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Abstract: Background: The present study comprises the second part of a new theory related to honey
authentication based on the implementation of the honey code and the use of chemometrics. Methods:
One hundred and fifty-one honey samples of seven different botanical origins (chestnut, citrus,
clover, eucalyptus, fir, pine, and thyme) and from five different countries (Egypt, Greece, Morocco,
Portugal, and Spain) were subjected to analysis of mass spectrometry (GC-MS) in combination
with headspace solid-phase microextraction (HS-SPME). Results: Results showed that 94 volatile
compounds were identified and then semi-quantified. The most dominant classes of compounds
were acids, alcohols, aldehydes, esters, ethers, phenolic volatiles, terpenoids, norisoprenoids, and
hydrocarbons. The application of classification and dimension reduction statistical techniques to
semi-quantified data of volatiles showed that honey samples could be distinguished effectively
according to both botanical origin and the honey code (p < 0.05), with the use of hexanoic acid ethyl
ester, heptanoic acid ethyl ester, octanoic acid ethyl ester, nonanoic acid ethyl ester, decanoic acid ethyl
ester, dodecanoic acid ethyl ester, tetradecanoic acid ethyl ester, hexadecanoic acid ethyl ester, octanal,
nonanal, decanal, lilac aldehyde C (isomer III), lilac aldehyde D (isomer IV), benzeneacetaldehyde,
alpha-isophorone, 4-ketoisophorone, 2-hydroxyisophorone, geranyl acetone, 6-methyl-5-hepten-2-one,
1-(2-furanyl)-ethanone, octanol, decanol, nonanoic acid, pentanoic acid, 5-methyl-2-phenyl-hexenal,
benzeneacetonitrile, nonane, and 5-methyl-4-nonene. Conclusions: New amendments in honey
authentication and data handling procedures based on hierarchical classification strategies (HCSs)
are exhaustively documented in the present study, supporting and flourishing the state of the art.
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1. Introduction

The high consumer demand for authentic products along with the pressure on the market with
products of low quality, distributed by cheap producing countries, creates the need for a multi-optional
handling of natural-based products. A typical example of such products comprises honey—the sweet
viscous solution obtained through the action of honeybees (Apis mellifera). The main types of honey
include nectar and honeydew honeys. Nectar honeys are produced via the collection of the nectar of
flowers by the honeybees.

On the other hand, honeydew honeys are characterized by the presence of secretions of
plant-sucking insects (Hemiptera) living in the parts of the plants or conifer trees [1]. Given the
historical meaning and symbolism of honey through the welfare of many civilizations [2], the latter
has been subjected to exhaustive research. Apart from the basic components which are sugars and
moisture, there are plenty of micro-constituents including minerals, phenolic compounds, organic
acids, proteins, free amino acids, vitamins and volatile compounds and traces of lipid acids that have
attracted researchers [3–7].
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Among the aforementioned micro-constituents, volatile compounds are considered among the
key parameters of honey sensory attributes. These contribute to the aroma providing the consumers
with the emotional feelings related to regular consumption. It has been reported in the literature
that volatile compounds of honey number in the hundreds, including esters, ethers, alcohols, acids,
aldehydes, hydrocarbons, ketones, terpenes, norisoprenoids, carotenoid derivatives, furan and pyran
derivatives, phenolic volatiles, benzene derivatives, quinones and other biomolecules originating from
plants or bacteria metabolism with potential applications. The presence and quantity of these volatile
compounds depends on the botanical and geographical origin of the honey [6–8].

The application of instrumental techniques has greatly favored the identification of the volatile
compounds of honey. Numerous studies have been published using hydrodistillation, liquid–liquid
extraction, simultaneous steam distillation extraction or Likens–Nickerson simultaneous distillation
extraction micro-simultaneous steam distillation–solvent extraction, and ultrasonic solvent extraction
for this purpose [7]. Some key volatile compounds that have been reported in the literature include
benzene derivatives and phenolic volatiles for the case of strawberry tree honey [9]. Nonanal and
cis-linalool oxide [2-[(2S,5R)-5-ethenyl-5-methyloxolan-2-yl]propan-2-ol] in combination with benzene
derivatives and phenolic volatiles for Italian and Greek chestnut honeys [6,10]. Benzaldehyde,
benzeneacetaldehyde and phenylethylalcohol were reported to be some characteristic volatile
compounds of Spanish citrus and honeydew honeys [11,12]. The key volatile compounds of pine,
fir, citrus, thyme, honeydew, and flower honeys harvested in Italy, Spain, Turkey, Greece, Morocco,
and Brazil include benzaldehyde, benzeneacetaldehyde, octanal, nonanal, decanal, and different
isomers of lilac aldehyde [3,4,6,8,13–16]. Norisoprenoids such as isophorone and 4-ketoisophorone
(2,6,6-trimethyl-2-cyclohexene-1,4-dione) have been previously reported to serve as volatile markers of
the floral origin of Sardinian strawberry tree and Indian saffron honeys [5,9]. Alpha-pinene, terpinolene,
2-phenylacetate and numerous other volatile compounds were considered as markers of the provenance
of Argentinean honeys [17].

Based on the aforementioned, the objectives of the present study, which is collective in nature,
were: (a) to classify clover, citrus, chestnut, eucalyptus, fir, pine, and thyme honeys from different
countries (Egypt, Greece, Morocco, Spain, and Portugal) according to botanical origin based on the
use of specific volatile compounds in combination with chemometrics and (b) classify honey samples
according to the honey code—that is, a combination of the grammatical sequences of the different
honey types used in the study by using the first letter of each honey type nomenclature. To the best of
our knowledge, over the last 10 years, this is only the second study in the literature that implements,
among others, a hierarchical classification strategy (HCS) for honey authentication [10], and the novelty
of the study herein is highlighted by the use of a large number of different types of honey samples
harvested in different parts of the world. Therefore, the whole procedure is more complicated and
exhaustive “crash tests” are provided with the use of a multivariate analysis of variance (MANOVA),
linear discriminant analysis (LDA), k-nearest neighbors (k-NN), and factor analysis (FA).

2. Materials and Methods

2.1. Honey Samples

One hundred and fifty-one honey samples (n = 151) were collected between the years 2011 and
2018 from Egypt, Greece, Morocco, Spain, and Portugal. Honey samples from Greece were obtained
from Attiki Bee Culturing Co. Alex.Pittas S.A. (Athens, Greece); honey samples from Egypt, Spain
and Morocco were obtained from local shops; honey samples from Portugal were obtained from
APISMAIA (Povoa de Varzim, Portugal) The honey samples were subjected to volatile compound
analysis according to botanical origin as clover (Trifolium alexandrinum), citrus (Citrus spp.), chestnut
(Castanea sativa), eucalyptus (Eucalyptus spp.), fir (Abies cephalonica), Pine (Pinus spp.) and thyme
(Thymus capitatus L. and Thymus spp.), which was confirmed by melissopalynological analysis [16]. In
particular, clover honeys (n = 8) originated from Egypt; citrus honeys originated from Egypt (n = 7),
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Spain (n = 8), Morocco (n = 6), and Greece (n = 10); chestnut honeys originated from Greece (n = 1) and
Portugal (n = 3); eucalyptus honeys (n = 4) originated from Portugal; fir honeys (n = 31) originated
from Greece; pine honeys (n = 39) originated from Greece; thyme honeys (n = 42) originated from
Egypt (n = 7), Greece (n = 12), Morocco (n = 6), and Spain (n = 10). Honey samples were shipped to
the laboratory and maintained firstly at room temperature in paper boxes for sampling which was
started at once. Sampling and analysis followed the sequence of honey type harvesting through the
aforementioned years. The paper boxes were kept away from UV light. The quantity of honey samples
left was stored at 4 ± 1 ◦C.

2.2. Honey Code Development

The honey code was used to construct the group of objects that would be subjected to statistical
analysis using the first letter of each honey type. Clover, citrus and chestnut honeys (n = 42) were
represented by CCC; eucalyptus honeys (n = 4) by E; fir honeys (n = 31) by F; pine honeys (n = 39) by
P, and thyme honeys (n = 42) by T. The main purpose of this hierarchical procedure was to test the
classification ability of honey samples from different countries based on the use of specific volatile
compounds and chemometrics according to honey type lettering (use of the first letter) [10].

2.3. Analysis of Gas Chromatography–Mass Spectrometry in Combination with Headspace Solid-Phase
Microextraction (HS-SPME/GC–MS)

The experimental strategy for the isolation and semi-quantification of honey volatile compounds
along with HS-SPME/GC–MS equipment and analysis conditions are given in details in previous
work [10]. The mass spectral library used for the identification of volatile compounds was Wiley 7
(2005) of the National Institute of Standards and Technology (NIST). Only the volatile compounds
that had ≥80% similarity with those of the Wiley MS library were tentatively identified using the
GC–MS spectra. Data were expressed as concentration (Canalyte, mg/kg) based on the ratio of peak
areas of the isolated volatile compounds to that of the internal standard (benzophenone) multiplied
by the final concentration of the internal standard, assuming a response factor (RF) equal to 1 for all
the compounds. An additional method of identification was considered and included the calculation
of Kovats indices using a mixture of n-alkanes (C8–C20) which was supplied by Supelco (Bellefonte,
PA, USA). The standard mixture was dissolved in n-hexane. The retention time of the standards was
determined according to the temperature-programmed run used in the analysis of honey samples.
MS and Kovats indices data were compared to those found in the Wiley MS library. A solvent delay
of 5 min was inserted in the program, in order to avoid the elution of ethanol, in which the internal
standard was dissolved. Each sample was analyzed in duplicate and the results were averaged.

