Impact of Non-Thermal Technologies on the Quality of Nuts: A Review
Abstract
:1. Introduction
2. Non-Thermal Treatments
2.1. Ultraviolet Light
2.2. Pulsed Electric Field
2.3. Pulsed Light
2.4. Ultrasound and High Pressure
2.5. Irradiation
2.6. Cold Plasma
Nut | Processing Conditions Applied | Effects | Reference |
---|---|---|---|
Almond | Non-thermal plasma (NTP); 30 s; 30 kV; 2000 H | 5-log reduction of E. coli. | [113] |
Cold plasma (CP); air; 20 kV; 15 kHz; 15 min | 5-log reduction of Salmonella enteritidis PT-30 | [114] | |
NTP; Gliding arc plasma; 14 kV; 50 kHz; 4 min; 6 mm distance | 4-log reduction of Salmonella and Shigella | [115] | |
CP; 17 V, 2.26 A; 20 min; 2 cm distance; ambient temperature | 3-log reduction of total microorganisms; 1.8-log reduction of molds and yeasts; 2.7-log reduction Staphylococcus aureu | [116] | |
Pistachio | CP; 130 W; 20 kHz; 15 kV; 3 min; ambient temperature | 4-log reduction Aspergillus; AFB1 reduction of 60% | [117] |
Direct current diode plasma (DC-DP); 300 W; 2 Torr; 20 min | 5-log reduction Aspergillus flavus | [118] | |
Atmospheric pressure capacitive coupled plasma (AP-CCP); argon; 100 W; 10 min; ambient temperature | 4-log reduction Aspergillus flavus | [119] | |
Low pressure cold plasma (LP-CP); O2-Ar, 5 mbar; 20 mm distance; 50 MHz; 400 W; 5 min; ambient temperature | 5-log reduction Aspergillus brasiliensis; 4-log reduction E. coli | [120] | |
Peanut | CP; Ar; 200 W; 5 min; 1 atm; 4 cm; ambient temperature | 5-log reduction Aspergillus niger and Aspergillus flavus | [121] |
Walnut | CP; 500 mTorr; 13.6 MHz; 50 W; 20 min | Total reduction in molds and coliforms | [122] |
3. Conclusions and Future Trends
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alasalvar, C.; Salvadó, J.-S.; Ros, E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Tomás, N.; Paz-Graniel, I.; Kendall, C.W.C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Nut consumption and incidence of cardiovascular diseases and cardiovascular disease mortality: A meta-analysis of prospective cohort studies. Nutr. Rev. 2019, 77, 691–709. [Google Scholar] [CrossRef]
- Udovicki, B.; Stankovic, S.; Tomic, N.; Djekic, I.; Smigic, N.; Trifunovic, B.S.; Milicevic, D.; Rajkovic, A. Evaluation of ultraviolet irradiation effects on Aspergillus flavus and aflatoxin b1 in maize and peanut using innovative vibrating decontamination equipment. Food Control 2022, 134, 108691. [Google Scholar] [CrossRef]
- Perrone, G.; Gallo, A.; Logrieco, A.F. Biodiversity of Aspergillus section Flavi in europe in relation to the management of aflatoxin risk. Front. Microbiol. 2014, 5, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roze, L.V.; Hong, S.-Y.; Linz, J.E. Aflatoxin biosynthesis: Current frontiers. Annu. Rev. Food Sci. Technol. 2013, 4, 293–311. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, J.-H.; Sun, D.-W. Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends Food Sci. Technol. 2021, 109, 647–661. [Google Scholar] [CrossRef]
- Yazdanpanah, H. Mycotoxins: Analytical challenges. Iran. J. Pharm. Sci. 2011, 10, 653–654. [Google Scholar]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 2017, 7, 2170. [Google Scholar] [CrossRef] [Green Version]
- Rushing, B.R.; Selim, M.I. Aflatoxin b1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- Hassan-Mohammad, Z.; Murano, E.A.; Moreira, R.G.; Castillo, A. Effect of air- and vacuum-packaged atmospheres on the reduction of Salmonella on almonds by electron beam irradiation. LWT 2019, 116, 108389. [Google Scholar] [CrossRef]
- Jeong, S.; Marks, B.P.; Ryser, E.T.; Harte, J.B. The effect of x-ray irradiation on Salmonella inactivation and sensory quality of almonds and walnuts as a function of water activity. Int. J. Food Microbiol. 2012, 153, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blessington, T.; Theofel, C.G.; Mitcham, E.J.; Harris, L.J. Survival of foodborne pathogens on inshell walnuts. Int. J. Food Microbiol. 2013, 166, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, G.R.; Frelka, J.C.; Yang, M.; Jones, T.M.; Harris, L.J. Prevalence of Escherichia coli o157:H7 and Salmonella on inshell california walnuts. J. Food Prot. 2015, 78, 1547–1553. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, L.; Melka, D.; Wang, H.; Laasri, A.; Brown, E.W.; Strain, E.; Allard, M.; Bunning, V.K.; Musser, S.M.; et al. Prevalence of Salmonella in cashews, hazelnuts, macadamia nuts, pecans, pine nuts, and walnuts in the united states. J. Food Prot. 2017, 80, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothschild, M. Canada E. coli Outbreak Tied to Walnuts. Available online: https://www.foodsafetynews.com/2011/04/canada-e-coli-outbreak-tied-to-walnuts/ (accessed on 18 July 2022).
