene in cardiomyocytes. Curr. Nutr. Food Sci. 2021, 17, 673–678. [Google Scholar] [CrossRef]
- Sluijs, I.; Cadier, E.; Beulens, J.W.J.; Spijkerman, A.M.W.; van der Schow, Y.T. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 376–381. [Google Scholar] [CrossRef]
- Di Carlo, E.; Augustin, A.J. Prevention of the onset of age-related macular degeneration. J. Clin. Med. 2021, 10, 3297. [Google Scholar] [CrossRef]
- Chen, Q.-H.; Wu, B.-K.; Pan, D.; Sang, L.-X.; Chang, B. Beta-Carotene and its protective effect on gastric cancer. World J. Clin. Cases 2021, 9, 6591–6607. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Böhm, V.; Borge, G.I.A.; Cano, M.P.; Fikselová, M.; Gruskiene, R.; Lavelli, V.; Loizzo, M.R.; Mandić, A.I.; Mapelli-Brahm, P.; et al. Carotenoids: Considerations for their use in functional foods, nutraceuticals, nutricosmetics, supplements, botanicals, and novel foods in the context of sustainability, circular economy, and climate change. Ann. Rev. Food Sci. Tech. 2021, 12, 14.1–14.28. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Bohn, T.; McDougall, G.J.; Alegría, A.; Alminger, M.; Arrigoni, E.; Aura, A.-M.; Brito, C.; Cilla, A.; El, S.N.; Karakaya, S.; et al. Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites: A position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res. 2015, 59, 1307–1323. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boon, C.S.; McClements, D.J.; Weiss, J.; Decker, E.A. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 2010, 50, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Knockaert, G.; Pulissery, S.K.; Lemmens, L.; Buggenhout, S.V.; Hendrickx, M.; Loey, A.V. Carrot beta-carotene degradation and isomerization kinetics during thermal processing in the presence of oil. J. Agric. Food Chem. 2012, 60, 10312–10319. [Google Scholar] [CrossRef]
- Colle, I.J.P.; Lemmens, L.; Knockaert, G.; Loey, V.A.; Henderickx, M. Carotene degradation and isomerization during thermal processing: A review on kinetic aspects. Crit. Rev. Food Sci. Nutr. 2016, 56, 1844–1855. [Google Scholar] [CrossRef]
- Martin, D.; Amado, A.M.; Gonzálvez, A.G.; Marques, M.P.M.; Batista de Carvalho, L.A.E.; Ureña, A.G. FTIR Spectroscopy and DFT calculations to probe the kinetics of β-carotene thermal degradation. J. Phys. Chem. A 2019, 123, 5266–5273. [Google Scholar] [CrossRef]
- Mordi, R.C. Mechanism of β-carotene degradation. Biochem. J. 1993, 292, 310–312. [Google Scholar] [CrossRef]
- Sarpong, F.; Zhou, C.; Bai, J.; Amenorfe, L.P.; Golly, M.K.; Ma, H. Modeling of drying and ameliorative effects of relative humidity (RH) against β-carotene degradation and color of carrot (Daucus carota var.) slices. Food Sci. Biotechnol. 2019, 28, 75–85. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents and research needs. Crit. Rev. Food Sci. Nutr. 2021, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Lavelli, V. Circular food supply chains—Impact on value addition and safety. Trends Food Sci. Technol. 2021, 114, 323–332. [Google Scholar] [CrossRef]
- Tan, Y.; McClements, D.J. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chem. 2021, 348, 129148. [Google Scholar] [CrossRef] [PubMed]
- Lavelli, V.; Sereikaite, J. Kinetic study of encapsulated β-carotene degradation in aqueous environments: A review. Foods 2022, 11, 317. [Google Scholar] [CrossRef]