2.4. Statistical Analysis

Multivariate analysis of variance (MANOVA), linear discriminant analysis (LDA), k-nearest
neighbors (k-NN), and factor analysis (FA) were applied to the semi-quantitative data of volatile
compounds. The first part of the statistical analysis included the botanical origin differentiation of
clover, citrus, chestnut, eucalyptus, fir, pine, and thyme honeys based on the use of the significant
volatiles (p < 0.05) which served as the independent variables. The botanical origin served as the
grouping variable consisted of 7 groups (clover, citrus, chestnut, eucalyptus, fir, pine, and thyme
honeys). In the second part of the statistical analysis, honey samples were grouped according to the
honey code. The expectation was to investigate whether classification results could be improved.

For the MANOVA analysis, the indices of the multivariate hypothesis such as Pillai’s Trace, Wilks’
Lambda, Hotelling’s Trace, and Roy’s Largest Root were computed to determine whether there was
a multivariate effect of volatile compounds (p < 0.05) on the botanical origin or the honey code of
honey. The size of the effect was further evaluated by consideration of partial eta squared values (η2).
It should also be stressed that the lower the value of Wilks’ Lambda, the higher the differences between
groups of objects.
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Considering only the significant volatiles, LDA was then applied to classify honey samples
according to group membership based on the use of original and cross-validation methods. LDA
provides linear discriminant functions originating from the combinations of the significant variables
(all independent variables are entered together/simultaneously in the analysis) multiplied by the
standardized canonical discriminant function coefficients plus a constant, characteristic for each
discriminant function [18]. Moreover, the tolerance test was also computed in the analysis. Tolerance
may be defined as the proportion of a variable’s variance not accounted for by other independent
variables in the created discriminant function. It practically shows that a variable with very low tolerance
contributes little information to the predictive model and may cause computational problems [19].

For the k-nearest neighbors analysis, the botanical origin of samples or the honey code served
as the target parameter, while the significant volatiles (p < 0.05) served as the features. The number
of the k-nearest neighbors was set by default equal to the higher number provided by the SPSS
software—that is, 3–5. The classification ability of the constructed model was estimated by the
application of training and holdout partitions. In the training sample, 70% of the cases were randomly
assigned to partitions, while the rest of the cases were assigned to the holdout sample. The distances
of an unknown object from all the members of the training set were calculated using the Euclidean
distance in multi-dimensional space. The k-smallest distances between the unknown object and the
training set sample were then identified. K is normally a small odd number, and the unknown variable
is allocated to the class with the majority of these k distances [10]. For the performance of feature
selection among the population of significant variables, k-NN analysis was run again using only the
specified predictors that built the model (usually 3–5) in the previous step, in order to reduce the
number of predictors to those having the lower error rate and k distance.

Afterwards, a data mining technique such as factor analysis (FA) was applied to the significant
parameters in order to explain the total variance of the constructed model in the multidimensional space.
At the same time, FA provides a reduction in the variables, in order to gain the most pronounced ones
with the higher correlation and communalities of independent latent variables. The communalities
indicate the common variance shared by factors with specific variables. A higher communality
indicates that a larger amount of the variance in the variable has been extracted by the factor solution.
For the most effective data collection during FA, communalities should be ≥0.4. The extraction
method was principal component analysis (PCA). The rotation method used was Varimax with Keiser
Normalization. The Varimax rotation is used in statistical analysis to simplify the expression of a
particular sub-space in terms of just a few major items each. The actual coordinate system (practically
constant) is the orthogonal basis that is being rotated to align with these coordinates. The sub-space
can be defined with either PCA or FA. Varimax maximizes the sum of the variances of the squared
loadings (squared correlations between variables and factors [20].

The accuracy and strength of factor analysis was supported further by the Kaiser–Meyer–Olkin
(KMO) test, which comprises a measure of how well suited the data is for factor analysis. The acceptable
value considered was that of KMO ≥ 0.50. In addition, the effectiveness and suitability of factor analysis
was explored using Bartlett’s test of sphericity. This test highlights the hypothesis that the correlation
matrix is an identity matrix, which would indicate that the variables incorporated into the model are
unrelated and therefore unsuitable for structure detection. Small probability values (p < 0.05) indicate
that a factor analysis may be useful with data treatment [20]. Statistical analysis was run using the
SPSS (version 20.0, IBM, Armonk, NY, USA) statistics software.

3. Results and Discussion

3.1. Volatile Compounds of Clover, Citrus, Chestnut, Eucalyptus, Fir, Pine, and Thyme Honeys

A considerable number of volatile compounds were putatively identified and semi-quantified. In
total, 94 volatile compounds of different classes were isolated. Table 1 lists the volatile compounds
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according to retention time and their class. The majority of volatile compounds (62 volatiles) varied
significantly (p < 0.05) according to the botanical origin of honey.

Figure 1 shows a typical chromatogram of clover honey from Egypt, indicating with numbers some
selected key volatile compounds. In supplementary material (Figures S1–S6), typical chromatograms
of citrus, chestnut, eucalyptus, fir, pine, and thyme honeys from the investigated regions are given.
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Figure 1. A typical gas chromatogram of clover honey (no. 3) from Egypt indicating selected key
volatile compounds. 1: 2-methyl-Butanal. 2: 3-methyl-Butanal. 3: Heptane. 4: 3-methyl-1-Butanol.
5: 2-methyl-1-Butanol. 6: Furfural. 7: Octanal. 8: Nonanal. 9: Decanoic acid ethyl ester. IS:
Internal standard.

Clover honeys showed higher amounts (mg/kg) of 2-methylbutanal, 3-methylbutanal,
3-methyl-1-butanol, and 2-methyl-1-butanol compared to the other honey types. The aforementioned
compounds comprise isoleucine- and leucine-derived volatiles and are found in a wide range of foods
such as honey, beer, cheese, coffee, chicken, fish, chocolate, olive oil, and tea. These volatile compounds
are associated with a fruity and malty flavor [21,22].

Citrus honeys were characterized by the higher amounts (mg/kg) of lilac aldehyde C (isomer
III), dill ether, methylanthranilate and herboxide (isomer II). These compounds have been reported
previously to dominate the volatile profile of citrus honeys among other honey types [3,4].

Chestnut honeys showed the highest amounts (mg/kg) of benzaldehyde, benzeneacetaldehyde,
1-octene, and furfural. The latter volatile compound may serve as an indicator of heat
resistance/treatment of chestnut honeys.

Eucalyptus honeys were characterized by the presence of heptane and beta-damascenone, since
these compounds were found in higher amounts (mg/kg). The presence of hydrocarbons in honey is a
typical phenomenon, whereas beta-damascenone is a cyclic carotenoid derivative and possesses a rose
odor [22].

Fir honeys had higher amounts (mg/kg) of nonanal, decanal, hexanoic acid ethyl ester,
heptanoic acid ethyl ester, octanoic acid ethyl ester, nonanoic acid ethyl ester, decanoic acid
ethyl ester, dodecanoic acid ethyl ester, tetradecanoic acid ethyl ester, nonane, 5-methyl-4-nonene,
6-methyl-5-hepten-2-one, geranyl acetone, 1-2-(furanyl)-ethanone, alpha-isophorone, 4-ketoisophorone,
and 2-hydroxyisophorone. The volatile compounds 6-methyl-5-hepten-2-one and geranyl acetone
comprise open-chain carotenoid-derived volatiles, whereas the isophorone related compounds belong
to the class of norisoprenoids, resulting from the degradation of terpenoids [22]. Geranyl acetone
and 6-methyl-5-hepten-2-one possess a strong floral, green and fruit-like odor. In a previous study,
these compounds were characterized as exocrine products (cephalic secretions) of cleptoparasitic bees
(Holcopasites) [23].
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Table 1. Semi-quantitative results of volatile compounds tentatively identified in honey samples according to botanical origin.