- Juneja, V.K.; Dwivedi, H.P.; Sofos, J.N. Microbial Control and Food Preservation: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Prakash, A. Non-thermal processing technologies to improve the safety of nuts. In Improving the Safety and Quality of Nuts; Woodhead Publishing: Soston, UK, 2013; pp. 35–55. [Google Scholar]
- Altemimi, A.; Ali, H.I.; Al-HiIphy, A.R.; Lightfoot, D.A.; Watson, D.G. Electric field applications on dried key lime juice quality with regression modeling. J. Food Process. Preserv. 2018, 42, e13637. [Google Scholar] [CrossRef]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.-P.; Marchesseau, S. Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Front. Nutr. 2019, 5, 130. [Google Scholar] [CrossRef]
- Sonne, A.M.; Grunert, K.G.; Olsen, N.V.; Granli, B.S.; Szabó, E.; Banati, D. Consumers’ perceptions of hpp and pef food products. Br. Food J. 2012, 114, 85–107. [Google Scholar] [CrossRef]
- Guerrero, S.N.; Ferrario, M.; Schenk, M.; Fenoglio, D.; Andreone, A. Ultraviolet light. In Electromagnetic Technologies in Food Science; Wiley: Hoboken, NJ, USA, 2021; pp. 128–180. [Google Scholar]
- Keklik, N.M.; Krishnamurthy, K.; Demirci, A. Microbial decontamination of food by ultraviolet (uv) and pulsed uv light. In Microbial Decontamination in the Food Industry: Novel Methods and Applications; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing: Soston, UK, 2012; pp. 344–369. [Google Scholar]
- Deng, L.-Z.; Tao, Y.; Mujumdar, A.S.; Pan, Z.; Chen, C.; Yang, X.-H.; Liu, Z.-L.; Wang, H.; Xiao, H.-W. Recent advances in non-thermal decontamination techno logies for microorganisms and mycotoxins in low-moisture foods. Trends Food Sci. Technol. 2020, 106, 104–112. [Google Scholar] [CrossRef]
- Mao, J.; He, B.; Zhang, L.; Li, P.; Zhang, Q.; Ding, X.; Zhang, W. A structure identification and toxicity assessment of the degradation products of aflatoxin b1 in peanut oil under uv irradiation. Toxins 2016, 8, 332. [Google Scholar] [CrossRef] [PubMed]
- Jubeen, F.; Bhatti, I.A.; Khan, M.Z.; Zahoor-Ul, H.; Shahid, M. Effect of uvc irradiation on aflatoxins in ground nut (arachis hypogea) and tree nuts (Juglans regia, Prunus duclus and Pistachio vera). J. Chem. Soc. Pak. 2012, 34, 1366–1374. [Google Scholar]
- Drishya, C.; Yoha, K.S.; Perumal, A.B.; Moses, J.A.; Anandharamakrishnan, C.; Balasubramaniam, V.M. Impact of nonthermal food processing techniques on mycotoxins and their producing fungi. Int. J. Food Sci. Technol. 2022, 57, 2140–2148. [Google Scholar] [CrossRef]
- Chang, M.; Jin, Q.; Liu, Y.; Liu, R.; Wang, X. Efficiency and safety evaluation of photodegradation of aflatoxin b1 on peanut surface. Int. J. Food Sci. Technol. 2013, 48, 2474–2479. [Google Scholar] [CrossRef]
- Mazaheri, M. Effect of Uv Radiation on Different Concentrations of Aflatoxin b1 in Pistachio. Acta Hortic. 2011, 963, 41–46. [Google Scholar] [CrossRef]
- Babaee, R.; Karami-Osboo, R.; Mirabolfathy, M. Evaluation of the use of ozone, uv-c and citric acid in reducing aflatoxins in pistachio nut. J. Food Compost. Anal. 2022, 106, 104276. [Google Scholar] [CrossRef]
- Garg, N.; Aggarwal, M.; Javed, S.; Kh, R.K. Studies for optimization of conditions for reducing aflatoxin contamination in peanuts using ultraviolet radiations. Int. J. Drug Dev. Res. 2013, 5. [Google Scholar]
- Diao, E.; Li, X.; Zhang, Z.; Ma, W.; Ji, N.; Dong, H. Ultraviolet irradiation detoxification of aflatoxins. Trends Food Sci. Technol. 2015, 42, 64–69. [Google Scholar] [CrossRef]