- Bradford, K.J.; Dahala, P.; van Asbrouck, J.; Kunusothc, K.; Bello, P.; Thompsond, J.; Wue, F. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 2018, 71, 84–93. [Google Scholar] [CrossRef]
- Sanjuan, N.; Stoessel, F.; Hellweg, S. Closing data gaps for LCA of food products: Estimating the energy demand of food processing. Environ. Sci. Technol. 2014, 48, 1132–1140. [Google Scholar] [CrossRef]
- Cullen, P.J.; Tiwari, B.K.; O’Donnell, C.P.; Muthukumarappan, K. Modelling approaches to ozone processing of liquid foods. Trends Food Sci. Technol. 2009, 20, 125–136. [Google Scholar] [CrossRef]
- López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Applying pulsed electric fields to whole carrots enhances the bioaccessibility of carotenoid and phenolic compounds in derived products. Foods 2021, 10, 1321. [Google Scholar] [CrossRef]
- Elik, A.; Yanik, D.K.; Gogüş, F. Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT-Food Sci. Technol. 2020, 123, 109100. [Google Scholar] [CrossRef]
- Chuyen, H.V.; Nguyen, M.H.; Roach, P.D.; Golding, J.B.; Parks, S.E. Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Sci. Nutr. 2018, 6, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Civan, M.; Kumcuoglu, S. Green ultrasound-assisted extraction of carotenoid and capsaicinoid from the pulp of hot pepper paste based on the bio-refinery concept. LWT-Food Sci. Technol. 2019, 113, 108320. [Google Scholar] [CrossRef]
- Patel, A.S.; Kar, A.; Dash, S.; Dash, S.K. Supercritical fluid extraction of β-carotene from ripe bitter melon pericarp. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Del Pilar Sanchez-Camargo, A.; Gutierrez, L.-F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narvaez-Cuenca, C.-E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 2019, 152, 104574. [Google Scholar] [CrossRef]
- Mustafa, A.; Trevino, L.M.; Turner, C. Pressurized hot ethanol extraction of carotenoids from carrot by-products. Molecules 2012, 17, 1809–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara-Abia, S.; Gomez-Maqueo, A.; Welti-Chanes, J.; Cano, M.P. High hydrostatic pressure-assisted extraction of carotenoids from papaya (Carica papaya L. cv. Maradol) tissues using soybean and sunflower oil as potential green solvents. Food Eng. Rev. 2021, 13, 660–675. [Google Scholar] [CrossRef]
- Jayesree, N.; Hang, P.K.; Priyangaa, A.; Krishnamurthy, N.P.; Ramanan, R.N.; Turki, M.S.A.; Galanakis, M.C.; Ooi, C.W. Valorisation of carrot peel waste by water-induced hydrocolloidal complexation for extraction of carrot and pectin. Chemosphere 2021, 272, 129919. [Google Scholar] [CrossRef]
- De Freitas Santos, P.D.; Rubio, F.T.V.; da Silva, M.P.; Pinho, L.S.; Favaro-Trindade, C.S. Microencapsulation of carotenoid-rich materials: A review. Food Res. Int. 2021, 147, 110571. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release 2019, 298, 38–67. [Google Scholar] [CrossRef]
- Ratti, C. Freeze drying for food powder production. In Handbook of Food Powders: Process and Properties; Woodhead Publishing: Cambridge, UK, 2013; pp. 57–84. [Google Scholar]
