Structural Characteristics of Rehmannia glutinosa Polysaccharides Treated Using Different Decolorization Processes and Their Antioxidant Effects in Intestinal Epithelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Products and Chemicals
2.2. Preparation of RGP
2.3. Molecular Properties of Polysaccharides
2.3.1. Chemical Composition Analysis
2.3.2. Composition of Monosaccharides
2.3.3. Mw Distribution
2.3.4. Zeta-Potential Analysis
2.4. Structural Properties of Polysaccharides
2.4.1. Fourier-Transform Infrared (FTIR) Spectroscopy Analysis
2.4.2. Scanning Electron Microscopy (SEM)
2.4.3. X-ray Diffraction (XRD) Analysis
2.4.4. Nuclear Magnetic Resonance Spectroscopy (NMR) Analysis
2.4.5. Thermogravimetric Analysis (TGA)
2.5. Antioxidant Capacity of RGP
2.5.1. DPPH Radical Scavenging Activity (DRSA)
2.5.2. ABTS Radical Scavenging Activity (ARSA)
2.5.3. Hydroxyl Radical (OH) Scavenging Activity (HRSA)
2.6. Protection from H2O2-Induced Oxidative Damage in IPEC-1 Cells
2.6.1. Cell Culture
2.6.2. Cell Viability Assay
2.6.3. Measurements of SOD, LDH, CAT, and MDA
2.6.4. Mitochondrial Membrane Potential (MMP) Assay
2.6.5. qRT-PCR Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preparation of RGP
3.2. MW
3.3. Monosaccharide Composition
3.4. Total Sugars, Glucuronic Acid and Sulfate Groups in RGP
3.5. Zeta-Potential Analysis
3.6. XRD Analysis
3.7. FTIR Spectroscopy Analysis
3.8. TGA
3.9. SEM
3.10. NMR Analysis
3.11. Antioxidant Capacity of RGP
3.12. Protection from H2O2-Induced Oxidative Damage in IPEC-1 Cells
3.12.1. Cytotoxicity Assay
3.12.2. Establishment of H2O2 Damage Model
3.12.3. Protective Effects of RGP against H2O2 Injury in IPEC-1 Cells
3.12.4. Determination of LDH Activity in Cell Culture Medium
3.12.5. Determination of Antioxidant Enzyme Activity
3.12.6. Determination of Intracellular Lipid Peroxidation
3.12.7. RGP Improves H2O2-Induced Mitochondrial Function in IPEC-1 Cells
3.12.8. RGP Inhibits Apoptosis and Regulates the Expression of Apoptosis-Related Genes
3.12.9. RGP Regulates the Contents of HO-1, NQO1, Keap1, and Nrf2 in H2O2-Damaged IPEC-1 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, Z.; Ma, L.; Xiang, X.; Tang, Z.; Guan, R.; Qu, Y. Protective effect of low molecular-weight seleno-aminopolysaccharides against H2O2-induecd oxidative stress in intestinal epithelial cells. Int. J. Biol. Macromol. 2018, 112, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; Alsalamat, H.A.; Bashatwah, R.M. Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J. Med. 2018, 50, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Swargiary, G.; Ralph, S.J. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2022, 62, 50–73. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Cai, Z.; Zhang, X.; Chen, Y.; Chang, X.; Wang, X.; Qin, C.; Yan, X.; Ma, X.; Zhang, J.; et al. The effects of oral Rehmannia glutinosa polysaccharide administration on immune responses, antioxidant activity and resistance against Aeromonas hydrophila in the common carp, Cyprinus carpio L. Front. Immunol. 2020, 11, 904. [Google Scholar] [CrossRef]
- Liu, C.; Ma, R.; Wang, L.; Zhu, R.; Liu, H.; Guo, Y.; Zhao, B.; Zhao, S.; Tang, J.; Li, Y.; et al. Rehmanniae radix in osteoporosis: A review of traditional chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. J. Ethnopharmacol. 2017, 198, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.R.; Li, H.; Albach, D.C.; Gotfredsen, C.H. Phytochemistry and molecular systematics of triaenophora rupestris and Oreosolen wattii (scrophulariaceae). Phytochemistry 2008, 69, 2162–2166. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, G.; Yan, J.; Li, K.; Bai, Z.; Cheng, W.; Huang, K. Rehmannia glutinosa (gaertn.) Dc. Polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. J. Ethnopharmacol. 2015, 164, 229–238. [Google Scholar] [CrossRef]