- Baysal, A.H. Short-wave ultraviolet light inactivation of pathogens in fruit juices. In Fruit Juices; Elsevier: Amsterdam, The Netherlands, 2018; pp. 463–510. [Google Scholar]
- Keyser, M.; Műller, I.A.; Cilliers, F.P.; Nel, W.; Gouws, P.A. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 348–354. [Google Scholar] [CrossRef]
- Unluturk, S.; Atilgan, M.R. Microbial safety and shelf life of uv-c treated freshly squeezed white grape juice. J. Food Sci. 2015, 80, M1831–M1841. [Google Scholar] [CrossRef] [Green Version]
- Izmirlioglu, G.; Demirci, A. Inactivation of salmonella enteritidis on walnuts by pulsed UV treatment. In Proceedings of the ASABE 2018 Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018. [Google Scholar]
- Ruiz-Hernández, K.; Ramírez-Rojas, N.Z.; Meza-Plaza, E.F.; García-Mosqueda, C.; Jauregui-Vázquez, D.; Rojas-Laguna, R.; Sosa-Morales, M.E. Uv-c treatments against Salmonella typhimurium atcc 14028 in inoculated peanuts and almonds. Food Eng. Rev. 2021, 13, 706–712. [Google Scholar] [CrossRef]
- Pi, X.; Yang, Y.; Sun, Y.; Wang, X.; Wan, Y.; Fu, G.; Li, X.; Cheng, J. Food irradiation: A promising technology to produce hypoallergenic food with high quality. Crit. Rev. Food Sci. Nutr. 2021, 62, 1–16. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Pataro, G.; Tiwari, B.; Gozzi, M.; Meireles, M.Á.A.; Wang, S.; Guamis, B.; Pan, Z.; Ramaswamy, H.; Sastry, S.; et al. Guidelines on reporting treatment conditions for emerging technologies in food processing. Crit. Rev. Food Sci. Nutr. 2022, 62, 5925–5949. [Google Scholar] [CrossRef]
- Rábago-Panduro, L.M.; Morales-de la Peña, M.; Martín-Belloso, O.; Welti-Chanes, J. Application of pulsed electric fields pef on pecan nuts Carya illinoinensis wangenh. K. Koch: Oil extraction yield and compositional characteristics of the oil and its by-product. Food Eng. Rev. 2021, 13, 676–685. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Lin, S.; Liang, R.; Xue, P.; Zhang, S.; Liu, Z.; Dong, X. Antioxidant activity improvement of identified pine nut peptides by pulsed electric field (pef) and the mechanism exploration. LWT 2017, 75, 366–372. [Google Scholar] [CrossRef]
- Niu, D.; Zeng, X.-A.; Ren, E.-F.; Xu, F.-Y.; Li, J.; Wang, M.-S.; Wang, R. Review of the application of pulsed electric fields (pef) technology for food processing in china. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresour. Bioprocess. 2022, 9, 14. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 2019, 6, 26. [Google Scholar] [CrossRef]
- Vanga, S.K.; Wang, J.; Jayaram, S.; Raghavan, V. Effects of pulsed electric fields and ultrasound processing on proteins and enzymes: A review. Processes 2021, 9, 722. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Zeng, X.-A.; Rahaman, A.; Siddeeg, A.; Aadil, R.M.; Ahmed, Z.; Li, J.; Niu, D. Combined impact of pulsed electric field and ultrasound on bioactive compounds and ft-ir analysis of almond extract. J. Food Sci. Technol. 2019, 56, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Arcena, M.R.; Leong, S.Y.; Then, S.; Hochberg, M.; Sack, M.; Mueller, G.; Sigler, J.; Kebede, B.; Silcock, P.; Oey, I. The effect of pulsed electric fields pre-treatment on the volatile and phenolic profiles of merlot grape musts at different winemaking stages and the sensory characteristics of the finished wines. Innov. Food Sci. Emerg. Technol. 2021, 70, 102698. [Google Scholar] [CrossRef]
