Effects of Surface Treatment with Thymol on the Lipid Oxidation Processes, Fatty Acid Profile and Color of Sliced Salami during Refrigerated Storage
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of Thymol Treatment and Storage on MDA Levels
3.2. Effects of Thymol Treatment and Storage on Fatty Acid Profiles
3.3. Effects of Thymol Treatment and Storage on the Surface Color Coordinates of the Salami Slices
4. Discussion
4.1. Fatty Acid Profiles
4.2. Lipid Peroxidation/Malondiadehyde
4.3. Surface Color and Oxidative Damage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amaral, A.B.; Silva, M.V.; Lannes, S.C.S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ahn, D.U. Lipid oxidation and its implications to meat quality and human health. Food Sci. Biotechnol. 2019, 28, 1275–1285. [Google Scholar] [CrossRef]
- Oswell, N.J.; Thippareddi, H.; Pegg, R.B. Practical use of natural antioxidants in meat products in the US: A review. Meat Sci. 2018, 145, 469–479. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; da Silva Lannes, S.C.; da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems–A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Lukas, B.; Schmiderer, C.; Novak, J. Essential oil diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry 2015, 119, 32–40. [Google Scholar] [CrossRef]
- Nieto, G. A review on applications and uses of thymus in the food industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef]
- Rebey, I.B.; Jabri-Karoui, I.; Hamrouni-Sellami, I.; Bourgou, S.; Limam, F.; Marzouk, B. Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind. Crops Prod. 2012, 36, 238–245. [Google Scholar] [CrossRef]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Hossain, M.A.; AL-Raqmi, K.A.S.; Al-Mijizy, Z.H.; Weli, A.M.; Al-Riyami, Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 2013, 3, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Commission Decision 1999/217/EC of 23 February 1999 Adopting a Register of Flavouring Substances Used in or on Foodstuffs Drawn up in Application of Regulation (EC) No. 2232/96 of the European Parliament and of the Council of 28 October 1996 (1999/217/EC). Official Journal of the European Communities. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1999:084:0001:0137:EN:PDF (accessed on 10 November 2022).
- Escobar, A.; Perez, M.; Romanelli, G.; Blustein, G. Thymol bioactivity: A review focusing on practical applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol. 2017, 8, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Placha, I.; Bacova, K.; Plachy, L. Current knowledge on the bioavailability of thymol as a feed additive in humans and animals with a focus on rabbit metabolic processes. Animals 2022, 12, 1131. [Google Scholar] [CrossRef]
- Winterton, N. The green solvent: A critical perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522. [Google Scholar] [CrossRef]
- Carter, E.C.; Schanda, J.D.; Hirschler, R.; Jost, S.; Luo, M.R.; Melgosa, M.; Ohno, Y.; Pointer, M.R.; Rich, D.C.; Viénot, F.F.; et al. CIE015:2018 Colorimetry, 4th ed.; International Commission on Illumination: Vienna, Austria, 2018; p. 111. [Google Scholar]
- Visi, É.V.; Toxanbayeva, B.; Baka, G.A.; Romvári, R. Organoleptic quality of reduced fat turkey sausage using pea fiber or potato starch additives. Acta Agrar. Kaposváriensis 2017, 21, 53–59. [Google Scholar]