RT a (min) Volatile Compounds (mg/kg) RIexp Clover Citrus Chestnut Eucalyptus Fir Pine Thyme F p

Acids
5.40 Formic acid <800 ni 0.02 (0.09) ni ni ni 0.01 (0.04) 0.02 (0.09) 0.312 0.930
6.53 Acetic acid <800 ni 0.04 (0.16) ni ni 0.07 (0.22) 0.16 (0.65) 0.05 (0.17) 0.570 0.753

13.02 Pentanoic acid 823 ni ni ni ni ni 0.0004 0.002 3.034 0.008
16.36 Hexanoic acid 956 ni ni ni ni ni 0.01 (0.06) ni 0.572 0.752
18.57 Heptanoic acid 1053 ni ni ni ni ni 0.0001 (0.0005) ni 0.468 0.831
20.65 Octanoic acid 1151 ni ni ni ni ni 0.03 (0.13) ni 1.097 0.367
22.60 Nonanoic acid 1249 ni ni ni ni ni 0.03 (0.11) ni 1.722 0.120
24.42 Decanoic acid 1348 ni ni ni ni ni 0.01 (0.03) ni 1.624 0.144
27.79 Dodecanoic acid 1549 ni ni ni ni ni 0.002 (0.004) ni 3.488 0.003

Aldehydes
6.80 2-methyl-Butanal <800 0.09 (0.14) 0.02 (0.05) ni ni ni ni 0.04 (0.17) 1.876 0.089
8.35 3-methyl-Butanal <800 0.06 (0.05) 0.02 (0.01) ni ni ni ni 0.01 (0.05) 6.548 0.000

13.36 Furfural 836 0.12 (0.11) 0.06 (0.14) 0.95 (1.57) ni 0.62 (0.31) 0.12 (0.51) 0.01 (0.02) 12.404 0.000
16.63 5-methyl-2-Furaldehyde 967 ni 0.002 (0.011) ni ni ni 0.013 (0.057) 0.005 (0.02) 0.685 0.662
16.86 Benzaldehyde 977 ni 0.02 (0.03) 0.27 (0.23) 0.07 (0.08) 0.22 (0.31) 0.05 (0.18) 0.07 (0.07) 4.966 0.000
17.51 Octanal 1005 0.05 (0.09) 0.003 (0.01) 0.26 (0.34) 0.03 (0.03) 0.36 (0.34) 0.08 (0.40) 0.01 (0.02) 6.607 0.000
18.66 Benzeneacetaldehyde 1059 ni 0.06 (0.10) 0.38 (0.33) 0.05 (0.05) 0.31 (0.40) 0.05 (0.14) 0.31 (0.44) 5.009 0.000
19.75 Nonanal 1107 0.09 (0.16) 0.08 (0.09) 1.29 (2.01) ni 3.30 (3.28) 0.17 (0.35) 0.03 (0.05) 18.021 0.000
20.58 Lilac aldehyde A (isomer I) 1145 ni 0.09 (0.16) ni ni ni ni 0.01 (0.03) 6.584 0.000
20.60 Lilac aldehyde B (isomer II) 1154 ni 0.11 (0.17) ni 0.01 (0.02) ni ni 0.003 (0.01) 8.820 0.000
20.78 Lilac aldehyde C (isomer III) 1172 ni 0.34 (0.32) 0.20 (0.34) ni ni ni 0.02 (0.03) 19.726 0.000
21.23 Lilac aldehyde D (isomer IV) 1178 ni 0.01 (0.03) 0.10 (0.17) ni ni ni ni 9.517 0.000
21.83 Decanal 1209 ni 0.02 (0.05) 0.89 (1.44) 0.03 (0.02) 1.43 (1.28) ni 0.01 (0.02) 22.745 0.000
22.86 2-methyl-3-phenylPropanal 1245 ni ni ni ni ni ni 0.004 (0.03) 0.542 0.775
23.06 4-methoxy-Benzaldehyde 1252 ni ni ni ni ni ni 0.02 (0.01) 0.542 0.775
27.11 5-methyl-2-phenyl-2-Hexenal 1475 ni ni ni ni ni ni 0.004 (0.001) 2.936 0.010

Alcohols

10.45 3-methyl-1-Butanol <800 0.034
(0.05) 0.006 (0.034) ni ni ni ni 0.01 (0.06) 1.436 0.205

10.56 2-methyl-1-Butanol <800 0.02 (0.04) ni ni ni ni ni 0.001 (0.003) 6.671 0.000
16.80 1-Octen-3-ol 979 ni ni ni ni ni 0.42 (1.17) 2.396 0.031
17.20 3-Octanol 992 ni ni ni ni ni ni 0.01 (0.06) 0.542 0.775
17.91 2-ethyl-1-Hexanol 1027 ni 0.001 (0.005) 0.04 (0.04) 0.13 (0.06) 0.30 (0.32) 0.05 (0.16) 0.001 (0.002) 11.588 0.000
18.94 1-Octanol 1069 ni ni 0.10 (0.18) ni 0.15 (0.22) 0.02 (0.08) ni 7.271 0.000
20.15 Phenylethylalcohol 1129 ni ni ni ni ni ni 0.05 (0.10) 4.820 0.000
21.07 1-Nonanol 1171 ni ni 0.47 (0.55) 0.04 (0.05) ni 0.14 (0.45) ni 3.271 0.005
23.02 1-Decanol 1271 ni ni ni ni 0.08 (0.24) 0.001 (0.004) ni 2.258 0.041

Esters
5.19 Formic acid ethyl ester <800 ni ni ni ni ni ni 0.006 (0.001) 3.559 0.003
7.18 Acetic acid ethyl ester <800 0.13 (0.18) 0.01 (0.02) ni ni ni ni ni 11.814 0.000

17.16 Hexanoic acid ethyl ester 996 ni ni 0.09 (0.10) 0.08 (0.03) 0.28 (0.34) 0.01 (0.01) 0.02 (0.04) 11.742 0.000
19.47 Heptanoic acid ethyl ester 1097 ni ni 0.04 (0.03) 0.01 (0.02) 0.21 (0.31) 0.07 (0.01) ni 8.949 0.000
21.38 Octanoic acid ethyl ester 1193 ni 0.01 (0.02) 0.46 (0.37) 0.22 (0.16) 1.08 (0.42) 0.10 (0.21) 0.07 (0.10) 80.095 0.000
23.27 Nonanoic acid ethyl ester 1298 ni 0.03 (0.04) 0.69 (0.71) 0.28 (0.10) 2.11 (1.14) 0.19 (0.44) 0.05 (0.07) 49.997 0.000

a RT: Retention time. RIexp: Experimental retention index values using standard hydrocarbons naturally present in honey. ni: not identified. The non-identified volatile compounds were
treated as zeros for chemometrics and not as missing values. F: Values of the F distribution. p: probability.
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Table 1. Cont.

RT a (min) Volatile Compounds (mg/kg) RIexp Clover Citrus Chestnut Eucalyptus Fir Pine Thyme F p

24.74 Methyl anthranilate 1366 ni 0.02 (0.04) ni ni ni ni ni 5.918 0.000
25.05 Decanoic acid ethyl ester 1389 0.04 (0.06) 0.02 (0.05) 0.48 (0.63) 0.05 (0.06) 0.99 (0.55) 0.07 (0.15) 0.03 (0.06) 49.415 0.000
26.87 Undecanoic acid ethyl ester 1491 ni ni 0.02 (0.03) ni 0.02 (0.03) ni ni 7.569 0.000
28.46 Dodecanoic acid ethyl ester 1591 ni ni 0.22 (0.28) 0.05 (0.01) 0.59 (0.38) 0.03 (0.07) ni 29.067 0.000
29.96 Tridecanoic acid ethyl ester 1791 ni ni 0.23 (0.40) ni 0.04 (0.19) 0.02 (0.10) ni 2.358 0.033
31.31 Tetradecanoic acid ethyl ester 1883 ni ni 0.14 (0.24) 0.004 (0.01) 0.22 (0.40) ni ni 5.991 0.000
34.78 Hexadecanoic acid ethyl ester 1982 ni ni 0.02 (0.02) 0.01 (0.01) ni ni ni 35.197 0.000

Ethers
21.72 Dill ether 1203 ni 0.07 (0.07) ni ni ni ni 0.01 (0.02) 18.039 0.000
22.27 Thymol methyl ether [Benzene, 2-methoxy-4-methyl-1-(1-methylethyl)-] 1235 ni ni ni ni ni ni 0.10 (0.27) 2.534 0.023
22.48 Carvacrol methyl ether 1246 ni ni ni ni ni ni 0.05 (0.17) 1.797 0.104
29.52 Octyl ether 1617 ni ni ni ni ni ni 0.02 (0.08) 1.374 0.229

Hydrocarbons
9.49 Heptane <800 0.24 (0.11) 0.04 (0.05) 0.26 (0.22) 0.41 (0.11) ni ni 0.11 (0.18) 21.131 0.000

12.18 1-Octene <800 ni ni 0.36 (0.31) ni 0.30 (0.36) 0.15 (0.89) ni 1.616 0.147
12.27 Octane 800 ni 0.01 (0.02) 0.66 (0.32) 0.96 (0.59) ni 1.35 (8.01) 0.04 (0.08) 0.512 0.798
14.81 1-Nonene 889 ni ni ni ni ni 0.18 (0.98) ni 0.615 0.718
15.02 Nonane 900 ni ni 0.20 (0.27) 0.05 (0.04) 0.53 (0.36) 0.18 (0.98) ni 3.681 0.002
16.98 5-methyl-4-Nonene 981 ni ni 0.06 (0.11) ni 0.25 (0.29) 0.001 (0.003) ni (0.001) 13.789 0.000
17.39 Decane 1000 ni ni 0.03 (0.02) 0.03 (0.01) ni 0.002 (0.003) ni 76.961 0.000
19.61 Undecane 1100 ni ni ni ni ni ni 0.001 (0.003) 2.132 0.053