- Bhatta, S.; Stevanovic, T.; Ratti, C. Freeze-Drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Harnkarnsujarit, N.; Charoenrein, S.; Roos, Y.H. Microstructure formation of maltodextrin and sugar matrices in freeze-dried systems. Carbohydr. Polym. 2012, 88, 734–742. [Google Scholar] [CrossRef]
- Munoz-Ibanez, M.; Nuzzo, M.; Turchiuli, C.; Bergenståhl, B.; Dumoulin, E.; Millqvist-Fureby, A. The micro-structure and component distribution in spray-dried emulsion particles. Food Struct. 2016, 8, 16–24. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Barbosa-Canovas, G.V.; Juliano, P. Physical and chemical properties of food powders. In Encapsulated and Powdered Foods; Onwulata, C., Ed.; CRC Press: Washington, DC, USA; Taylor & Francis Group: Abingdon, UK, 2005; pp. 39–71. [Google Scholar]
- Kankala, R.K.; Chen, B.-Q.; Liu, C.-G.; Tang, H.-X.; Wang, S.-B.; Chen, A.-Z. Solution-enhanced dispersion by supercritical fluids: An ecofriendly nanonization approach for processing biomaterials and pharmaceutical compounds. Int. J. Nanomed. 2018, 13, 4227–4245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabasinejad, F.; Moore, R.G.; Mehta, S.A.; van Fraassen, K.C.; Barzin, Y. Water solubility in supercritical methane, nitrogen, and carbon dioxide: Measurement and modeling from 422 to 483 K and pressures from 3.6 to 134 MPa. Ind. Eng. Chem. Res. 2011, 50, 4029–4041. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Li, J.; Almeida, A.J.; Matos, H.A.; Gomes de Azevedo, E. Efficiency of water removal from water/ethanol mixtures using supercritical carbon dioxide. Braz. J. Chem. Eng. 2006, 23, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Bock, N.; Dargaville, T.R.; Woodruff, M.A. Electrospraying of polymers with therapeutic molecules: State of the art. Prog. Polym. Sci. 2012, 37, 1510–1551. [Google Scholar] [CrossRef] [Green Version]
- Bhushani, J.A.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol. 2014, 38, 21–33. [Google Scholar] [CrossRef]
- Chirife, J.; Buera, M.D.P. Water activity, water glass dynamics, and the control of microbiological growth in foods. Crit. Rev. Food Sci. Nutr. 1996, 36, 465–513. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Osaili, T.M.; Al-Holy, M.A.; Al-Nabulsi, A.A.; Obaid, R.S.; Alaboudi, A.R.; Ayyash, M.; Holley, R. Microbial safety of oily, low water activity food products: A review. Food Microbiol. 2020, 92, 103571. [Google Scholar] [CrossRef]
- Rahman, S. Water activity and sorption properties of food. In Food Properties Handbook; Clydesdale, F.M., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 1–83. [Google Scholar]
- Andersen, A.B.; Risbo, J.; Andersen, M.L.; Skibsted, L.H. Oxygen permeation through an oil-encapsulating glassy food matrix studied by ESR line broadening using a nitroxyl spin probe. Food Chem. 2000, 70, 499–508. [Google Scholar] [CrossRef]
- Hung, L.; Horagai, Y.; Kimura, Y.; Adachi, S. Decomposition and discoloration of L-ascorbic acid freeze-dried with saccharides. Innov. Food Sci. Emerg. Technol. 2007, 8, 500–506. [Google Scholar] [CrossRef]
- Lavelli, V.; Sri Harsha, P.S.C.; Laureati, M.; Pagliarini, E. Degradation kinetics of encapsulated grape skin phenolics and micronized grape skins in various water activity environments and criteria to develop wide-ranging and tailor-made food applications. Inn. Food Sci. Emerg. Technol. 2017, 39, 156–164. [Google Scholar] [CrossRef]