- Kwak, M.; Yu, K.; Lee, P.C.; Jin, J. Rehmannia glutinosa polysaccharide functions as a mucosal adjuvant to induce dendritic cell activation in mediastinal lymph node. Int. J. Biol. Macromol. 2018, 120, 1618–1623. [Google Scholar] [CrossRef]
- Wu, C.; Shan, J.; Feng, J.; Wang, J.; Qin, C.; Nie, G.; Ding, C. Effects of dietary radix rehmanniae preparata polysaccharides on the growth performance, immune response and disease resistance of Luciobarbus capito. Fish Shellfish Immun. 2019, 89, 641–646. [Google Scholar] [CrossRef]
- Chen, G.; Chen, R.; Chen, D.; Ye, H.; Hu, B.; Zeng, X.; Liu, Z. Tea polysaccharides as potential therapeutic options for metabolic diseases. J. Agr. Food Chem. 2019, 67, 2. [Google Scholar] [CrossRef]
- Mulinari Turin De Oliveira, N.; Barbosa Da Luz, B.; Schneider, V.S.; Barbosa Da Costa Filho, H.; Sérgio De Araujo Sousa, P.; Fernanda De Paula Werner, M.; Henrique Loiola Ponte De Souza, M.; Almeida Rocha, J.; Antonio Duarte Nicolau, L.; Mach Côrtes Cordeiro, L.; et al. Dietary polysaccharides from guavira pomace, a co-product from the fruit pulp industry, display therapeutic application in gut disorders. Food Res. Int. 2022, 156, 111291. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.J.; Draper, S.L.; Centanni, M.; Carnachan, S.M.; Tannock, G.W.; Sims, I.M. Characterization of polysaccharides from feijoa fruits (Acca sellowiana berg.) And their utilization as growth substrates by gut commensal bacteroides species. J. Agr. Food Chem. 2018, 66, 13277–13284. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Matsumoto, A.; Toida, T.; Oikawa, T.; Ito, K.; Nanba, H. Characterization and antitumor effect of a novel polysaccharide from Grifola frondosa. J. Agr. Food Chem. 2009, 57, 10143–10149. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, P.; Ahrazem, O.; Leal, J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agr. Food Chem. 2002, 50, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Su, T.; Liu, Y.; Hou, K.; Chen, C.; Wu, W. Extraction, purification and antioxidation of a polysaccharide from Fritillaria unibracteata var. Wabuensis. Int. J. Biol. Macromol. 2018, 112, 1073–1083. [Google Scholar] [CrossRef]
- Shao, L.; Sun, Y.; Liang, J.; Li, M.; Li, X. Decolorization affects the structural characteristics and antioxidant activity of polysaccharides from thesium chinense turcz: Comparison of activated carbon and hydrogen peroxide decolorization. Int. J. Biol. Macromol. 2020, 155, 1084–1091. [Google Scholar] [CrossRef]
- Xie, J.; Shen, M.; Nie, S.; Li, C.; Xie, M. Decolorization of polysaccharides solution from Cyclocarya paliurus (batal.) Iljinskaja using ultrasound/H2O2 process. Carbohyd. Polym. 2011, 84, 255–261. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, H.; Li, Y.; Wu, M.; Yu, M.; Sun, X. Optimized purification process of polysaccharides from Carex meyeriana kunth by macroporous resin, its characterization and immunomodulatory activity. Int. J. Biol. Macromol. 2019, 132, 76–86. [Google Scholar] [CrossRef]
- Zhang, Y.; Campbell, R.; Drake, M.; Zhong, Q. Decolorization of cheddar cheese whey by activated carbon. J. Dairy Sci. 2015, 98, 2982–2991. [Google Scholar] [CrossRef] [Green Version]