- Carpentieri, S.; Režek Jambrak, A.; Ferrari, G.; Pataro, G. Pulsed electric field-assisted extraction of aroma and bioactive compounds from aromatic plants and food by-products. Front. Nutr. 2022, 8, 792203. [Google Scholar] [CrossRef]
- Kanafusa, S.; Maspero, U.; Petersen, M.A.; Gómez Galindo, F. Influence of pulsed electric field-assisted dehydration on the volatile compounds of basil leaves. Innov. Food Sci. Emerg. Technol. 2022, 77, 102979. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S.; Kim, E.; Kim, Y.-N.; Lee, J.; Lee, D.-U. Effects of pulsed electric field and thermal treatments on microbial reduction, volatile composition, and sensory properties of orange juice, and their characterization by a principal component analysis. Appl. Sci. 2021, 11, 186. [Google Scholar] [CrossRef]
- Nandakumar, R.; Eyres, G.T.; Burritt, D.J.; Kebede, B.; Leus, M.; Oey, I. Impact of pulsed electric fields on the volatile compounds produced in whole onions (Allium cepa and Allium fistulosum). Foods 2018, 7, 183. [Google Scholar] [CrossRef] [Green Version]
- Salehi, F. Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: A review. Int. J. Food Prop. 2020, 23, 1036–1050. [Google Scholar] [CrossRef]
- Cudemos, E.; Izquier, A.; Medina-Martínez, M.S.; Gómez-López, V.M. Effects of shading and growth phase on the microbial inactivation by pulsed light. Czech J. Food Sci. 2013, 31, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Braslavsky, S.E. Glossary of terms used in photochemistry, 3rd edition (iupac recommendations 2006). Pure Appl. Chem. 2007, 79, 293–465. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Bolton, J.R. An approach to standardize methods for fluence determination in bench-scale pulsed light experiments. Food Bioprocess Technol. 2016, 9, 1040–1048. [Google Scholar] [CrossRef]
- Izmirlioglu, G.; Ouyang, B.; Demirci, A. Utilization of pulsed uv light for inactivation of Salmonella enteritidis on shelled walnuts. LWT 2020, 134, 110023. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Noguera-Artiaga, L.; Figueroa-Morales, F.; Girón, F.; Carbonell-Barrachina, Á.A.; Gabaldón, J.A.; Pérez-López, A.J. Effect of pulsed light on quality of shelled walnuts. Foods 2022, 11, 1186. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, W.; Chung, S.-Y.; Chen, H.; Ye, M.; Teixeira, A.A.; Gregory, J.F.; Welt, B.A.; Shriver, S. Effect of pulsed ultraviolet light and high hydrostatic pressure on the antigenicity of almond protein extracts. Food Bioprocess Technol. 2013, 6, 431–440. [Google Scholar] [CrossRef]
- Oner, M.E. Inactivation of Salmonella enteritidis on almonds by pulsed light treatment. Acad. Food J. Akad. GIDA 2017, 15, 242–248. [Google Scholar]
- Harguindeguy, M.; Gómez-Camacho, C.E. Pulsed light (pl) treatments on almond kernels: Salmonella enteritidis inactivation kinetics and infrared thermography insights. Food Bioprocess Technol. 2021, 14, 2323–2335. [Google Scholar] [CrossRef]
- Liu, X.; Fan, X.; Wang, W.; Yao, S.; Chen, H. Wetting raw almonds to enhance pulse light inactivation of Salmonella and preserve quality. Food Control 2021, 125, 107946. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, W.; Chung, S.-Y.; Sims, C.A.; Otwell, S.W.; Rababah, T.M. Reduction of ige immunoreactivity of whole peanut (Arachis hypogaea l.) after pulsed light illumination. Food Bioprocess Technol. 2014, 7, 2637–2645. [Google Scholar] [CrossRef]