- Le Meste, M.; Champion, D.; Roudaut, G.; Blond, G.; Simatos, D. Glass transition and food technology: A critical appraisal. J. Food Sci. 2002, 67, 2444–2458. [Google Scholar] [CrossRef]
- Roos, Y.H. Glass transition temperature and its relevance in food processing. Ann. Rev. Food Sci. Technol. 2010, 1, 469–496. [Google Scholar] [CrossRef]
- Labuza, T.P.; McNally, L.; Gallagher, D.; Hawkes, J. Stability of intermediate moisture foods. I. Lipid oxidation. J. Food Sci. 1972, 37, 154–159. [Google Scholar] [CrossRef]
- Arya, S.S.; Natesan, V.; Parihar, D.B.; Vijayaraghavan, P.K. Stability of carotenoids in dehydrated carrots. J. Food Technol. 1979, 14, 579–586. [Google Scholar] [CrossRef]
- Lavelli, V.; Zanoni, B.; Zaniboni, A. Effect of water activity on carotenoid degradation in dehydrated carrots. Food Chem. 2007, 104, 1705–1711. [Google Scholar] [CrossRef]
- Iaccheri, E.; Castagnini, J.M.; Dalla Rosa, M.; Rocculi, P. New insights into the glass transition of dried fruits and vegetables and the effect of pulsed electric field treatment. Inn. Food Sci. Emerg. Technol. 2021, 67, 102566. [Google Scholar] [CrossRef]
- Prado, S.M.; Buera, M.P.; Elizalde, B.E. Structural collapse prevents β-carotene loss in a supercooled polymer matrix. J. Agric. Food Chem. 2006, 54, 79–85. [Google Scholar] [CrossRef]
- Yazdani, M.; Tavakoli, O.; Khoob, M.; Wu, Y.S.; Faramarzi, M.A.; Gholibegloo, E.; Farkhondeh, S. Beta-carotene/cyclodextrin-based inclusion complex: Improved loading, solubility, stability, and cytotoxicity. J. Incl. Phenom. Macrocycl. Chem. 2021, 102, 55–64. [Google Scholar] [CrossRef]
- Kong, L.; Bhosale, R.; Ziegler, G.R. Encapsulation and stabilization of β-carotene by amylose inclusion complexes. Food Res. Int. 2018, 105, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Harnkarnsujarit, N.; Charoenrein, S.; Roos, Y.H. Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of β-carotene encapsulated in freeze-dried maltodextrin-emulsion systems. J. Agric. Food Chem. 2012, 60, 9711–9718. [Google Scholar] [CrossRef] [PubMed]
- Mahfoudhi, N.; Hamdi, S. Kinetic degradation and storage stability of β-carotene encapsulated by freeze-drying using almond gum and gum Arabic as wall materials. J. Food Process. Preserv. 2014, 39, 896–906. [Google Scholar] [CrossRef]
- Mahfoudhi, N.; Hamdi, S. Kinetic degradation and storage stability of β-carotene encapsulated by spray drying using almond gum and gum Arabic as wall materials. J. Polym. Eng. 2014, 34, 683–693. [Google Scholar] [CrossRef]
- Rodriguez-Huezo, M.E.; Pedroza-Islas, R.; Prado-Barragan, L.A.; Beristain, C.I.; Vernon-Cartier, E.J. Microencapsulation by spray drying of multiple emulsions containing carotenoids. J. Food Sci. 2004, 69, E351–E359. [Google Scholar] [CrossRef]
- Lim, A.S.L.; Griffin, C.; Roos, Y.R. Stability and loss kinetics of lutein and β-carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former. Food Res. Int. 2014, 62, 403–409. [Google Scholar] [CrossRef]
- Lim, A.S.L.; Roos, Y.H. Spray drying of high hydrophilic solids emulsions with layered interface and trehalose-maltodextrin as glass formers for carotenoids stabilization. J. Food Eng. 2016, 171, 174–184. [Google Scholar] [CrossRef]