- Belwal, T.; Li, L.; Yanqun, X.; Cravotto, G.; Luo, Z. Ultrasonic-assisted modifications of macroporous resin to improve anthocyanin purification from a Pyrus communis var. Starkrimson extract. Ultrason. Sonochem. 2020, 62, 104853. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, Y.; Cheung, P.C.; You, L.; Liao, L.; Pedisić, S.; Kulikouskaya, V. Structural characteristics and anti-inflammatory activity of uv/H2O2-treated algal sulfated polysaccharide from Gracilaria lemaneiformis. Food Chem. Toxicol. 2021, 152, 112157. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Kumar, M.; Waghmare, R.; Suhag, R.; Gupta, O.P.; Lorenzo, J.M.; Prakash, S.; Radha; Rais, N.; Sampathrajan, V.; et al. Moringa (Moringa oleifera Lam.) Polysaccharides: Extraction, characterization, bioactivities, and industrial application. Int. J. Biol. Macromol. 2022, 209, 763–778. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chen, F.; Yang, W.; Huang, H. Preparation, deproteinization and comparison of bioactive polysaccharides. Trends Food Sci. Tech. 2021, 109, 564–568. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Pu, Q.; Qiu, H.; Di, D.; Cao, Y. A polysaccharide from Lycium barbarum L.: Structure and protective effects against oxidative stress and high-glucose-induced apoptosis in arpe-19 cells. Int. J. Biol. Macromol. 2022, 201, 111–120. [Google Scholar] [CrossRef]
- Nataraj, A.; Govindan, S.; Ramani, P.; Subbaiah, K.A.; Sathianarayanan, S.; Venkidasamy, B.; Thiruvengadam, M.; Rebezov, M.; Shariati, M.A.; Lorenzo, J.M.; et al. Antioxidant, anti-tumour, and anticoagulant activities of polysaccharide from Calocybe indica (apk2). Antioxidants 2022, 11, 1694. [Google Scholar] [CrossRef]
- Khan, B.M.; Qiu, H.; Wang, X.; Liu, Z.; Zhang, J.; Guo, Y.; Chen, W.; Liu, Y.; Cheong, K. Physicochemical characterization of Gracilaria chouae sulfated polysaccharides and their antioxidant potential. Int. J. Biol. Macromol. 2019, 134, 255–261. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, Z.; Li, L.; Vidyarthi, S.K.; Zheng, Z.; Zhang, R. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from Ziziphus jujuba cv. Hamidazao: A comparison. Carbohyd. Polym. 2021, 261, 117879. [Google Scholar] [CrossRef]
- Liu, H.; Fang, Y.; Li, Y.; Ma, L.; Wang, Q.; Xiao, G.; Zou, C. Characterization of pcs-2a, a polysaccharide derived from chestnut shell, and its protective effects against H2O2-induced liver injury in hybrid grouper. Int. J. Biol. Macromol. 2021, 193, 814–822. [Google Scholar] [CrossRef]
- Jridi, M.; Mezhoudi, M.; Abdelhedi, O.; Boughriba, S.; Elfalleh, W.; Souissi, N.; Nasri, R.; Nasri, M. Bioactive potential and structural characterization of sulfated polysaccharides from bullet tuna (Auxis rochei) by-products. Carbohyd. Polym. 2018, 194, 319–327. [Google Scholar] [CrossRef]
- Mohammed, J.K.; Mahdi, A.A.; Ahmed, M.I.; Ma, M.; Wang, H. Preparation, deproteinization, characterization, and antioxidant activity of polysaccharide from Medemia argun fruit. Int. J. Biol. Macromol. 2020, 155, 919–926. [Google Scholar] [CrossRef]
- Qiao, H.; Shao, H.; Zheng, X.; Liu, J.; Liu, J.; Huang, J.; Zhang, C.; Liu, Z.; Wang, J.; Guan, W. Modification of sweet potato (Ipomoea batatas lam.) Residues soluble dietary fiber following twin-screw extrusion. Food Chem. 2021, 335, 127522. [Google Scholar] [CrossRef] [PubMed]
- López-Legarda, X.; Rostro-Alanis, M.; Parra-Saldivar, R.; Villa-Pulgarín, J.A.; Segura-Sánchez, F. Submerged cultivation, characterization and in vitro antitumor activity of polysaccharides from Schizophyllum radiatum. Int. J. Biol. Macromol. 2021, 186, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Rincón, E.; Espinosa, E.; García-Domínguez, M.T.; Balu, A.M.; Vilaplana, F.; Serrano, L.; Jiménez-Quero, A. Bioactive pectic polysaccharides from bay tree pruning waste: Sequential subcritical water extraction and application in active food packaging. Carbohyd. Polym. 2021, 272, 118477. [Google Scholar] [CrossRef]