- Varga-Visi, É.; Kozma, V.; Szabó, A. Correlation between CIELAB colour coordinates and malondialdehyde equivalents in sausage with paprika stored under refrigerated conditions. Acta Aliment. 2021, 50, 557–564. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2003; p. 416. [Google Scholar]
- Erickson, M.C. Lipid oxidation in muscle foods. In Food Lipids: Chemistry Nutrition, and Biotechnology; Akoh, C.C., Min, D.B., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 365–421. [Google Scholar]
- García-Torres, S.; Contador, R.; Ortiz, A.; Ramírez, R.; López-Parra, M.M.; Tejerina, D. Physico-chemical and sensory characterization of sliced Iberian chorizo from raw material of three commercial categories and stability during refrigerated storage packaged under vacuum and modified atmospheres. Food Chem. 2021, 354, 129490. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Salueña, B.H.; Gamasa, C.S.; Rubial, J.M.D.; Odriozola, C.A. CIELAB color paths during meat shelf life. Meat Sci. 2019, 157, 107889. [Google Scholar] [CrossRef] [Green Version]
- Carlsen, C.U.; Møller, J.K.; Skibsted, L.H. Heme-iron in lipid oxidation. Coord. Chem. Rev. 2005, 249, 485–498. [Google Scholar] [CrossRef]
- Andersen, H.J.; Skibsted, L.H. Kinetics and mechanism of thermal oxidation and photooxidation of nitrosylmyoglobin in aqueous solution. J. Agric. Food Chem. 1992, 40, 1741–1750. [Google Scholar] [CrossRef]
- Arnold, E.V.; Bohle, D.S. Isolation and oxygenation reactions of nitrosylmyoglobins. Methods Enzymol. 1996, 269, 41–55. [Google Scholar]
- Arimboor, R.; Natarajan, R.B.; Menon, K.R.; Chandrasekhar, L.P.; Moorkoth, V. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: Analysis and stability–a review. J. Food Sci. Technol. 2015, 52, 1258–1271. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; Córdoba, M.D.G.; Aranda, E.; Hernández, A.; Velázquez, R.; Bartolomé, T.; Martín, A. Type of paprika as a critical quality factor in Iberian chorizo sausage manufacture. CyTA-J. Food 2019, 17, 907–916. [Google Scholar] [CrossRef]
- Luna, A.; Lema-Alba, R.C.; Dambolena, J.S.; Zygadlo, J.A.; Lábaque, M.C.; Marin, R.H. Thymol as natural antioxidant additive for poultry feed: Oxidative stability improvement. Poult. Sci. 2017, 96, 3214–3220. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Incoronato, A.L.; Conte, A.; Del Nobile, M.A. Shelf life of reduced pork back-fat content sausages as affected by antimicrobial compounds and modified atmosphere packaging. Int. J. Food Microbiol. 2011, 150, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Upadhyaya, I.; Karumathil, D.P.; Yin, H.B.; Nair, M.S.; Bhattaram, V.; Chen, C.; Flock, G.; Mooyottu, S.; Venkitanarayanan, K. Control of Listeria monocytogenes on skinless frankfurters by coating with phytochemicals. LWT-Food Sci. Technol. 2015, 63, 37–42. [Google Scholar] [CrossRef]
- Tornuk, F.; Hancer, M.; Sagdic, O.; Yetim, H. LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT-Food Sci. Technol. 2015, 64, 540–546. [Google Scholar] [CrossRef]
- Saricaoglu, F.T.; Turhan, S. Performance of mechanically deboned chicken meat protein coatings containing thyme or clove essential oil for storage quality improvement of beef sucuks. Meat Sci. 2019, 158, 107912. [Google Scholar] [CrossRef]
- Tschiggerl, C.; Bucar, F. Influence of saponin plants on the volatile fraction of thyme in herbal teas. Fitoterapia 2011, 82, 903–910. [Google Scholar] [CrossRef]
Fatty Acid | Fresh | Untreated Stored | Treated Stored | SE | Sig. |
---|---|---|---|---|---|
C10:0 | 0.05 | 0.04 | 0.05 | 0.001 | n.s. |
C12:0 | 0.07 | 0.07 | 0.08 | 0.001 | n.s. |