Ketones
15.37 1-(2-furanyl)-Ethanone 914 ni ni 0.08 (0.14) ni 0.14 (0.32) ni 0.01 (0.05) 3.546 0.003
16.76 6-methyl-5-Hepten-2-one 973 ni ni 0.01 (0.01) 0.01 (0.01) 0.02 (0.04) ni ni 4.139 0.001
17.97 (1S,4S,5R)-4-methyl-1-propan-2-ylbicyclo(3.1.0)-hexan-3-one (beta-Thujone) 1125 ni ni ni ni ni 0.04 (0.01) ni 2.134 0.053
21.10 (1R,4S)-1,7,7-trimethylbyciclo-(2.2.1)-heptan-2-one (Camphor) 1143 ni ni ni ni ni ni 0.08 (0.21) 2.425 0.029
24.83 3-hydroxy-4-phenyl-Butanone 1347 ni ni ni ni ni ni 0.01 (0.03) 1.851 0.093
25.37 1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-Buten-1-one (beta-Damascenone) 1359 ni ni 0.01 (0.01) 0.08 (0.04) 0.01 (0.03) 0.03 (0.14) 0.002 (0.003) 1.102 0.364
26.27 (E)-6,10-dimethyl-5,9-Undecadien-2-one (Geranyl acetone) 1455 ni ni ni ni 0.01 (0.03) ni ni 5.276 0.000
27.96 4,7,7-trimethylbyciclo(3.3.0)-octan-2-one 1659 ni ni ni ni ni ni 0.02 (0.01) 1.670 0.132

Norisoprenoids and quinones
20.41 3,5,5-trimethyl-2-Cyclohexen-1-one (alpha-Isophorone) 1139 ni ni 0.01 (0.02) ni 0.02 (0.07) ni ni 2.500 0.025
20.84 2,6,6-trimethyl-Cyclohex-2-ene-1,4-dione (4-Ketoisophorone) 1160 ni ni ni 0.03 (0.04) 0.25 (0.38) ni ni 8.373 0.000
20.98 2-hydroxy-3,5,5-trimethyl-2-Cyclohex-2-enone (2-hydroxyIsophorone) 1167 ni ni 0.01 (0.01) 0.08 (0.05) 0.12 (0.20) ni ni 7.102 0.000
22.83 2-methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione (Thymoquinone) 1250 ni ni ni ni ni ni 0.51 (1.25) 3.178 0.006

Terpenoids
16.18 2,6,6-trimethylbicyclo[3.1.1]Hept-2-ene (α- Pinene) 948 ni ni 0.04 (0.02) 0.04 (0.02) 0.09 (0.24) 0.11 (0.54) 0.06 (0.02) 0.681 0.665
17.57 Herboxide second isomer 1005 ni 0.06 (0.08) 0.02 (0.04) ni ni ni 0.04 (0.02) 10.175 0.000
17.97 1-methyl-4-propan-2-ylCyclohexa-1,3-diene (α-Terpinene) 1026 ni ni ni ni ni ni 0.03 (0.10) 1.623 0.145
18.26 1-methyl-4-prop-1-en-2-ylCyclohexene (dl-Limonene) 1031 ni ni ni ni 0.02 (0.05) ni 0.04 (0.10) 1.935 0.079
18.38 4-methylene-1-(1-methylethyl)bicycle(3.1.0)-Hexane (Sabinene) 1044 ni ni ni ni ni ni 0.05 (0.17) 1.645 0.139
18.43 1,8-Cineole (Eucalyptol) 1047 ni ni ni ni ni ni 0.58 (2.16) 1.386 0.224
18.85 1-methyl-4-propan-2-ylcyclohexa-1,4-diene (γ-Terpinene) 1056 ni ni ni ni ni ni 0.29 (0.86) 2.198 0.047
19.14 cis-Linalool oxide 1073 ni 0.05 (0.06) 0.17 (0.29) 0.06(0.07) 0.11 (0.13) ni 0.03 (0.06) 7.502 0.000
19.54 3,7-dimethyl-1,6-Octadien-3-ol (Linalool) 1088 ni 0.05 (0.04) ni 0.30(0.11) 0.14 (0.25) ni 0.40 (1.17) 1.789 0.105
19.59 1-methyl-4-propan-2-yl-Cyclohexa-1,3-diene (α-Terpinolene) 1090 ni 0.001 (0.005) 0.20 (0.18) ni ni ni 0.03 (0.09) 10.265 0.000

a RT: Retention time. RIexp: Experimental retention index values using standard hydrocarbons naturally present in honey. ni: not identified. The non-identified volatile compounds were
treated as zeros for chemometrics and not as missing values. F: Values of the F distribution. p: probability.
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Table 1. Cont.

RT a (min) Volatile Compounds (mg/kg) RIexp Clover Citrus Chestnut Eucalyptus Fir Pine Thyme F p

19.63 Hotrienol 1104 ni 0.01 (0.02) ni 0.10(0.20) ni ni 0.06 (0.14) 3.323 0.004
21.54 (1S-endo)-1,7,7-trimethyl-bicyclo(2.2.1)-Heptan-2-ol (Borneol) 1169 ni ni 0.02 (0.03) ni ni ni 0.19 (0.48) 2.860 0.012
21.61 4-methyl-1-propan-2-ylCyclohex-3-en-1-ol (Terpinen-4-ol) 1178 ni ni ni ni ni ni 0.39 (0.90) 3.519 0.003
21.84 2-(4-methylcyclohex-3-en-1-yl)Propan-2-ol (α-Terpineol) 1191 ni 0.004 (0.02) ni ni ni ni 0.04 (0.17) 0.838 0.543
22.25 alpha,4-dimethyl-cyclohex-3-ene-1-Acetaldehyde (para-Menth-1-en-9-al) 1231 ni 0.04 (0.05) ni ni ni ni 0.04 (0.02) 11.818 0.000
26.32 1R,4E,9S)-4,11,11-Trimethyl-8-methylidenebicyclo(7.2.0)-undec-4-ene (Caryophyllene) 1418 ni ni ni ni ni ni 0.03 (0.12) 1.243 0.288

Phenolic and benzene derivatives
18.24 1-methyl-4-(1-methylethyl)Benzene (para-Cymene) 1038 ni 0.03 (0.04) ni 0.03 (0.04) ni ni 1.84 (5.00) 2.528 0.023
20.64 Benzeneacetonitrile 1150 ni ni ni ni ni ni 0.03 (0.07) 2.799 0.013
23.31 5-methyl-2-(1-methylethyl)Phenol (Thymol) 1296 ni 0.006 (0.003) ni ni ni ni 3.51 (8.63) 3.133 0.006
23.58 3-methyl-4-isopropylPhenol 1308 ni ni ni ni ni ni 0.003 (0.01) 1.335 0.245
23.68 2-methyl-5-(1-methylethyl)Phenol (Carvacrol) 1309 ni 0.01 (0.04) ni ni ni ni 0.001 (0.002) 0.777 0.590
24.11 3,4,5-trimethylPhenol 1331 ni ni 0.10 (0.17) ni 0.10 (0.25) ni ni 3.609 0.002
24.73 2-methoxy-4-(2-propenyl)Phenol (Eugenol) 1359 ni ni ni ni ni ni 0.12 (0.32) 2.428 0.029

a RT: Retention time. RIexp: Experimental retention index values using standard hydrocarbons naturally present in honey. ni: not identified. The non-identified volatile compounds were
treated as zeros for chemometrics and not as missing values. F: Values of the F distribution. p: probability.
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Pine honeys had higher amounts (mg/kg) of acetic acid, octane, alpha-pinene and beta-thujone. It
is remarkable that beta-thujone was identified only in pine honeys, comprising a key volatile marker,
even though the p-value (p = 0.053) was slightly higher than the level of confidence considered in the
study. This finding is in agreement with a previous study on the botanical differentiation of citrus, fir,
pine, and thyme honeys [8]. Beta-thujone has a menthol odor [24].

In the case of thyme honeys, 1-octen-3-ol, thymol methyl ether, carvacrol methyl ether, octyl
ether, 4,7,7-trimethylbyciclo (3.3.0)-octan-2-one, and eugenol were found in higher amounts (mg/kg)
compared to the other honey types. Ethers give an ether-like odor, whereas 1-octen-3-ol provides a
floral and grassy odor. Furthermore, 1-Octen-3-ol is referred to as “mushroom alcohol”, given the fact
that is the main flavor component of mushrooms [25]. Eugenol is a phenylpropanoid volatile that has
a pleasant, spicy, and clove-like odor [26].

3.2. Classification of Clover, Citrus, Chestnut, Eucalyptus, Fir, Pine, and Thyme Honeys According to Botanical
Origin and the Honey Code Using Volatile Compounds in Combination with Chemometrics

3.2.1. Part I. Classification of Honeys According to Botanical Origin

MANOVA and LDA

The four qualitative criteria of the multivariate hypothesis, namely Pillai’s Trace = 5.573 (F = 8.698,
df = 540, p = 0.000, η2 = 0.929), Wilks’ Lambda = 0.000 (F = 22.251, df = 540, p = 0.000, η2 = 0.972),
Hotelling’s Trace = 1034.279 (F = 102.151, df = 540, p = 0.000, η2 = 0.994), and Roy’s Largest Root =

789.550 (F = 526.367, df = 90, p = 0.000, η2 = 0.999) showed that there was a statistically significant
effect of the botanical origin of honey on the semi-quantitative data of volatile compounds.