- Lee, W.J.; Tan, C.P.; Sulaiman, R.; Smith, R.L.; Chong, G.H. Microencapsulation of red palm oil as an oil-in-water emulsion with supercritical carbon dioxide solution-enhanced dispersion. J. Food Eng. 2018, 222, 100–109. [Google Scholar] [CrossRef]
- Niu, B.; Shao, P.; Feng, S.; Qiu, D.; Sun, P. Rheological aspects in fabricating pullulan-whey protein isolate emulsion suitable for electrospraying: Application in improving β-carotene stability. LWT-Food Sci. Technol. 2020, 129, 109581. [Google Scholar] [CrossRef]
- Liang, R.; Huang, Q.; Maa, J.; Shoemaker, C.F.; Zhong, F. Effect of relative humidity on the store stability of spray-dried betacarotene nanoemulsions. Food Hydrocoll. 2013, 33, 225–233. [Google Scholar] [CrossRef]
- Sharif, H.R.; Goff, H.D.; Majeed, H.; Shamoon, M.; Liu, F.; Nsor-Atindana, J.; Haider, J.; Liang, R.; Zhong, F. Physicochemical properties of β-carotene and eugenol coencapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocoll. 2017, 73, 274–283. [Google Scholar] [CrossRef]
- Chen, X.; Liang, R.; Zhong, F.; Ma, J.; John, N.-A.; Goff, H.D.; Yokoyama, W.H. Effect of high concentrated sucrose on the stability of OSA-starch-based beta-carotene microcapsules. Food Hydrocoll. 2021, 113, 105472. [Google Scholar] [CrossRef]
- De Oliveira, V.E.; Almeida, E.W.; Castro, H.V.; Edwards, H.G.; Dos Santos, H.F.; de Oliveira, L.F.C. Carotenoids and β-cyclodextrin inclusion complexes: Raman spectroscopy and theoretical investigation. J. Phys. Chem. A 2011, 115, 8511–8519. [Google Scholar] [CrossRef]
- Ozturk, B. Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability. Eur. J. Lipid Sci. Technol. 2017, 119, 1500539. [Google Scholar] [CrossRef]
- Avaltroni, F.; Bouquerand, P.E.; Normand, V. Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydr. Polym. 2004, 58, 323–334. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of the dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Mahfoudhi, N.; Chouaibi, M.; Donsì, F.; Ferrari, G.; Hamdi, S. Chemical composition and functional properties of gum exudates from the trunk of the almond tree (Prunus dulcis). Food Sci. Technol. Int. 2012, 18, 241–250. [Google Scholar] [CrossRef]
- Mahfoudhi, N.; Sessa, M.; Chouaibi, M.; Ferrari, G.; Donsì, F.; Hamdi, S. Assessment of emulsifying ability of almond gum in comparison with gum arabic using response surface methodology. Food Hydrocoll. 2014, 37, 49–59. [Google Scholar] [CrossRef]
- Muschiolik, G.; Dickinson, E. Double emulsions relevant to food systems: Preparation, stability, and applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [Green Version]
- Farshchi, A.; Ettelaie, R.; Holmes, M. Influence of pH value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions. Food Hydrocoll. 2013, 32, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Shao, P.; Niu, B.; Chen, H.; Sun, P. Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation. Int. J. Biol. Macromol. 2018, 107, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Sweedman, M.C.; Tizzotti, M.J.; Schäfer, C.; Gilbert, R.G. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr. Polym. 2013, 92, 905–920. [Google Scholar] [CrossRef] [PubMed]
Matrix Ingredients | Matrix Structure | PS | T | aw | Tg | k × 103 | t1/2 | Ref. |
---|---|---|---|---|---|---|---|---|