- Abuagela, M.O.; Iqdiam, B.M.; Mostafa, H.; Gu, L.; Smith, M.E.; Sarnoski, P.J. Assessing pulsed light treatment on the reduction of aflatoxins in peanuts with and without skin. Int. J. Food Sci. Technol. 2018, 53, 2567–2575. [Google Scholar] [CrossRef]
- Abuagela, M.O.; Iqdiam, B.M.; Mostafa, H.; Marshall, S.M.; Yagiz, Y.; Marshall, M.R.; Gu, L.; Sarnoski, P. Combined effects of citric acid and pulsed light treatments to degrade b-aflatoxins in peanut. Food Bioprod. Process. 2019, 117, 396–403. [Google Scholar] [CrossRef]
- Zabot, G.L.; Viganó, J.; Silva, E.K. Low-frequency ultrasound coupled with high-pressure technologies: Impact of hybridized techniques on the recovery of phytochemical compounds. Molecules 2021, 26, 5117. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, N.A.F.; Hazmi, N.A.M.; How, M.S.; Kantono, K.; Silva, F.V.M.; Sulaiman, A. Thermal, high pressure, and ultrasound inactivation of various fruit cultivars’s polyphenol oxidase: Kinetic inactivation models and estimation of treatment energy requirement. Appl. Sci. 2022, 12, 1864. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef]
- Chavan, P.; Sharma, P.; Sharma, S.R.; Mittal, T.C.; Jaiswal, A.K. Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods 2022, 11, 122. [Google Scholar] [CrossRef]
- Esteban-Lustres, R.; Sanz, V.; Domínguez, H.; Torres, M.D. Ultrasound-assisted extraction of high-value fractions from fruit industrial processing waste. Foods 2022, 11, 2089. [Google Scholar] [CrossRef]
- Taha, A.; Ahmed, E.; Ismaiel, A.; Ashokkumar, M.; Xu, X.; Pan, S.; Hu, H. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci. Technol. 2020, 105, 363–377. [Google Scholar] [CrossRef]
- Rudolf, J.L.; Resurreccion, A.V.A. Optimization of trans-resveratrol concentration and sensory properties of peanut kernels by slicing and ultrasound treatment, using response surface methodology. J. Food Sci. 2007, 72, S450–S462. [Google Scholar] [CrossRef]
- Aganovic, K.; Hertel, C.; Vogel, R.F.; Johne, R.; Schlüter, O.; Schwarzenbolz, U.; Jäger, H.; Holzhauser, T.; Bergmair, J.; Roth, A.; et al. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3225–3266. [Google Scholar] [CrossRef]
- Pérez-Lamela, C.; Franco, I.; Falqué, E. Impact of high-pressure processing on antioxidant activity during storage of fruits and fruit products: A review. Molecules 2021, 26, 5265. [Google Scholar] [CrossRef] [PubMed]
- Raghubeer, E.V.; Phan, B.N.; Onuoha, E.; Diggins, S.; Aguilar, V.; Swanson, S.; Lee, A. The use of high-pressure processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L.) water. Int. J. Food Microbiol. 2020, 331, 108697. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Fang, L.; Liu, C.; Min, W.; Liu, J. Effects of high hydrostatic pressure on the functional and rheological properties of the protein fraction extracted from pine nuts. Food Sci. Technol. Int. 2018, 24, 53–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabi, B.G.; Mukhtar, K.; Arshad, R.N.; Radicetti, E.; Tedeschi, P.; Shahbaz, M.U.; Walayat, N.; Nawaz, A.; Inam-Ur-raheem, M.; Aadil, R.M. High-pressure processing for sustainable food supply. Sustainability 2021, 13, 13908. [Google Scholar] [CrossRef]
- Fleischer, D.M.; Conover-Walker, M.K.; Matsui, E.C.; Wood, R.A. The natural history of tree nut allergy. J. Allergy Clin. Immunol. 2005, 116, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Yang, X.; Sun, J.; Zhong, Q.; Wei, J.; Qu, P.; Yue, T. Effects of combined high pressure and thermal treatment on the allergenic potential of peanut in a mouse model of allergy. Innov. Food Sci. Emerg. Technol. 2016, 35, 133–138. [Google Scholar] [CrossRef]