More specifically, 62 of the 94 volatile compounds were found to be significant (p < 0.05) for the
botanical origin differentiation of honeys. Afterwards, these volatiles were subjected to LDA. The
minimum tolerance level of the analysis was set at 0.001. Results showed that 4-terpineol, borneol,
para-cymene, carvacrol methyl ether, thymoquinone, thymol, and eugenol did not pass the tolerance
test. Therefore, these volatile compounds were excluded (SPSS program) a priori from the discriminant
analysis. Therefore, 56 volatile compounds were subjected to LDA.

Results showed that six canonical discriminant functions were formed: Wilks’ Lambda = 0.000,
X2 = 1624.974, df = 336, p = 0.000 for the first function; Wilks’ Lambda = 0.000, X2 = 1049.108, df =

275, p = 0.000 for the second function; Wilks’ Lambda = 0.006, X2 = 609.334, df = 216, p = 0.000 for the
third function; Wilks’ Lambda = 0.032, X2 = 406.682, df = 159, p = 0.000 for the fourth function; Wilks’
Lambda = 0.122, X2 = 249.608, df = 104, p = 0.000 for the fifth function; and Wilks’ Lambda = 0.409, X2

= 106,005, df = 51, p = 0.000 for the sixth function.
The first discriminant function recorded the higher eigenvalue (127.977) and a canonical correlation

of 0.996, accounting for 71.5% of total variance. The second discriminant function recorded a much
lower eigenvalue (39.902) and a canonical correlation of 0.988, accounting for 22.3% of total variance.
The third discriminant function recorded a much lower eigenvalue (4.530) and a canonical correlation
of 0.905, accounting for 2.5% of total variance. Similarly, the fourth discriminant function recorded
an even lower eigenvalue (2.764) and a canonical correlation of 0.857, accounting for 1.5% of total
variance. Moreover, the fifth discriminant function had a lower eigenvalue (2.360) and a canonical
correlation of 0.838, accounting for 1.3% of total variance. Finally, the sixth discriminant function had
the lowest eigenvalue (1.446) and a canonical correlation of 0.769, accounting for 0.8% of total variance.
All six discriminant functions accounted for 100% of total variance.

Figure 2 shows the differentiation of honeys according to botanical origin based on the use of
56 volatile compounds and LDA. The group centroid values which represent the unstandardized
canonical discriminant functions evaluated at group means are also plotted. Each centroid gives
information about the coordinates (discriminant functions) of the group means in the polyparametric
space. The abscissa is the first discriminant function, and the ordinate is the second. So, the respective



Foods 2019, 8, 508 10 of 23

group centroid values were as follows: (−6.609, −0.891), (−6.081, −1.951), (−12.106, 39.255), (−5.664,
13.355), (21.632, 0.974), (−5.265, −1.395), and (−4.712, −2.268) for clover, citrus, chestnut, eucalyptus, fir,
pine, and thyme honeys.
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Figure 2. Classification of the 151 honey samples according to botanical origin based on the 56 volatile
compounds and LDA. LDA: linear discriminant analysis.

The classification rate was 95.4% using the original and 81.5% using the cross-validation method.
Supplementary Table S1 shows the significant variables (markers of botanical origin of clover, citrus,
chestnut, eucalyptus, fir, pine, and thyme honeys) that were ordered by absolute size of correlation
within function. The higher the absolute value of correlation, the best discrimination the variable
provides within the discriminant function. The most pronounced markers of the botanical origin
of honey are marked with an asterisk. In particular, octanoic acid ethyl ester, nonanoic acid ethyl
ester, decanoic acid ethyl ester, dodecanoic acid ethyl ester, decanal, nonanal, 5-methyl-4-nonene,
hexanoic acid ethyl ester, heptanoic acid ethyl ester, 4-ketoisophorone, octanol, tetradecanoic acid
ethyl ester, geranyl acetone, 6-methyl-5-hepten-2-one, 1-(2-furanyl)-ethanone, alpha-isophorone, and
decanol contributed to discriminant function 1, whereas hexadecanoic acid ethyl ester contributed to
discriminant function 2. It should be remembered that the first two discriminant functions explained
93.8% of total variance.

The botanical origin classification rate of honeys, based on the original method, followed the
sequence: clover (87.5%), citrus (90.3%), chestnut (100%), eucalyptus (100%), fir (100%), pine (100%),
and thyme (91.4%). In total, 12.5% of clover honeys (one sample) were allocated to pine honeys. In
total, 9.7% of citrus honeys (three samples) were allocated to pine honeys. Finally, 8.6% of thyme
honeys (three samples) were allocated to pine honeys.

On the contrary, the botanical origin classification rate of honeys, based on the cross-validation
method followed the sequence: clover (62.5%), citrus (80.6%), chestnut (66.7%), eucalyptus (75%), fir
(100%), pine (94.9%), and thyme (57.1%). In total, 25% of clover honeys (two samples) were allocated to
pine honeys, whereas 12.5% of samples (one sample) were allocated to thyme honeys. In total, 19.4%
of citrus honeys (six samples) were allocated to pine honeys. In total, 33.3% of chestnut honeys (one
sample) were allocated to fir honeys. In total, 25% of eucalyptus honeys (one sample) were allocated
to chestnut honeys. In total, 5.2% of pine honeys (two samples) were allocated in equal proportions
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(2.6%) to clover and chestnut honeys, respectively. Finally, 42.8% of thyme honeys were allocated to
clover (11.4%) (four samples), citrus (2.9%) (one sample), chestnut (11.4%) (four samples), and pine
(17.1%) (six samples) honeys, respectively (Table 2).

Table 2. Discriminatory power of the LDA model based on the significant volatile compounds according
to the botanical origin of honey.

Chemometric
Technique

Prediction
Rate Botanical

Origin
Predicted Group Membership Total

Honey
SamplesLDA % Clover Citrus Chestnut Eucalyptus Fir Pine Thyme

Original a

Count

Clover 7 0 0 0 0 1 0 8
Citrus 0 28 0 0 0 3 0 31

Chestnut 0 0 3 0 0 0 0 3
Eucalyptus 0 0 0 4 0 0 0 4

Fir 0 0 0 0 31 0 0 31
Pine 0 0 0 0 0 39 0 39

Thyme 0 0 0 0 0 3 32 35

%

Clover 87.5 0.0 0.0 0.0 0.0 12.5 0.0 100.0
Citrus 0.0 90.3 0.0 0.0 0.0 9.7 0.0 100.0

Chestnut 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0
Eucalyptus 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0

Fir 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0
Pine 0.0 0.0 0.0 0.0 0.0 100.0 0.0 100.0

Thyme 0.0 0.0 0.0 0.0 0.0 8.6 91.4 100.0

Cross
validated b,c

Count

Clover 5 0 0 0 0 2 1 8
Citrus 0 25 0 0 0 6 0 31

Chestnut 0 0 2 0 1 0 0 3
Eucalyptus 0 0 1 3 0 0 0 4

Fir 0 0 0 0 31 0 0 31
Pine 1 0 0 0 1 37 0 39

Thyme 4 1 4 0 0 6 20 35

%

Clover 62.5 0.0 0.0 0.0 0.0 25.0 12.5 100.0
Citrus 0.0 80.6 0.0 0.0 0.0 19.4 0.0 100.0

Chestnut 0.0 0.0 66.7 0.0 33.3 0.0 0.0 100.0
Eucalyptus 0.0 0.0 25.0 75.0 0.0 0.0 0.0 100.0

Fir 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0
Pine 2.6 0.0 0.0 0.0 2.6 94.9 0.0 100.0

Thyme 11.4 2.9 11.4 0.0 0.0 17.1 57.1 100.0
a 95.4% of grouped cases using the original method were correctly classified. b Cross validation was performed only
for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases
rather than that particular case. c 81.5% of cross-validated grouped cases were correctly classified.

It should be stressed that these results were accepted, given the fact that cross validation is a
more pessimistic method of classification of a group of objects, since in cross validation, each case is
classified by the functions derived from all cases rather than that particular case. The errors obtained
in both classification techniques (original and cross-validation) reveal important findings regarding
honey authentication. These errors show the contribution of numerous plants in the produced honeys,
even in cases of honeydew honeys. Honeydew honeys are harvested after nectar honeys. Therefore,
the contribution of flowering plants in honeydew honeys is quite common.

In addition, present findings may be related to beekeeper practices during the harvesting of different
honey types. However, the classification results obtained support previous studies in the literature
that focus on honey authentication using volatile compound analysis and chemometrics [3–5,8,11].
The results obtained in the present study, which is collective in nature, show a clear differentiation of
honeydew vs. nectar honeys.

K-Nearest Neighbors

For the k-NN analysis, the number of samples was randomly assigned to training and holdout
partitions. The training sample consisted of 110 honey samples (72.8%), while the holdout sample
consisted of 41 samples (27.2%). All cases (151 honey samples) (100%) were used in the statistical
analysis, comprising a valid procedure.
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The overall classification rate was 77.3% for the training and 87.8% for the holdout sample and
was satisfactory in both cases. The botanical origin classification rate of honey types for the training
sample followed the sequence: clover (75%), citrus (70.8%), chestnut (0%), eucalyptus (0%), fir (95.8%),
pine (92.3%), and thyme (58.3%). However, the zero classification rates of chestnut and eucalyptus
honeys are attributed to the limited honey samples, since the majority of them were assigned to the
holdout sample. Of the eight clover honey samples subjected to training analysis, six were assigned to
clover and two to thyme honeys. Similarly, of the 24 citrus honey samples, 17 samples were assigned to
citrus, one to clover, four to pine, and two to thyme honeys, respectively. One chestnut honey sample
was assigned to eucalyptus honeys. Of the 24 fir honey samples, 23 were assigned to fir and only one
to pine honeys. A similar trend was obtained for pine honeys—in which, 25 samples were assigned to
pine and only one to fir honeys, respectively. Finally, of the 24 thyme honey samples, 14 were assigned
to thyme, six to pine, three to clover, and one to citrus honeys, respectively.