- Yi, J.; Li, X.; Wang, S.; Wu, T.; Liu, P. Steam explosion pretreatment of Achyranthis bidentatae radix: Modified polysaccharide and its antioxidant activities. Food Chem. 2022, 375, 131746. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Cerqueira, M.A.; Teixeira, J.A.; Mussatto, S.I. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohyd. Polym. 2015, 127, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Yang, J.; Wang, Z.; Lu, M.; Yue, K. Modified citrus pectins by uv/H2O2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohyd. Polym. 2020, 247, 116742. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kusche-Gullberg, M. Heparan sulfate: Biosynthesis, structure, and function. Int. Rev. Cel. Mol. Bio. 2016, 325, 215–273. [Google Scholar]
- Yao, W.; Liu, M.; Chen, X.; You, L.; Ma, Y.; Hileuskaya, K. Effects of uv/H2O2 degradation and step gradient ethanol precipitation on Sargassum fusiforme polysaccharides: Physicochemical characterization and protective effects against intestinal epithelial injury. Food Res. Int. 2022, 155, 111093. [Google Scholar] [CrossRef]
- Chen, X.; You, L.; Ma, Y.; Zhao, Z.; Kulikouskaya, V. Influence of uv/H2O2 treatment on polysaccharides from Sargassum fusiforme: Physicochemical properties and raw 264.7 cells responses. Food Chem. Toxicol. 2021, 153, 112246. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Yang, X.; Li, L.; Qi, B.; Hu, X.; Ma, H.; Li, C.; Pan, C. Degradation of sulphated polysaccharides from Grateloupia livida and antioxidant activity of the degraded components. Int. J. Biol. Macromol. 2020, 156, 660–668. [Google Scholar] [CrossRef]
- Chen, B.; Shi, M.; Cui, S.; Hao, S.; Hider, R.C.; Zhou, T. Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation. Int. J. Biol. Macromol. 2016, 92, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Mcconaughy, S.D.; Stroud, P.A.; Boudreaux, B.; Hester, R.D.; Mccormick, C.L. Structural characterization and solution properties of a galacturonate polysaccharide derived from Aloe vera capable of in situ gelation. Biomacromolecules 2008, 9, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Koocheki, A.; Hesarinejad, M.A.; Mozafari, M.R. Lepidium perfoliatum seed gum: Investigation of monosaccharide composition, antioxidant activity and rheological behavior in presence of salts. Chem. Biol. Technol. Agric. 2022, 9, 61. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, G.; Guo, Y.; Wang, Z.; Song, S.; Zhu, B.; Zhao, L.; Jiang, J. Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera. Int. J. Biol. Macromol. 2018, 108, 314–323. [Google Scholar] [CrossRef]
- Hu, W.; Chen, S.; Wu, D.; Zheng, J.; Ye, X. Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system: Chemical and microstructural analysis. Ultrason. Sonochem. 2019, 58, 104576. [Google Scholar] [CrossRef]
- Souza, B.W.S.; Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Martins, J.T.; Teixeira, J.A.; Coimbra, M.A.; Vicente, A.A. Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloid. 2012, 27, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Chokboribal, J.; Tachaboonyakiat, W.; Sangvanich, P.; Ruangpornvisuti, V.; Jettanacheawchankit, S.; Thunyakitpisal, P. Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera. Carbohyd. Polym. 2015, 133, 556–566. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Samarakoon, K.W.; Lee, W.W.; Kim, H.; Kim, E.; Gunasekara, U.K.D.S.; Abeytunga, D.T.U.; Nanayakkara, C.; de Silva, E.D.; et al. Ftir characterization and antioxidant activity of water soluble crude polysaccharides of sri lankan marine algae. ALGAE 2017, 32, 75–86. [Google Scholar] [CrossRef] [Green Version]
- López-Legarda, X.; Arboleda-Echavarría, C.; Parra-Saldívar, R.; Rostro-Alanis, M.; Alzate, J.F.; Villa-Pulgarín, J.A.; Segura-Sánchez, F. Biotechnological production, characterization and in vitro antitumor activity of polysaccharides from a native strain of Lentinus crinitus. Int. J. Biol. Macromol. 2020, 164, 3133–3144. [Google Scholar] [CrossRef]