- Hu, C.-Q.; Chen, H.-B.; Gao, J.-Y.; Luo, C.-P.; Ma, X.-J.; Tong, P. High-pressure microfluidisation-induced changes in the antigenicity and conformation of allergen ara h 2 purified from chinese peanut. J. Sci. Food Agric. 2011, 91, 1304–1309. [Google Scholar] [CrossRef]
- Li, H.; Zhu, K.; Zhou, H.; Peng, W. Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula. Food Chem. 2012, 132, 808–814. [Google Scholar] [CrossRef]
- Peñas, E.; Gomez, R.; Frias, J.; Baeza, M.L.; Vidal-Valverde, C. High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. Food Chem. 2011, 125, 423–429. [Google Scholar] [CrossRef]
- Fan, X.; Niemira, B.A. Gamma irradiation. In Electromagnetic Technologies in Food Science; Wiley: Hoboken, NJ, USA, 2021; pp. 53–73. [Google Scholar]
- Sommers, C.H.; Fan, X. Food Irradiation Research and Technology; Blackwell Publishing Professional: Ames, IA, USA, 2007; pp. 1–317. [Google Scholar]
- European Union. Directive 1999/3/EC of the European Parliament and of the Council of 22 February 1999 on the establishment of a Community list of foods and food ingredients treated with ionising radiation. Consolidated version 22 February 1999. Off. J. Eur. Communities 1999, 13, 24–25. [Google Scholar]
- D’Souza, C.; Apaolaza, V.; Hartmann, P.; Brouwer, A.R.; Nguyen, N. Consumer acceptance of irradiated food and information disclosure—A retail imperative. J. Retail. Consum. Serv. 2021, 63, 102699. [Google Scholar] [CrossRef]
- Diella, G.; Caggiano, G.; Ferrieri, F.; Ventrella, A.; Palma, M.; Napoli, C.; Rutigliano, S.; Lopuzzo, M.; Lovero, G.; Montagna, M.T. Aflatoxin contamination in nuts marketed in italy: Preliminary results. Ann. Ig. 2018, 30, 401–409. [Google Scholar]
- Ebrahimi, A.; Emadi, A.; Arabameri, M.; Jayedi, A.; Abdolshahi, A.; Yancheshmeh, B.S.; Shariatifar, N. The prevalence of aflatoxins in different nut samples: A global systematic review and probabilistic risk assessment. AIMS Agric. Food 2022, 7, 130–148. [Google Scholar] [CrossRef]
- Macri, A.M.; Pop, I.; Simeanu, D.; Toma, D.; Sandu, I.; Pavel, L.L.; Mintas, O.S. The occurrence of aflatoxins in nuts and dry nuts packed in four different plastic packaging from the romanian market. Microorganisms 2021, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Chiou, R.Y.; Lin, C.M.; Shyu, S.L. Property characterization of peanut kernels subjected to gamma irradiation and its effect on the outgrowth and aflatoxin production by Aspergillus parasiticus. J. Food Sci. 1990, 55, 210–213. [Google Scholar] [CrossRef]
- Aziz, N.H.; Moussa, L.A.A.; Far, F.M.E. Reduction of fungi and mycotoxins formation in seeds by gamma-radiation. J. Food Saf. 2004, 24, 109–127. [Google Scholar] [CrossRef]
- Prakash, A. Irradiation of nuts. In Food Irradiation Research and Technology, 2nd ed.; Blackwell Publishing Professional: Ames, IA, USA, 2012; pp. 317–336. [Google Scholar]
- Song, W.J.; Kim, Y.H.; Kang, D.H. Effect of gamma irradiation on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes on pistachios. Lett. Appl. Microbiol. 2019, 68, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; John, J.A. 9-oxidative rancidity in nuts. In Improving the Safety and Quality of Nuts; Harris, L.J., Ed.; Woodhead Publishing: Soston, UK, 2013; pp. 198–229. [Google Scholar]
- Yaacoub, R.; Saliba, R.; Nsouli, B.; Khalaf, G.; Birlouez-Aragon, I. Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds. J. Agric. Food. Chem. 2008, 56, 7082–7090. [Google Scholar] [CrossRef]