Regarding the holdout sample classification rate, this was higher than the training sample by
10.5%. The botanical origin classification rate of honey types for the holdout sample followed the
sequence: citrus (85.7%), chestnut (0%), eucalyptus (100%), fir (100%), pine (100%), and thyme (81.8%).
The clover honeys were assigned previously to training sample. Therefore, no classification results
were obtained. Of the seven citrus honey samples subjected to holdout analysis, six were assigned
to citrus and one to pine honeys. Of the two chestnut honeys, one was assigned to citrus and one to
eucalyptus honeys, respectively. Finally, of the 11 thyme honey samples, nine samples were assigned
to thyme and two to pine, respectively (Table 3).

Table 3. Classification of clover, citrus, chestnut, eucalyptus, fir, pine, and thyme honeys according to
botanical origin using the 56 volatile compounds and K-Nearest Neighbors (k-NN) analysis.

Partition Observed
Predicted

Clover Citrus Chestnut Eucalyptus Fir Pine Thyme Percent Correct

Training

Clover 6 0 0 0 0 0 2 75.0%
Citrus 1 17 0 0 0 4 2 70.8%

Chestnut 0 0 0 1 0 0 0 0.0%
Eucalyptus 0 0 0 0 0 0 3 0.0%

Fir 0 0 0 0 23 1 0 95.8%
Pine 0 0 0 0 1 25 0 96.2%

Thyme 3 1 0 0 0 6 14 58.3%
Overall
Percent 9.1% 16.4% 0.0% 0.9% 21.8% 32.7% 19.1% 77.3%

Holdout

Clover 0 0 0 0 0 0 0
Citrus 0 6 0 0 0 1 0 85.7%

Chestnut 0 1 0 1 0 0 0 0.0%
Eucalyptus 0 0 0 1 0 0 0 100.0%

Fir 0 0 0 0 7 0 0 100.0%
Pine 0 0 0 0 0 13 0 100.0%

Thyme 0 0 0 0 0 2 9 81.8%
Missing 0 0 0 0 0 0 0
Overall
Percent 0.0% 17.1% 0.0% 4.9% 17.1% 39.0% 22.0% 87.8%

Among the 55 significant volatile compounds (predictors), the most effective predictors (k-nearest
neighbors) that built the model were acetic acid ethyl ester, formic acid ethyl ester, and 2-methylbutanal.
Based on this observation, the k-NN analysis was run again by performing feature selection in order
to investigate whether the classification results could be improved. The selected features were the
aforementioned volatile compounds.

For the specified k-nearest neighbors analysis, the sample was divided again to training and
holdout partitions. The training sample consisted of 100 honey samples (66.2%), whereas the holdout
sample consisted of 51 (33.8%). Both partitions explained 100% of the procedure, indicating that
all cases were valid. The analysis stopped when the absolute ratio was less than or equal to the
minimum change, which was inserted by default equal to 0.01. The overall classification rate was 83%
for the training and 74.5% for the holdout sample. The individual botanical classification rate was
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differentiated given the fact that the sample assignment to training and holdout partitions was also
differentiated (Table 4).

Table 4. Classification of clover, citrus, chestnut, eucalyptus, fir, pine, and thyme honeys according to
botanical origin using the 10 volatile compounds and k-NN.

Partition Observed
Predicted

Clover Citrus Chestnut Eucalyptus Fir Pine Thyme Percent Correct

Training

Clover 5 1 0 0 0 1 0 71.4%
Citrus 0 21 0 0 0 0 1 95.5%

Chestnut 0 0 0 0 1 1 1 0.0%
Eucalyptus 0 1 0 0 0 1 1 0.0%

Fir 0 0 0 0 17 0 0 100.0%
Pine 0 0 0 0 1 25 0 96.2%

Thyme 1 4 0 0 0 2 15 68.2%
Overall
Percent 6.0% 27.0% 0.0% 0.0% 19.0% 30.0% 18.0% 83.0%

Holdout

Clover 0 1 0 0 0 0 0 0.0%
Citrus 0 5 0 0 0 4 0 55.6%

Chestnut 0 0 0 0 0 0 0
Eucalyptus 0 0 0 0 0 1 0 0.0%

Fir 0 0 0 0 14 0 0 100.0%
Pine 0 2 0 0 0 10 1 76.9%

Thyme 0 1 0 0 0 3 9 69.2%
Missing 0 0 0 0 0 0 0
Overall
Percent 0.0% 17.6% 0.0% 0.0% 27.5% 35.3% 19.6% 74.5%

Considering the total standard error of the forced predictors, but also that of the individual
predictors, the model built with k = 3 (nearest neighbors) was more applicable. The 10 predictors
were the three specified predictors, followed by furfural, lilac aldehyde C, benzaldehyde, nonanol,
para-cymene, 5-methyl-4-nonene, and nonane. The total error rate of the three specified features was
0.74. The respective individual error rate for the seven predictors left was: 0.39, 0.27, 0.25, 0.21, 0.18,
0.17, and 0.17.

On the contrary, the total error rate of the model built with k = 4 nearest neighbors in relation to the
three specified features was 0.75. The individual error rate for the seven predictors left was: 0.41, 0.28,
0.25, 0.23, 0.21, 0.20, and 0.20 for furfural, lilac aldehyde C, phenylethylalcohol, 5-methyl-4-nonene,
1-octen-3-ol, and nonane, respectively. The selection of the predictors during k-NN analysis with k = 3
and k = 4 nearest neighbors according to the botanical origin of honey is shown in Figure 3.

FA

During factor analysis, the 56 significant volatile compounds were reduced to 16 principal
components (PCs) based on the rule of an eigenvalue greater than one. The rotated component matrix
is given in Supplementary Table S2. The total variance explained was 80.524% (ca. 80.52%).

The fitness of data for factor analysis was estimated by the Kaiser–Meyer–Olkin (KMO) test,
which comprises a measure of the effective performance of factor analysis, to a set of data, indicating
the sampling adequacy. The acceptable value was considered that of KMO ≥ 0.50. The suitability
and applicability of factor analysis was further evaluated using Bartlett’s test of sphericity. This test
highlights the hypothesis that the correlation matrix is an identity matrix, which would indicate that
the variables incorporated into the model are unrelated and therefore unsuitable for structure detection.
Small probability values (p < 0.05) indicate that a factor analysis may be useful with data treatment [20].
The value of the KMO test was 0.636. Furthermore, Bartlett’s test of sphericity had the following
qualitative values: X2 = 10,587.564, df = 1540, and p = 0.000.
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Figure 3. Predictor selection during k-NN analysis with k = 3 and k = 4 nearest neighbors. 1: Clover honeys. 2: Citrus honeys. 3: Chestnut honeys. 4: Eucalyptus
honeys. 5: Fir honeys. 6: Pine honeys. 7: Thyme honeys. Forced predictor: Acetic acid ethyl ester, formic acid ethyl ester, 2-methylbutanal. VAR00010: Furfural.
VAR00081: Lilac aldehyde C. VAR00016: Benzaldehyde. VAR00043: Nonanol. VAR00035: para-Cymene. VAR00023: 5-methyl-4-Nonene. VAR00014: Nonane (Model
with k = 3). VAR00010: Furfural. VAR00081: Lilac aldehyde C. VAR00051: Phenylethylalcohol. VAR00023: 5-methyl-4-Nonene. VAR00026: 1-Octen-3-ol. VAR00059:
Decanol.VAR00014: Nonane (Model with k = 4).
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The factors that best explained the rotated component matrix were the following volatile
compounds: Decanol (PC1, 10.454% of total variance), undecanoic acid ethyl ester (PC2, 10.380%
of total variance), para-cymene (PC3, 7.768% of total variance), 2-hydroxyisophorone (PC4, 7.699%
of total variance), nonane (PC5, 5.509% of total variance), dill ether (PC6, 5.058% of total variance),
lilac aldehyde C (PC7, 4.412% of total variance), lilac aldehyde D (PC8, 4.352% of total variance),
acetic acid ethyl ester (PC9, 3.918% of total variance), 5-methyl-2-phenylhexenal (PC10, 3.905% of
total variance), decane (PC11, 3.596% of total variance), 1-(2-furanyl)-ethanone (PC12, 3.563% of total
variance), benzeneacetonitrile (PC13, 3.240% of total variance), nonanol (PC14, 2.400% of total variance),
2-methylbutanal (PC15, 2.156% of total variance), and hexanoic acid ethyl ester (PC16, 2.113% of total
variance).