- Chaouch, M.A.; Hammi, K.M.; Dhahri, M.; Mansour, M.B.; Maaroufi, M.R.; Le Cerf, D.; Majdoub, H. Access to new anticoagulant by sulfation of pectin-like polysaccharides isolated from opuntia Ficus indica cladodes. Int. J. Biol. Macromol. 2018, 120, 1794–1800. [Google Scholar] [CrossRef]
- Prado-Fernández, J.; Rodríguez-Vázquez, J.A.; Tojo, E.; Andrade, J.M. Quantitation of κ-, ι- and λ-carrageenans by mid-infrared spectroscopy and pls regression. Anal. Chim. Acta 2003, 480, 23–37. [Google Scholar] [CrossRef]
- Xu, C.; Leppänen, A.; Eklund, P.; Holmlund, P.; Sjöholm, R.; Sundberg, K.; Willför, S. Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohyd. Res. 2010, 345, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.J.; Turvey, J.R. Sulphates of monosaccharides and derivatives: Part viii. Infrared spectra and optical rotations of some glycoside sulphates. Carbohyd. Res. 1970, 15, 51–56. [Google Scholar] [CrossRef]
- Figueroa, F.A.; Abdala-Díaz, R.T.; Pérez, C.; Casas-Arrojo, V.; Nesic, A.; Tapia, C.; Durán, C.; Valdes, O.; Parra, C.; Bravo-Arrepol, G.; et al. Sulfated polysaccharide extracted from the green algae Codium bernabei: Physicochemical characterization and antioxidant, anticoagulant and antitumor activity. Mar. Drugs 2022, 20, 458. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, V. Designing galacturonic acid/arabinogalactan crosslinked poly(vinyl pyrrolidone)- co-poly(2-acrylamido-2-methylpropane sulfonic acid) polymers: Synthesis, characterization and drug delivery application. Polymer 2016, 91, 50–61. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Y.; Li, R.; Li, S.; Zhang, M.; He, C.; Chen, H. The structural characteristic of acidic-hydrolyzed corn silk polysaccharides and its protection on the H2O2-injured intestinal epithelial cells. Food Chem. 2021, 356, 129691. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, J.; Wang, B.; Cheng, Z.; Xu, J.; Gao, W.; Chen, K. Structural characterization and antioxidant activities of bletilla striata polysaccharide extracted by different methods. Carbohyd. Polym. 2021, 266, 118149. [Google Scholar] [CrossRef]
- Su, Y.; Li, L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohyd. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Guo, Q.; Cui, S.W.; Wang, Q.; Hu, X.; Kang, J.; Yada, R.Y. Structural characterization of a low-molecular-weight heteropolysaccharide (glucomannan) isolated from Artemisia sphaerocephala krasch. Carbohyd. Res. 2012, 350, 31–39. [Google Scholar] [CrossRef]
- Ding, S.; Yan, Z.; Liu, H.; Chen, P.; Shi, S.; Chang, M. Structural characterization and antitumor activity of a polysaccharide extracted from perilla frutescens var. Frutescens. Ind. Crop. Prod. 2022, 187, 115334. [Google Scholar] [CrossRef]
- Chi, A.; Li, H.; Kang, C.; Guo, H.; Wang, Y.; Guo, F.; Tang, L. Anti-fatigue activity of a novel polysaccharide conjugates from ziyang green tea. Int. J. Biol. Macromol. 2015, 80, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, X.; Xie, H.; Li, X.; Shi, L. Structural characterization and antitumor activity of a polysaccharide from Ramulus mori. Carbohyd. Polym. 2018, 190, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gu, L.; Zhang, G.; Liu, H.; Zhang, Y.; Zhang, K. Structural characterization and antioxidant activity of polysaccharides extracted from chinese yam by a cellulase-assisted method. Process Biochem. 2022, 121, 178–187. [Google Scholar] [CrossRef]
- Huo, J.; Wu, J.; Huang, M.; Zhao, M.; Sun, W.; Sun, X.; Zheng, F. Structural characterization and immuno-stimulating activities of a novel polysaccharide from huangshui, a byproduct of chinese baijiu. Food Res. Int. 2020, 136, 109493. [Google Scholar] [CrossRef]