- O’Mahony, M.; Wong, S.Y.; Odbert, N. Initial sensory examination of the effect of postharvest irradiation on almonds. J. Ind. Irrad. Technol. 1985, 3, 135–140. [Google Scholar]
- Thomas, P. Radiation preservation of foods of plant origin. Part vi. Mushrooms, tomatoes, minor fruits and vegetables, dried fruits, and nuts. Crit. Rev. Food Sci. Nutr. 1988, 26, 313–358. [Google Scholar] [CrossRef]
- Wilson-Kakashita, G.; Gerdes, D.L.; Hall, W.R. The effect of gamma irradiation on the quality of english walnuts (Juglans regia). LWT 1995, 28, 17–20. [Google Scholar] [CrossRef]
- Mexis, S.F.; Kontominas, M.G. Effect of γ-irradiation on the physicochemical and sensory properties of cashew nuts (Anacardium occidentale L.). LWT 2009, 42, 1501–1507. [Google Scholar] [CrossRef]
- Taipina, M.S.; Lamardo, L.C.A.; Rodas, M.A.B.; del Mastro, N.L. The effects of gamma irradiation on the vitamin e content and sensory qualities of pecan nuts (Carya illinoensis). Radiat. Phys. Chem. 2009, 78, 611–613. [Google Scholar] [CrossRef]
- Gölge, E.; Ova, G. The effects of food irradiation on quality of pine nut kernels. Radiat. Phys. Chem. 2008, 77, 365–369. [Google Scholar] [CrossRef]
- Koç Güler, S.; Bostan, S.Z.; Çon, A.H. Effects of gamma irradiation on chemical and sensory characteristics of natural hazelnut kernels. Postharvest Biol. Technol. 2017, 123, 12–21. [Google Scholar] [CrossRef]
- Sánchez-Bel, P.; Egea, I.; Romojaro, F.; Martínez-Madrid, M.C. Sensorial and chemical quality of electron beam irradiated almonds (Prunus amygdalus). LWT 2008, 41, 442–449. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; Salvador, M.D.; Fregapane, G.; Collado-González, J.; Wojdyło, A.; López-Lluch, D.; Carbonell-Barrachina, Á.A. Functional and sensory properties of pistachio nuts as affected by cultivar. J. Sci. Food Agric. 2019, 99, 6696–6705. [Google Scholar] [CrossRef] [PubMed]
- Alinezhad, M.; Hojjati, M.; Barzegar, H.; Shahbazi, S.; Askari, H. Effect of gamma irradiation on the physicochemical properties of pistachio (Pistacia vera L.) nuts. J. Food Meas. Charact. 2021, 15, 199–209. [Google Scholar] [CrossRef]
- Frankel, E.N. Volatile lipid oxidation products. Prog. Lipid Res. 1983, 22, 1–33. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P.J.; Gilmore, B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017, 123, 308–324. [Google Scholar] [CrossRef]
- Misra, N.N.; Schlüter, O.; Cullen, P.J. Chapter 1—plasma in food and agriculture. In Cold Plasma in Food and Agriculture; Misra, N.N., Schlüter, O., Cullen, P.J., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 1–16. [Google Scholar]
- Mir, S.A.; Siddiqui, M.W.; Dar, B.N.; Shah, M.A.; Wani, M.H.; Roohinejad, S.; Annor, G.A.; Mallikarjunan, K.; Chin, C.F.; Ali, A. Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. J. Appl. Microbiol. 2020, 129, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Bora, J.; Khan, T.; Mahnot, N.K. Cold plasma treatment concerning quality and safety of food: A review. Curr. Res. Nutr. Food Sci. 2022, 10, 427–446. [Google Scholar] [CrossRef]
- Pignata, C.; D’Angelo, D.; Fea, E.; Gilli, G. A review on microbiological decontamination of fresh produce with nonthermal plasma. J. Appl. Microbiol. 2017, 122, 1438–1455. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Ruan, R.; Mok, C.K.; Huang, G.; Lin, X.; Chen, P. Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 2007, 72, M62–M66. [Google Scholar] [CrossRef] [PubMed]