3.2.2. Part II. Classification of Honeys According to the Honey Code (CCC-E-F-P-T)

MANOVA and LDA

As in the case of the botanical origin differentiation of honeys, the four qualitative criteria of
the multivariate hypothesis had the following values: Pillai’s Trace = 3.770 (F = 10.640, df = 364, p
= 0.000, η2 = 0.943), Wilks’ Lambda = 0.000 (F = 23.673, df = 364, p = 0.000, η2 = 0.974), Hotelling’s
Trace = 431.692 (F = 64.635, df = 364, p = 0.000, η2 = 0.991), and Roy’s Largest Root = 361.350 (F
= 234.282, df = 91, p = 0.000, η2 = 0.997) showed that there was a statistically significant effect of
the honey code on the semi-quantitative data of volatile compounds. More specifically, 65 of the 94
volatile compounds were found to be significant (p < 0.05) for the classification of honeys according
to the honey code. Then, these volatiles were subjected to LDA. Results showed that 4-terpineol,
(1R)-1,7,7-trimethyl-bicyclo-(2.2.1)-heptan-2-one, carvacrol methyl ether, thymoquinone, thymol, and
eugenol did not pass the tolerance test. Therefore, these volatile compounds were excluded from the
discriminant analysis. In that sense, 59 volatile compounds contributed to the structure matrix as
shown in Supplementary Table S3.

Results showed that four canonical discriminant functions were formed: Wilks’ Lambda = 0.000,
X2 = 1009.601, df = 236, p = 0.000 for the first function; Wilks’ Lambda = 0.014, X2 = 502.352, df = 174,
p = 0.000 for the second function; Wilks’ Lambda = 0.090, X2 = 284.776, df = 114, p = 0.000 for the
third function; and Wilks’ Lambda = 0.369, X2 = 117.597, df = 56, p = 0.000 for the fourth function.
The first discriminant function recorded the higher eigenvalue (72.605) and a canonical correlation
of 0.993, accounting for 87.7% of total variance. The second discriminant function recorded a much
lower eigenvalue (5.321) and a canonical correlation of 0.917, accounting for 6.4% of total variance. The
third discriminant function recorded a lower eigenvalue (3.124) and a canonical correlation of 0.87o,
accounting for 3.8% of total variance. Similarly, the fourth discriminant function recorded the lowest
eigenvalue (1.709) and a canonical correlation of 0.794, accounting for 2.1% of total variance. All four
discriminant functions accounted for 100% of total variance.

In Figure 4, the differentiation of the 151 honey samples according to the honey code is shown.
The group centroid values are as follows: (−4.968, −1.828), (−2.691, −4.647), (16.454, −0.115), (−4.012,
−0.914), (−3.834, 3.844) for honeys encoded with CCC, E, F, P, and T, respectively.
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Figure 4. Classification of the 151 honey samples according to the honey code based on 57 volatile
compounds and LDA.

The classification rate was 96.0% using the original and 86.1% using the cross-validation method.
The classification rate of honeys according to the honey code, based on the original method, followed
the sequence: CCC (88.1%), E (100%), F (100%), P (100%), and T (97.1%). In total, 12.9% of CCC honeys
were allocated to the E group (4.8%, two samples) and to the P group (7.1%, three samples). In total,
2.9% (three samples) of T honeys were allocated to the P group.

For the cross-validation method, the classification rate of honeys followed the sequence: CCC
(81%), E (75%), F (93.5%), P (92.3%), and T (80%). In total, 4.8% (two samples) of CCC honeys were
allocated to the E group; 2.4% (one sample) were allocated to the F group, and 11.9% of samples (five
samples) were allocated to the P group. In total, 25% (one sample) of E honeys were allocated to CCC
honeys. In total, 3.2% of F honeys were allocated in equal proportions to the E (one sample) and P (one
sample) groups, respectively. The same holds for P honeys—in which, two samples (5.2% of the total
population) were allocated to the E (one sample, 2,6%) and F (one sample, 2,6%) groups, respectively.
Finally, 14.3% of T honeys were allocated to P honeys (five samples), and 5.7% (two samples) to E
honeys (Table 5).

As can be observed, the classification of honeys according to the honey code based on original and
cross validation methods provided higher prediction rates compared to the differentiation of honeys
according to botanical origin. In Table 3, the key volatile compounds for the discrimination of honeys
according to the honey code are marked with an asterisk.
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Table 5. Discriminatory power of the LDA model based on the significant volatile compound according
to the honey code.

Chemometric
Technique

Prediction
Rate Honey Code

Predicted Group Membership Total Honey
Samples
(n = 151)LDA % CCC E F P T

Original a

Count

CCC 38 2 0 2 0 42
E 0 4 0 0 0 4
F 0 0 31 0 0 31
P 0 0 0 39 0 39
T 0 0 0 1 34 35

%

CCC 90.5 4.8 0.0 4.8 0.0 100.0
E 0.0 100.0 0.0 0.0 0.0 100.0
F 0.0 0.0 100.0 0.0 0.0 100.0
P 0.0 0.0 0.0 100.0 0.0 100.0
T 0.0 0.0 0.0 2.9 97.1 100.0

Cross
validated b,c

Count

CCC 35 2 1 4 0 42
E 1 3 0 0 0 4
F 0 1 29 1 0 31
P 0 0 1 37 1 39
T 0 2 0 4 29 35

%

CCC 83.3 4.8 2.4 9.5 0.0 100.0
E 25.0 75.0 0.0 0.0 0.0 100.0
F 0.0 3.2 93.5 3.2 0.0 100.0
P 0.0 0.0 2.6 94.9 2.6 100.0
T 0.0 5.7 0.0 11.4 82.9 100.0

a 96.7% of grouped cases using the original method were correctly classified. b Cross validation was performed only
for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases
rather than that particular case. c 88.1% of cross validated grouped cases were correctly classified.

K-Nearest Neighbors

The training sample consisted of 111 honey samples that represented 73.5% of the total sample
population. Similarly, the holdout sample consisted of 40 samples that represented 26.5% of the sample
population. All cases (151 honey samples) (100%) were used in the statistical analysis, comprising a
valid procedure. The scale features (predictors) (57 statistically significant volatile compounds) were
normalized during analysis.

The overall classification rate was 81.1% for the training and 80% for the holdout sample and was
satisfactory in both cases. The classification rate of honey types according to the honey code followed
the sequence: CCC (86.7%), E (25%), F (96.2%), P (96.4%), and T (47.8%). Of the 30 CCC samples
subjected to training analysis, one sample was assigned to the E group and three samples to the P
group. Similarly, of the four E honey samples, three honey samples were assigned to the CCC group
and only one sample to the E group. Of the 26 F honeys, 25 samples were assigned to the F group and
only one sample to the P group. Of the 28 P honeys, 27 samples were assigned to the P group and only
one sample to the F group. Finally, of the 23 T honey samples, 11 were assigned to T, six to CCC, and
six to P, respectively. For the training sample, the honey code had the following hierarchy: CCC > E, F,
P > T, CCC > T, and was in general applicable.

The classification rates for the holdout sample were improved for the F, P, and T honey groups.
The classification rate of honey samples according to the honey code for the holdout sample followed
the sequence: CCC (83.3%), F (100%), P (100%), and T (50%). As can be observed, the hierarchy in
honey lettering was maintained by 3/5 cases (F, P > T and CCC > T). Of the 12 CCC honey samples
assigned to the holdout sample, 10 were assigned to the CCC group and two to the P group. F and P
honey samples were perfectly assigned to the respective groups. Finally, of the 12 T honey samples,
seven were assigned to T group, two to the CCC, and four to the P group (Table 6).
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Table 6. Classification of clover, citrus, chestnut, eucalyptus, fir, pine, and thyme honeys according to
the honey code using the 57 volatile compounds and k-NN analysis.

Partition Observed
Predicted

CCC E F P T Percent Correct

Training

CCC 26 1 0 3 0 86.7%
E 3 1 0 0 0 25.0%
F 0 0 25 1 0 96.2%
P 0 0 1 27 0 96.4%
T 6 0 0 6 11 47.8%

Overall Percent 31.5% 1.8% 23.4% 33.3% 9.9% 81.1%

Holdout

CCC 10 0 0 2 0 83.3%
E 0 0 0 0 0
F 0 0 5 0 0 100.0%
P 0 0 0 11 0 100.0%
T 2 0 0 4 6 50.0%

Missing 0 0 0 0 0
Overall Percent 30.0% 0.0% 12.5% 42.5% 15.0% 80.0%

Among the 57 significant volatile compounds (predictors), the most effective predictors (k-nearest
neighbors) that built the model were formic acid ethyl ester, acetic acid ethyl ester, and heptane.
Therefore, the k-NN analysis was repeated by performing feature selection in order to investigate
whether the classification results could be improved. The selected features were the aforementioned
volatile compounds.

For the specified k-nearest neighbors, the sample was divided again to the training and holdout
partitions. The training sample consisted of 110 honey samples (72.8%), whereas the rest of the honey
samples represented the holdout sample (27.2%). Similar to the botanical origin differentiation of
honeys, the analysis stopped when the absolute ratio was less than or equal to the minimum change
which was inserted by default equal to 0.01.

The overall classification rate was 89.1% for the training and 63.4% for the holdout sample. The
classification rate of the training sample was improved, whereas that of the holdout sample was
decreased. However, discrepancies among the two methods followed (simple k-NN and k-NN analysis
with feature selection) may be attributed to the number of the predictors assigned to the model and the
random dividing of the sample to training and holdout partitions in relation to sample size.