carrot | FD powder | n.d. n.d. n.d. n.d. n.d | 40 | 0.10 0.22 0.31 0.53 0.75 | 40.64 13.45 −11.44 −20.38 −41.29 | 104 a 82 a 62 a 48 a 271 a | 7 8 11 14 3 | k [60] Tg [61] |
β-carotene, polyvinyl pyrrolidone −40 and gelatin | FD molecular complexes | n.d. n.d n.d. | 25 | 0.11 0.44 0.53 | 86 50 25 | 270 b 220 b 110 b | 2 3 6 | [62] |
collapsed molecular complexes | n.d. n.d | 0.64 0.75 | 7 −9 | 10 b 7 b | 69 99 | |||
β-carotene, β-cyclodextrins/epiclon | FD molecular complexes | 0.65 | 25 | n.d. | n.d. | n.d. | 5 | [63] |
β-carotene, β-cyclodextrins/hexamethylene diisocyanate | FD molecular complexes | 0.59 | n.d. | n.d. | n.d. | 5 | ||
β-carotene, amylose, ascorbyl palmitate | RT molecular complexes | n.d. | 20 | n.d. | n.d. | 32.8 a | 26 | [64] |
β-carotene, sunflower oil, maltodextrins DE 4 | FD O/W emulsion | ~2 ~2 | 24 | 0.00 0.35 | n.d. n.d. | ~16 a ~14 a | ~43 ~50 | [65] |
collapsed O/W emulsion | ~2.5 | 0.75 | n.d. | ~12 a | ~58 | |||
β-carotene, sunflower oil, maltodextrins DE 10 | FD O/W emulsion | ~3 ~3 | 0.00 0.35 | n.d. n.d. | ~18 a ~18 a | ~39 ~39 | ||
collapsed O/W emulsion | ~4 | 0.75 | n.d. | ~10 a | ~69 | |||
β-carotene, sunflower oil, maltodextrins DE 25.5 | FD O/W emulsion | ~4 ~4 | 0.00 0.35 | n.d. n.d. | ~14 a ~10 a | ~50 ~69 | ||
collapsed O/W emulsion | ~7 | 0.75 | −28 | ~7 a | ~99 | |||
β-carotene, sunflower oil, Arabic gum | FD O/W emulsion | 5.1 n.d. | 25 | 0.10 0.45 | n.d. n.d. | 24 a 39.7 a | 28 17 | [66] |
collapsed O/W emulsion | n.d. | 0.80 | n.d. | n.d. | >70 | |||
β-carotene, sunflower oil, Almond gum | FD O/W emulsion | 3.7 n.d. | 0.10 0.45 | n.d. n.d. | 17.8 a 25 a | 40 28 | ||
collapsed O/W emulsion | n.d. | 0.80 | n.d. | n.d. | >70 | |||
β-carotene, sunflower oil, Arabic gum | SD O/W emulsion | 3.2 | 25 | 0.10 0.45 | n.d. n.d. | 9.6 a 30 a | 72 23 | [67] |
collapsed O/W emulsion | n.d. | 0.80 | n.d. | n.d. | n.d. | |||
β-carotene, sunflower oil, Almond gum | SD O/W emulsion | 2.1 | 0.10 0.45 | n.d. n.d. | 25 a 45 a | 28 15 | ||
collapsed O/W emulsion | n.d. | 0.80 | n.d. | n.d. | n.d. | |||
β-carotene, sunflower canola-cartamum oils, gellan gum, Arabic gum, maltodextrins DE 10, mono- and di-glycerides, diacetyl tartaric acid and polyglycerol polyricinoleate | SD W1/O/W2 emulsion | 34 | 35 | 0.02–0.51 | n.d. | 23.5 a | 21 | [68] |
dissolved emulsion | n.d. | 0.63 | n.d. | 160 a | 4 | |||
gel-like structure | n.d. | 0.74–0.82 | n.d. | 20 a | 35 | |||
β-carotene, sunflower oil, trehalose, whey protein | FD O/W emulsion | n.d. | 37 | 0.33 | n.d. | ~23 a | ~30 | [69] |
β-carotene, sunflower oil, trehalose, whey protein, Arabic gum | FD LBL O/W emulsion | n.d. | 0.33 | n.d. | ~14 a | ~49 | ||
β-carotene, sunflower oil, trehalose, whey protein | FD O/W emulsion | n.d. | 35 | 0.14 | 50 | n.d. | >78 | [70] |
β-carotene, sunflower oil, trehalose, whey protein, Arabic gum | FD LBL O/W emulsion | n.d. | 0.14 | 50 | n.d. | >78 | ||
β-carotene, sunflower oil, trehalose, maltodextrin DE 23–27, whey protein | SD O/W emulsion | n.d. | 0.16 | 64 | n.d. | >99 | ||
β-carotene, sunflower oil, trehalose, maltodextrin DE 23–27, whey protein, Arabic gum | SD LBL O/W emulsion | n.d. | 0.17 | 64 | n.d. | >99 | ||
β-carotene, palm oil, tocopherols and tocotrienols, maltodextrins DE 10, sodium caseinate and soy lecithin | SEDS O/W emulsion | 5.8 | 25 | 0.47 | n.d. | 4.65 a | 149 | [71] |
