Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Saffron Samples
2.3. Volatile Organic Compounds (VOCs) Analysis
2.3.1. Sample Preparation and HS-SPME Procedure
2.3.2. Gas Chromatography- Mass Spectrometry Analysis (GC-MS)
2.4. Statistical Data Analysis
3. Results and Discussion
3.1. Volatomic Profile of Saffron Samples
3.2. Discrimination of Saffron Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- Cid-Pérez, T.S.; Nevárez-Moorillón, G.V.; Ochoa-Velasco, C.E.; Navarro-Cruz, A.R.; Hernández-Carranza, P.; Avila-Sosa, R. The relation between drying conditions and the development of volatile compounds in saffron (Crocus sativus). Molecules 2021, 26, 6954. [Google Scholar] [CrossRef]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Molina, R.V.; Renau-Morata, B.; Nebauer, S.G.; Candido, V. Crocus sativus L. Ecotypes from Mediterranean countries: Phenological, morpho-productive, qualitative and genetic traits. Agronomy 2021, 11, 551. [Google Scholar] [CrossRef]
- Mentis, A.A.; Dalamaga, M.; Lu, C.; Polissiou, M.G. Saffron for ’toning down’ COVID-19-related cytokine storm: Hype or hope? A mini-review of current evidence. Metab. Open 2021, 11, 100111. [Google Scholar] [CrossRef]
- Condurso, C.; Cincotta, F.; Tripodi, G.; Verzera, A. Bioactive volatiles in Sicilian (South Italy) saffron: Safranal and its related compounds. J. Essent. Oil Res. 2017, 29, 221–227. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Pereira, R.; Câmara, J.S. Evaluation of volatilomic fingerprint from apple fruits to ciders: A useful tool to find putative biomarkers for each apple variety. Foods 2020, 9, 1830. [Google Scholar] [CrossRef]
- Medina, S.; Pereira, J.A.; da Silva, P.; Perestrelo, R.; Câmara, J.S. Food fingerprints—A valuable tool to monitor food authenticity and safety. Food Chem. 2019, 278, 144–162. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal component analysis. In Springer Series in Statistics, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Kanakis, C.D.; Daferera, D.J.; Tarantilis, P.A.; Polissiou, M.G. Qualitative determination of volatile compounds and quantitative evaluation of safranal and 4-hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde (HTCC) in Greek saffron. J. Agric. Food Chem. 2004, 52, 4515–4521. [Google Scholar] [CrossRef]
- Urbani, E.; Blasi, F.; Chiesi, C.; Maurizi, A.; Cossignani, L. Characterization of volatile fraction of saffron from Central Italy (Cascia, Umbria). Int. J. Food Prop. 2015, 18, 2223–2230. [Google Scholar] [CrossRef]
- Amanpour, A.; Sonmezdag, A.S.; Kelebek, H.; Selli, S. GC-MS-olfactometric characterization of the most aroma-active components in a representative aromatic extract from Iranian saffron (Crocus sativus L.). Food Chem. 2015, 182, 251–256. [Google Scholar] [CrossRef]
- Kosar, M.; Demirci, B.; Goger, F.; Kara, I.; Baser, K.H.C. Volatile composition, antioxidant activity, and antioxidant components in saffron cultivated in Turkey. Int. J. Food Prop. 2017, 20, S746–S754. [Google Scholar] [CrossRef] [Green Version]