The classification rate of honey samples according to the honey code for the training sample
followed the sequence: CCC (87.5%), E (0%), F (100%), P (93.1%), and T (88.5%). These results show
that the honey code was satisfactorily applicable given the hierarchy followed: CCC > E, F > P > T and
CCC > T. The classification rate of honey samples according to the honey code for the holdout sample
followed the sequence: CCC (50%), E (0%), F (72.7%), P (80%), and T (55.6%). Similarly, the honey
code was satisfactorily applicable given the hierarchy followed: CCC > E, F, P > T, and CCC > T. The
classification results along with each sample assignment are given in Table 7.

The model was built with k = 3, k = 4, and k = 5 nearest neighbors, which were automatically
selected. Similar to the botanical origin differentiation of honeys, the forced predictors’ error was
considered for the selection of the best model. The 10 predictors that were obtained during the k-NN
analysis with k = 3 neighbors were the three forced predictors (heptane, formic acid ethyl ester, acetic
acid ethyl ester) followed by dodecanoic acid ethyl ester, benzaldehyde, nonanal, alpha-terpinene,
geranyl acetone, 5-methyl-4-nonene, and lilac aldehyde B (isomer II). The total error rate of the three
specified features was 0.6818. The respective individual error rate for the seven aforementioned
predictors was: 0.30, 0.2727, 0.2455, 0.1818, 0.1616, 0.1455, 0.1364, and 0.1364.

On the other hand, the total error rate of the model built with k = 4 nearest neighbors in relation to
the three specified features was 0.6636. The individual error rate for the six predictors left was: 0.3000,
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0.1909, 0.1636, 0.1364, 0.1273, and 0.1273, for furfural, lilac aldehyde C (isomer III), decanoic acid, lilac
aldehyde D (isomer IV), pentanoic acid, and nonane.

Finally, the total error rate of the model built with k = 5 nearest neighbors in relation to the three
specified features was 0.6545. The individual error rate for the seven predictors left was: 0.2909, 0.20,
0.1364, 0.1545, 0.1182, 0.1091, and 0.1091, for furfural, lilac aldehyde C (isomer III), benzeneacetaldehyde,
octanoic acid ethyl ester, nonanoic acid ethyl ester, nonanoic acid, and pentanoic acid. The selection of
the predictors during k-NN analysis with k = 3, k = 4, and k = 5 nearest neighbors according to the
honey code is shown in Figure 5.

Table 7. Classification of clover, citrus, chestnut, eucalyptus, fir, pine, and thyme honeys according to
the honey code using the forced predictors and, in total, 10 volatile compounds and k-NN analysis.

Partition Observed
Predicted

CCC E F P T Percent Correct

Training

CCC 28 0 0 2 2 87.5%
E 2 0 0 0 1 0.0%
F 0 0 20 0 0 100.0%
P 0 0 1 27 1 93.1%
T 2 0 0 1 23 88.5%

Overall Percent 29.1% 0.0% 19.1% 27.3% 24.5% 89.1%

Holdout

CCC 5 0 1 3 1 50.0%
E 0 0 0 0 1 0.0%
F 0 0 8 3 0 72.7%
P 0 0 1 8 1 80.0%
T 2 0 0 2 5 55.6%

Missing 0 0 0 0 0
Overall Percent 17.1% 0.0% 24.4% 39.0% 19.5% 63.4%

FA

The 59 significant volatile compounds were reduced to 15 principal components (PCs) based on
the rule of an eigenvalue greater than one. The rotated component matrix is given in Supplementary
Table S4. The total variance explained was 81.547% (ca. 81.55%). As can be observed, the total variance
explained of samples according to the honey code was higher than those that were grouped according
to botanical origin. In addition, the KMO test had a higher value: KMO = 0.615. Furthermore, Bartlett’s
test of sphericity had the following qualitative values: X2 = 12,376.576, df = 1596, p = 0.000. The factors
that best explained the rotated component matrix were the following volatile compounds: Para-cymene
(PC1, 12.207% of total variance), undecanoic acid ethyl ester (PC2, 10.520% of total variance), decanol
(PC3, 10.03% of total variance), 2-hydroxyisophorone (PC4, 7.788% of total variance), decanoic acid
(PC5, 7.386% of total variance), dill ether (PC6, 5.078% of total variance), 1-(2-furanyl)-ethanone (PC7,
4.506% of total variance), undecane (PC8, 4.326% of total variance), lilac aldehyde B (PC9, 3.254% of
total variance), dodecanoic acid (PC10, 2.989% of total variance), lilac aldehyde D (PC11, 2.986% of
total variance), benzeneacetonitrile (PC12, 2.904% of total variance), decanoic acid ethyl ester (PC13,
2.821% of total variance), 4,7,7-trimethylbyciclo (3.3.0)-octan-2-one (PC14, 2.819% of total variance),
and dodecanoic acid ethyl ester (PC15, 1.960% of total variance).
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Figure 5. Predictor selection during k-NN analysis with k = 3, k = 4, and k = 5 nearest neighbors. 1: CCC. 2: E. 3: F. 4: P. 5: T. Forced predictor: Heptane, formic acid
ethyl ester, acetic acid ethyl ester. VAR00070: Dodecanoic acid ethyl ester. VAR00016: Benzaldehyde. VAR00037: Nonanal. VAR00032: Alpha-terpinene. VAR00082:
Geranyl acetone. VAR00023: 5-Methyl-4-Nonene. VAR00039: Lilac aldehyde B (isomer II). (Model with k = 3); VAR00010: Furfural. VAR00081: Lilac aldehyde C
(isomer III). VAR00063: Decanoic acid. VAR00083: Lilac aldehyde D (isomer IV). VAR00011: Pentanoic acid. VAR00014: Nonane (Model with k = 4); VAR00010:
Furfural. VAR00081: Lilac aldehyde C (isomer III). VAR00020: Benzeneacetaldehyde. VAR00038: Octanoic acid ethyl ester. VAR00060: Nonanoic acid ethyl ester.
VAR00047: Nonanoic acid. VAR00011: Pentanoic acid (Model with k = 5).
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4. Conclusions

Results of the present study showed that specific volatile compounds in combination with
polyparametric statistical techniques such as MANOVA, LDA, k-NN and FA, may provide exhaustive
information about the botanical origin of honey. Even though honey samples were harvested in
different parts of the world, the classification of honeys according to botanical origin was, in general,
very satisfactory. At the same time, the application of the honey code to the collective set of data
and the use of the aforementioned statistical techniques resulted in a higher classification rate of the
honey samples. The use of hierarchical classification strategies (HCSs) may expand the state of the
art and flourish the complicated topic of “Honey authentication” by highlighting with numbers the
distinction/differentiation rates, for instance, of monofloral or blends of nectar or honeydew honeys
with specific and intense flavors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/8/10/508/s1,
Table S1: Standardized canonical discriminant function coefficients of the discrimination model—structure matrix
of the LDA model according to the botanical origin of honey; Table S2: Rotated component matrix of volatile
compounds used for the botanical origin differentiation of clover, citrus, chestnut, eucalyptus, fir, pine, and thyme
honeys; Table S3: Standardized canonical discriminant function coefficients of the discrimination model—structure
matrix of the LDA model according to the honey code; Table S4: Rotated component matrix of volatile compounds
used for the distinction of clover, citrus, chestnut, eucalyptus, fir, pine, and thyme honeys according to the honey
code; Figure S1: A typical gas chromatogram of citrus honey (no. 4) from Spain indicating selected key volatile
compounds. 10: Herboxide (isomer II). 11: Lilac aldehyde C (isomer III). 12: Dill ether. IS: internal standard;
Figure S2: A typical gas chromatogram of chestnut honey (no. 2) from Portugal indicating selected key volatile
compounds. 13: Octane. 14: 5-methyl-2-Furaldehyde. 15: Benzaldehyde. 16: Benzeneacetaldehyde. IS: internal
standard; Figure S3: A typical gas chromatogram of eucalyptus honey (no. 1) from Portugal indicating selected
key volatile compounds. 17: Heptane. 18: beta-Damascenone IS: internal standard; Figure S4: A typical gas
chromatogram of fir honey (no. 6) from Greece indicating selected key volatile compounds. 19: Nonane. 20:
1-(2-furanyl)-Ethanone. 21: 6-methyl-5-Hepten-2-one. 22: 5-methyl-4-Nonene. 23: Hexanoic acid ethyl ester. 24:
Heptanoic acid ethyl ester. 25: Nonanal. 26: alpha-Isophorone. 27: 4-Ketoisophorone. 28: 2-Hydroxyisophorone.
29: Octanoic acid ethyl ester. 30: Decane. 31: Nonanoic acid ethyl ester. 32: Geranyl acetone. IS: internal
standard; Figure S5: A typical gas chromatogram of pine honey (no. 2) from Greece indicating selected key volatile
compounds. 33: Acetic acid. 34: Octane. 35: alpha-Pinene. 36: beta-Thujone. IS: internal standard; Figure S6:
A typical gas chromatogram of thyme pine (no. 6) from Egypt indicating selected key volatile compounds. 37:
alpha-Pinene. 38: I-Octen-3-ol. 39: alpha-Terpinene. 40: para-Cymene. 41: Camphor. 42: Carvacrol methyl ether.
43: Thymoquinone. 44: 4,7,7-trimethylbyciclo(3.3.0)-Octan-2-one. IS: internal standard.
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