SD O/W emulsion | 16.6 | 0.40 | n.d. | 3.48 a | 199 | |||
β-carotene, medium chain triglycerides, pullulan, whey protein | ED O/W emulsion | 0.54 n.d. n.d. | 25 | 0.2 0.4 0.6 | n.d n.d. n.d. | n.d. n.d. n.d. | 86 81 46 | [72] |
β-carotene, medium chain triglycerides, OSA modified starch HI-CAP | SD O/W emulsion | 0.15 n.d. n.d. n.d. | 0.11 0.33 0.52 0.75 | n.d. 31 9 −26 | 13(1.2) c 14(1.2) c 34(1.5) c 25(1.4) c | 50 46 17 24 | [73] | |
collapsed emulsion | n.d. | 0.97 | n.d. | 18(1.0) c | 39 | |||
β-carotene, medium chain triglycerides, OSA modified starch CAPSUL | SD O/W emulsion | 0.10 n.d. n.d. n.d. | 0.11 0.33 0.52 0.75 | n.d. 80 73 55 | 34(1.2) c 39(1.2) c 41(1.2) c 44(1.2) c | 19 17 16 15 | ||
collapsed O/W emulsion | n.d. | 0.97 | n.d. | 21(0.8) c | 36 | |||
β-carotene, medium chain triglycerides, OSA modified starch CAPSUL TA | SD O/W emulsion | 0.11 n.d. n.d. n.d. | 0.11 0.33 0.52 0.75 | n.d. 83 75 56 | 33(1.2) c 35(1.3) c 38(1.3) c 41(1.3) c | 20 18 16 15 | ||
collapsed O/W emulsion | n.d. | 0.97 | n.d. | 19(1.0) c | 36 | |||
β-carotene, flaxseed oil, eugenol, OSA starch (MW 9.4 × 105) | SD O/W emulsion | 0.13 | 40 | 0.28 | n.d. | n.d. | >30 | [74] |
β-carotene, flaxseed oil, eugenol, OSA starch (MW 5.3 × 106) | SD O/W emulsion | 0.24 | 0.19 | n.d. | n.d. | 21 | ||
β-carotene, α-tocopherol, corn oil, OSA starch, ascorbic acid, sucrose | SD O/W emulsion | 0.25 | 60 | 0.26 | 83 | n.d. | >30 | [75] |
Matrix Ingredients | Matrix Structure | T Range | aw | Ea | Ref. |
---|---|---|---|---|---|
carrot | AD powder | 60–80 | 0.10 0.20 0.30 | 15.69 16.27 17.61 | [21] |
β-carotene, amylose, ascorbyl palmitate | RT molecular complexes | 20–30 | n.d. | 23 (calculated) | [64] |
palm oil containing tocopherols and tocotrienols, maltodextrin DE 10, sodium caseinate and soy lecithin | SD O/W emulsion | 25–85 | 0.40 | 29 | [71] |
palm oil containing tocopherols and tocotrienols, maltodexrtin DE 10, sodium caseinate and soy lecithin | SEDS O/W emulsion | 25–85 | 0.47 | 25 | |
β-carotene, sunflower oil, trehalose, whey protein | FD O/W emulsion | 25–45 45–65 | 0.14 0.14 | 58.29 (below Tg) 16.81 (above Tg) | [70] |
β-carotene, sunflower oil, trehalose, whey protein, Arabic gum | FD LBL O/W emulsion | 25–45 45–65 | 0.14 0.14 | 29.72 (below Tg) 69.83 (above Tg) | |
β-carotene, sunflower oil, trehalose, maltodextrin DE 23–27, whey protein | SD O/W emulsion | 25–45 45–65 | 0.16 0.16 | 23.59 (below Tg) 16.88 (above Tg) | |
β-carotene, sunflower oil, trehalose, maltodextrin DE 23–27, whey protein, Arabic gum | SD LBL O/W emulsion | 25–45 45–65 | 0.17 0.17 | 12.71 (above Tg) 28.34 (below Tg) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavelli, V.; Sereikaitė, J. Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods 2022, 11, 437. https://doi.org/10.3390/foods11030437
Lavelli V, Sereikaitė J. Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods. 2022; 11(3):437. https://doi.org/10.3390/foods11030437
Chicago/Turabian StyleLavelli, Vera, and Jolanta Sereikaitė. 2022. "Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review" Foods 11, no. 3: 437. https://doi.org/10.3390/foods11030437
APA StyleLavelli, V., & Sereikaitė, J. (2022). Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods, 11(3), 437. https://doi.org/10.3390/foods11030437