- D’Archivio, A.A.; Di Pietro, L.; Maggi, M.A.; Rossi, L. Optimization using chemometrics of HS-SPME/GC–MS profiling of saffron aroma and identification of geographical volatile markers. Eur. Food Res. Technol. 2018, 244, 1605–1613. [Google Scholar] [CrossRef]
- Silvis, I.C.J.; Luning, P.A.; Klose, N.; Jansen, M.; van Ruth, S.M. Similarities and differences of the volatile profiles of six spices explored by Proton Transfer Reaction Mass Spectrometry. Food Chem. 2019, 271, 318–327. [Google Scholar] [CrossRef]
- Ghanbari, J.; Khajoei-Nejad, G.; Erasmus, S.W.; van Ruth, S.M. Identification and characterisation of volatile fingerprints of saffron stigmas and petals using PTR-TOF-MS: Influence of nutritional treatments and corm provenance. Ind. Crops Prod. 2019, 141, 111803. [Google Scholar] [CrossRef]
- Zwane, B.N.; Kamatou, G.P.; Viljoen, A.M.; Betti, G.; Schmidt, M. Variation in headspace volatiles of saffron determined by GC×GC-ToF-MS. Nat. Prod. Commun. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Di Donato, F.; D’Archivio, A.A.; Maggi, M.A.; Rossi, L. Detection of plant-derived adulterants in saffron (Crocus sativus L.) by HS-SPME/GC-MS Profiling of Volatiles and Chemometrics. Food Anal. Methods 2021, 14, 784–796. [Google Scholar] [CrossRef]
- Sereshti, H.; Ataolahi, S.; Aliakbarzadeh, G.; Zarre, S.; Poursorkh, Z. Evaluation of storage time effect on saffron chemical profile using gas chromatography and spectrophotometry techniques coupled with chemometrics. J. Food Sci. Technol. 2018, 55, 1350–1359. [Google Scholar] [CrossRef]
- Jalali-Heravi, M.; Parastar, H.; Ebrahimi-Najafabadi, H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography-mass spectrometry analysis. J. Chromatogr. A 2009, 1216, 6088–6097. [Google Scholar] [CrossRef]
- Dötterl, S.; Burkhardt, D.; Weissbecker, B.; Jürgens, A.; Schütz, S.; Mosandl, A. Linalool and lilac aldehyde/alcohol in flower scents. Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatogr. A 2006, 1113, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Karabagias, V.K.; Badeka, A.V. The honey volatile code: A collective study and extended version. Foods 2019, 8, 508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.G.; Choi, W.S.; Yang, S.O.; Hwang-Bo, J.; Kim, H.G.; Fang, M.; Yi, T.H.; Kang, S.C.; Lee, Y.H.; Baek, N.I. Volatile profiles of five variants of Abeliophyllum distichum flowers using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) analysis. Plants 2021, 10, 224. [Google Scholar] [CrossRef]
- Farag, M.A.; Hegazi, N.; Dokhalahy, E.; Khattab, A.R. Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration. Food Chem. 2020, 331, 127358. [Google Scholar] [CrossRef]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Figueira, J.A.; Porto-Figueira, P.; Pereira, J.A.M.; Câmara, J.S. Tangerines cultivated on Madeira Island—A high throughput natural source of bioactive compounds. Foods 2020, 9, 1470. [Google Scholar] [CrossRef]
- Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Lampri, E.; Fitsiou, E.; Vasileiadis, S.; Vamvakias, M.; Bardouki, H.; Goussia, A.; Malamou-Mitsi, V.; Panayiotidis, M.I.; et al. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci. Rep. 2017, 7, 3782. [Google Scholar] [CrossRef] [Green Version]
- Maggi, L.; Carmona, M.; Zalacain, A.; Kanakis, C.D.; Anastasaki, E.; Tarantilis, P.A.; Polissiou, M.G.; Alonso, G.L. Changes in saffron volatile profile according to its storage time. Food Res. Int. 2010, 43, 1329–1334. [Google Scholar] [CrossRef]
- Sevindik, B. Stability of volatile compounds of Turkish saffron (Crocus sativus) after one-year storage. J. Raw Mater. Process. Foods 2020, 1, 72–79. [Google Scholar]
- Nenadis, N.; Heenan, S.; Tsimidou, M.Z.; van Ruth, S. Applicability of PTR-MS in the quality control of saffron. Food Chem. 2016, 196, 961–967. [Google Scholar] [CrossRef]
Metabolite | Code | a RIcal/RIlit | b ID | Metabolite | Code | RIt/RIsp | ID |
---|---|---|---|---|---|---|---|
Furans | |||||||
2-Methylfuran | V2 | 857/858 | RI/MS/S | 1-Butanol | V13 | 1144/1144 | RI/MS/S |
2,5-Dimethylfuran | V7 | 949/949 | RI/MS/S | 4-Ethylresorcinol | V14 | 1151 | MS/S |
2-Pentylfuran | V21 | 1241/1241 | RI/MS/S | 1-Pentanol | V23 | 1252/1253 | RI/MS/S |
Esters | 1-Hexanol | V36 | 1357/1357 | RI/MS/S | |||
Ethyl acetate | V3 | 871/871 | RI/MS/S | 1-Octen-3-ol | V41 | 1455/1455 | RI/MS/S |
Methyl heptanoate | V30 | 1297/1299 | RI/MS/S | Benzeneethanol | V72 | 1936/1937 | RI/MS/S |
Aldehydes | Ketones | ||||||
2-Methylbutanal | V4 | 903/903 | RI/MS/S | 1-Penten-3-one | V10 | 1025/1025 | RI/MS/S |
3-Methylbutanal | V5 | 907/907 | RI/MS/S | 6-Methylheptan-2-one | V22 | 1248/1247 | RI/MS |
Pentanal | V9 | 984/984 | RI/MS | 3-Octanone | V26 | 1265/1265 | RI/MS/S |
Hexanal | V12 | 1084/1084 | RI/MS/S | 6-Methyl-5-hepten-2-one | V34 | 1350/1351 | RI/MS/S |
Heptanal | V18 | 1195/1195 | RI/MS/S | Ethanone, 1-(1,4-dimethyl-3-cyclohexen-1-yl) | V43 | 1484/1491 | RI/MS |
Octanal | V32 | 1301/1301 | RI/MS/S | 3,5-Octadien-2-one | V45 | 1538/1536 | RI/MS |
cis-2-Heptenal | V33 | 1340/1339 | RI/MS | 6-Methyl-3,5-heptadiene-2-one | V52 | 1611/1587 | RI/MS |
Nonanal | V37 | 1406/1406 | RI/MS/S | Hydrocarbons | |||
trans-2-Octenal | V40 | 1448/1451 | RI/MS/S | 5-(1,1-dimethylethyl)−1,3-cyclopentadiene | V8 | 966 | MS |
Benzaldehyde | V46 | 1551/1553 | RI/MS/S | Toluene | V11 | 1046/1046 | RI/MS/S |
4-Methylbenzaldehyde | V56 | 1655/1655 | RI/MS | Styrene | V27 | 1274/1274 | RI/MS/S |
Trans-Acetaldehyde, (3,3-dimethylcyclohexylidene) | V61 | 1757/1799 | RI/MS | Mesitylene | V31 | 1299/1297 | RI/MS/S |
2,4-Dimethylbenzaldehyde | V65 | 1771/1742 | RI/MS | 1,2,3-Trimethylbenzene | V35 | 1357/1355 | RI/MS/S |
2,4,6-trimethylbenzaldehyde | V73 | 1936/1929 | RI/MS | 1,3,5,5-tetramethyl-1,3-Cyclohexadiene | V38 | 1415/1406 | RI/MS |
Alcohols | Benzene, 1-methoxy-2-(1-methylethenyl)- | V44 | 1520 | MS | |||