- Hertwig, C.; Leslie, A.; Meneses, N.; Reineke, K.; Rauh, C.; Schlüter, O. Inactivation of Salmonella enteritidis pt30 on the surface of unpeeled almonds by cold plasma. Innov. Food Sci. Emerg. Technol. 2017, 44, 242–248. [Google Scholar] [CrossRef]
- Khalili, F.; Shokri, B.; Khani, M.-R.; Hasani, M.; Zandi, F.; Aliahmadi, A. A study of the effect of gliding arc non-thermal plasma on almonds decontamination. AIP Adv. 2018, 8, 105024. [Google Scholar] [CrossRef] [Green Version]
- Shirani, K.; Shahidi, F.; Mortazavi, S.A. Investigation of decontamination effect of argon cold plasma on physicochemical and sensory properties of almond slices. Int. J. Food Microbiol. 2020, 335, 108892. [Google Scholar] [CrossRef]
- Makari, M.; Hojjati, M.; Shahbazi, S.; Askari, H. Elimination of Aspergillus flavus from pistachio nuts with dielectric barrier discharge (dbd) cold plasma and its impacts on biochemical indices. J. Food Qual. 2021, 2021, 9968711. [Google Scholar] [CrossRef]
- Ghorashi, A.H.; Tasouji, M.A.R.; Kargarian, A. Optimum cold plasma generating device for treatment of Aspergillus flavus from nuts surface. J. Food Sci. Technol. 2020, 57, 3988–3994. [Google Scholar] [CrossRef]
- Tasouji, M.A.; Ghorashi, A.H.; Hamedmoosavian, M.T.; Mahmoudi, M.B. Inactivation of pistachio contaminant Aspergillus flavus by atmospheric pressure capacitive coupled plasma (ap-ccp). J. Microbiol. Biotechnol. Food Sci. 2018, 8, 668–671. [Google Scholar] [CrossRef]
- Pignata, C.; D’Angelo, D.; Basso, D.; Cavallero, M.C.; Beneventi, S.; Tartaro, D.; Meineri, V.; Gilli, G. Low-temperature, low-pressure gas plasma application on Aspergillus brasiliensis, Escherichia coli and pistachios. J. Appl. Microbiol. 2014, 116, 1137–1148. [Google Scholar] [CrossRef]
- Lin, C.-M.; Patel, A.K.; Chiu, Y.-C.; Hou, C.-Y.; Kuo, C.-H.; Dong, C.-D.; Chen, H.-L. The application of novel rotary plasma jets to inhibit the aflatoxin-producing Aspergillus flavus and the spoilage fungus, Aspergillus niger on peanuts. Innov. Food Sci. Emerg. Technol. 2022, 78, 102994. [Google Scholar] [CrossRef]
- Ahangari, M.; Ramezan, Y.; Khani, M.R. Effect of low pressure cold plasma treatment on microbial decontamination and physicochemical properties of dried walnut kernels (Juglans regia L.). J. Food Process Eng. 2021, 44, e13593. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Bravo, P.; Noguera-Artiaga, L.; Gómez-López, V.M.; Carbonell-Barrachina, Á.A.; Gabaldón, J.A.; Pérez-López, A.J. Impact of Non-Thermal Technologies on the Quality of Nuts: A Review. Foods 2022, 11, 3891. https://doi.org/10.3390/foods11233891
Sánchez-Bravo P, Noguera-Artiaga L, Gómez-López VM, Carbonell-Barrachina ÁA, Gabaldón JA, Pérez-López AJ. Impact of Non-Thermal Technologies on the Quality of Nuts: A Review. Foods. 2022; 11(23):3891. https://doi.org/10.3390/foods11233891
Chicago/Turabian StyleSánchez-Bravo, Paola, Luis Noguera-Artiaga, Vicente M. Gómez-López, Ángel A. Carbonell-Barrachina, José A. Gabaldón, and Antonio J. Pérez-López. 2022. "Impact of Non-Thermal Technologies on the Quality of Nuts: A Review" Foods 11, no. 23: 3891. https://doi.org/10.3390/foods11233891
APA StyleSánchez-Bravo, P., Noguera-Artiaga, L., Gómez-López, V. M., Carbonell-Barrachina, Á. A., Gabaldón, J. A., & Pérez-López, A. J. (2022). Impact of Non-Thermal Technologies on the Quality of Nuts: A Review. Foods, 11(23), 3891. https://doi.org/10.3390/foods11233891