C14:0 | 1.31 | 1.32 | 1.35 | 0.012 | n.s |
C14:1 n-5 | 0.02 | 0.02 | 0.02 | 0.000 | n.s |
C15:0 | 0.07 | 0.07 | 0.07 | 0.001 | n.s. |
C16:0 | 25.68 a,b | 25.99 b | 25.37 a | 0.088 | p < 0.01 |
C16:1 n-7 | 2.47 | 2.45 | 2.42 | 0.010 | n.s. |
C17:0 | 0.36 a | 0.37 b | 0.36 a | 0.001 | p < 0.05 |
C18:0 | 12.26 a | 12.63 c | 12.41 b | 0.043 | p < 0.001 |
C18:1 n-9 | 39.88 | 40.05 | 39.85 | 0.042 | n.s. |
C18:1 n-7 | 2.88 | 2.89 | 2.87 | 0.004 | n.s. |
C18:2 n-6 | 12.03 b | 11.38 a | 12.16 b | 0.088 | p < 0.001 |
C18:3 n-6 | 0.03 | 0.03 | 0.03 | 0.001 | n.s. |
C18:3 n-3 | 0.65 b | 0.57 a | 0.65 b | 0.010 | p < 0.001 |
C20:0 | 0.18 | 0.18 | 0.18 | 0.001 | n.s. |
C20:1 n-9 | 0.76 | 0.77 | 0.78 | 0.005 | n.s. |
C20:2 n-6 | 0.49 a | 0.48 a | 0.53 b | 0.007 | p < 0.001 |
C20:3 n-9 | 0.03 a | 0.03 a | 0.04 b | 0.001 | p < 0.01 |
C20:3 n-6 | 0.11 b | 0.09 a | 0.11 b | 0.002 | p < 0.001 |
C20:4 n-6 | 0.37 b | 0.29 a | 0.37 b | 0.010 | p < 0.001 |
C20:3 n-3 | 0.10 b | 0.09 a | 0.10 b | 0.002 | p < 0.001 |
C22:0 | 0.02 | 0.01 | 0.02 | 0.000 | n.s. |
C22:1 n-9 | 0.02 a | 0.04 b | 0.02 a | 0.002 | p < 0.001 |
C22:5 n-3 | 0.08 b | 0.06 a | 0.09 b | 0.003 | p < 0.001 |
C24:0 | 0.08 | 0.07 | 0.07 | 0.001 | n.s. |
C22:6 n-3 | 0.01 | 0.02 | 0.02 | 0.001 | n.s. |
SFAs | 40.07 a | 40.76 b | 39.95 a | 0.102 | p < 0.001 |
MUFAs | 46.02 a,b | 46.21 b | 45.96 a | 0.043 | p < 0.05 |
PUFAs | 13.91 b | 13.03 a | 14.10 b | 0.119 | p < 0.001 |
n-3 | 0.85 b | 0.73 a | 0.86 b | 0.014 | p < 0.001 |
n-6 | 12.54 b | 11.79 a | 12.67 b | 0.100 | p < 0.001 |
n-6/n-3 | 14.81 a | 16.07 b | 14.81 a | 0.154 | p < 0.001 |
C* | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Storage (week) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | SE |
U | 38.8 e,A | 34.0 d,A | 32.8 c,d,A | 32.9 c,d,A | 32.5 c,d,A | 31.1 c,A | 30.5 b,c,A | 28.6 b,A | 26.1 a,A | 0.51 |
T | 37.7 c,A | 34.4 a,b,A | 34.5 a,b,B | 33.4 a,b,A | 33.2 a,b,A | 33.2 a,b,B | 33.0 a,B | 34.8 b,B | 34.5 a,b,B | 0.23 |
hab | ||||||||||
Storage (week) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | SE |
U | 42.5 a,b,A | 42.4 a,b,A | 41.3 a,A | 42.6 a,b,A | 43.6 a,b,A | 43.2 a,b,A | 43.9 b,A | 48.4 c,A | 49.7 c,B | 0.42 |
T | 42.1 a,A | 42.4 a,A | 42.7 a,B | 43.0 a,b,A | 43.6 a,b,A | 44.6 b,B | 44.5 b,A | 46.6 c,A | 47.4 c,A | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga-Visi, É.; Jócsák, I.; Kozma, V.; Lóki, K.; Ali, O.; Szabó, A. Effects of Surface Treatment with Thymol on the Lipid Oxidation Processes, Fatty Acid Profile and Color of Sliced Salami during Refrigerated Storage. Foods 2022, 11, 3917. https://doi.org/10.3390/foods11233917
Varga-Visi É, Jócsák I, Kozma V, Lóki K, Ali O, Szabó A. Effects of Surface Treatment with Thymol on the Lipid Oxidation Processes, Fatty Acid Profile and Color of Sliced Salami during Refrigerated Storage. Foods. 2022; 11(23):3917. https://doi.org/10.3390/foods11233917
Chicago/Turabian StyleVarga-Visi, Éva, Ildikó Jócsák, Vanda Kozma, Katalin Lóki, Omeralfaroug Ali, and András Szabó. 2022. "Effects of Surface Treatment with Thymol on the Lipid Oxidation Processes, Fatty Acid Profile and Color of Sliced Salami during Refrigerated Storage" Foods 11, no. 23: 3917. https://doi.org/10.3390/foods11233917
APA StyleVarga-Visi, É., Jócsák, I., Kozma, V., Lóki, K., Ali, O., & Szabó, A. (2022). Effects of Surface Treatment with Thymol on the Lipid Oxidation Processes, Fatty Acid Profile and Color of Sliced Salami during Refrigerated Storage. Foods, 11(23), 3917. https://doi.org/10.3390/foods11233917