Ethyl alcohol | V6 | 921/921 | RI/MS/S | ||||
Monoterpene hydrocarbons | |||||||
β-Myrcene | V15 | 1166/1166 | RI/MS/S | Eucarvone | V64 | 1765/1756 | RI/MS |
α-Phellandrene | V16 | 1177/1171 | RI/MS/S | Dihydrooxophorone | V69 | 1839/1839 | RI/MS |
α-Terpinene | V17 | 1190/1190 | RI/MS/S | dihydro-β-ionone | V70 | 1857/1854 | RI/MS/S |
D-Limonene | V19 | 1209/1209 | RI/MS/S | trans Geranyl Acetone | V71 | 1871/1870 | RI/MS/S |
γ-Terpinene | V24 | 1257/1257 | RI/MS/S | Nepetalactone | V74 | 1947/1915 | RI/MS |
β-Ocimene | V25 | 1262/1262 | RI/MS | trans-β-Ionone | V75 | 1967/1964 | RI/MS/S |
p-Cymene | V28 | 1285/1287 | RI/MS/S | 4-Cyclopentene-1,3-dione, 4-(3-methyl-2-butenyl)- | V79 | 1999/- | MS |
Terpinolene | V29 | 1291/1291 | RI/MS/S | Monoterpene aldehydes | |||
Megastigma-7(E),9,13-triene | V42 | 1466/- | MS | Lilac aldehyde A | V48 | 1561/1550 | RI/MS |
Megastigma-4,6(E),8(E)-triene | V54 | 1643/1568 | RI/MS | Lilac aldehyde B | V49 | 1574/1565 | RI/MS |
Monoterpene alcohols | Lilac aldehyde C | V50 | 1583/1573 | RI/MS | |||
Eucalyptol | V20 | 1219/1219 | RI/MS/S | Lilac aldehyde D | V51 | 1606/1597 | RI/MS |
Lilac alcohol isomer A | V60 | 1741/1736 | RI/MS | β-Cyclocitral | V55 | 1649/1638 | RI/MS/S |
Lilac alcohol isomer B | V62 | 1759/1756 | RI/MS | Safranal | V57 | 1673/1648 | RI/MS/S |
Lilac alcohol isomer C | V63 | 1764/1763 | RI/MS | 4-Hydroxy-2,6,6-trimethyl-1-cyclohexen-1-carboxaldehyde (HTCC) | V80 | 2159/2152 | RI/MS |
Lilac alcohol isomer D | V68 | 1806/1800 | RI/MS | Sesquiterpenes | |||
Dihydro-β-ionol | V77 | 1978/1977 | RI/MS | β-Sesquiphellandrene | V66 | 1789/1783 | RI/MS |
Monoterpene ketones | α-Curcumene | V67 | 1791/1791 | RI/MS | |||
β-Isophorone | V39 | 1428/1429 | RI/MS/S | Others | |||
Phorone | V47 | 1556/1565 | RI/MS | Dimethyl sulfide | V1 | 732/733 | RI/MS/S |
α-Isophorone | V53 | 1623/1621 | RI/MS | Heptanoic acid | V76 | 1972/1972 | RI/MS/S |
2-Hydroxyisophorone | V58 | 1687/1675 | RI/MS/S | 2-(Butylthio)thiophene | V78 | 1996/- | MS |
4-Ketoisophorone | V59 | 1719/1717 | RI/MS/S |
Cluster | Variety |
---|---|
A | GB |
B | EC |
C | AP,BN,MC |
D | RR,TL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, R.; Stocchero, M.; Perestrelo, R.; Câmara, J.S. Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality. Foods 2022, 11, 366. https://doi.org/10.3390/foods11030366
Cozzolino R, Stocchero M, Perestrelo R, Câmara JS. Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality. Foods. 2022; 11(3):366. https://doi.org/10.3390/foods11030366
Chicago/Turabian StyleCozzolino, Rosaria, Matteo Stocchero, Rosa Perestrelo, and José S. Câmara. 2022. "Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality" Foods 11, no. 3: 366. https://doi.org/10.3390/foods11030366
APA StyleCozzolino, R., Stocchero, M., Perestrelo, R., & Câmara, J. S. (2022). Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality. Foods, 11(3), 366. https://doi.org/10.3390/foods11030366