- Li, Y.; Lin, D.; Jiao, B.; Xu, C.; Qin, J.; Ye, G.; Su, G. Purification, antioxidant and hepatoprotective activities of polysaccharide from Cissus pteroclada hayata. Int. J. Biol. Macromol. 2015, 77, 307–313. [Google Scholar] [CrossRef]
- Buathongjan, C.; Israkarn, K.; Sangwan, W.; Outrequin, T.; Gamonpilas, C.; Methacanon, P. Studies on chemical composition, rheological and antioxidant properties of pectin isolated from riang (Parkia timoriana (dc.) Merr.) Pod. Int. J. Biol. Macromol. 2020, 164, 4575–4582. [Google Scholar] [CrossRef]
- Ge, Q.; Mao, J.; Guo, X.; Zhou, Y.; Gong, J.; Mao, S. Composition and antioxidant activities of four polysaccharides extracted from Herba lophatheri. Int. J. Biol. Macromol. 2013, 60, 437–441. [Google Scholar] [CrossRef]
- Fimbres-Olivarria, D.; Carvajal-Millan, E.; Lopez-Elias, J.A.; Martinez-Robinson, K.G.; Miranda-Baeza, A.; Martinez-Cordova, L.R.; Enriquez-Ocaa, F.; Valdez-Holguin, J.E. Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp. Food Hydrocolloid. 2018, 75, 229–236. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Li, J.; Jiang, T.; Chen, H.; Li, P.; Guan, Y. Degradation by vc—H2O2,characterization and antioxidant activity of polysaccharides Frompassiflora edulis peel. J. Food Process. Pres. 2021, 45, e16074. [Google Scholar] [CrossRef]
- Fernandesnegreiros, M.M.; Batista, L.A.N.C.; Silva, V.R.L.; Araujo, S.D.; Paiva, A.A.O.; Paiva, W.S.; Machado, R.I.A.; Sousa, J.F.L.D.; de Lima, P.D.; Vitoriano, J.D.O.; et al. Gallic acid-laminarin conjugate is a better antioxidant than sulfated or carboxylated laminarin. Antioxidants 2020, 9, 1192. [Google Scholar]
- Gülden, M.; Jess, A.; Kammann, J.; Maser, E.; Seibert, H. Cytotoxic potency of H2O2 in cell cultures: Impact of cell concentration and exposure time. Free Radic. Biol. Med. 2010, 49, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Ullah, F.; Mehmood, S.; Fahad, S.; Ahmad Rahi, A.; Althobaiti, F.; Dessoky, E.S.; Saud, S.; Danish, S.; Datta, R. Antimicrobial, antioxidant and cytotoxic properties of Chenopodium glaucum L. PLoS ONE 2021, 16, e255502. [Google Scholar] [CrossRef] [PubMed]
- Van Wilpe, S.; Koornstra, R.; Den Brok, M.; De Groot, J.W.; Blank, C.; De Vries, J.; Gerritsen, W.; Mehra, N. Lactate dehydrogenase: A marker of diminished antitumor immunity. Oncoimmunology 2020, 9, 1731942. [Google Scholar] [CrossRef] [Green Version]
- Seto, S.W.; Chang, D.; Ko, W.M.; Zhou, X.; Kiat, H.; Bensoussan, A.; Lee, S.M.Y.; Hoi, M.P.M.; Steiner, G.Z.; Liu, J. Sailuotong prevents hydrogen peroxide (H2O2)-induced injury in ea.hy926 cells. Int. J. Mol. Sci. 2017, 18, 95. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Huang, Z.; Qin, L.; Yu, Q.; Chen, Y.; Zhu, H.; Xie, J. Effects of sulfation and carboxymethylation on cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. Int. J. Biol. Macromol. 2022, 204, 103–115. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, S.; Li, Y.; Wang, H.; Shi, Y.; Zhang, L.; Tu, Z. Protective effect of antioxidant peptides from grass carp scale gelatin on the H2O2-mediated oxidative injured hepg2 cells. Food Chem. 2022, 373, 131539. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Chen, L.; Chen, W.; Zhao, L.; Lu, Q.; Liu, R. Protective effect of procyanidin a-type dimers against H2O2-induced oxidative stress in prostate du145 cells through the mapks signaling pathway. Life Sci. 2021, 266, 118908. [Google Scholar] [CrossRef]
- Zhuang, C.; Xu, N.; Gao, G.; Ni, S.; Miao, K.; Li, C.; Wang, L.; Xie, H. Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro. Int. J. Biol. Macromol. 2016, 87, 322–328. [Google Scholar] [CrossRef]
- Huang, L.; Huang, M.; Shen, M.; Wen, P.; Wu, T.; Hong, Y.; Yu, Q.; Chen, Y.; Xie, J. Sulfated modification enhanced the antioxidant activity of mesona chinensis benth polysaccharide and its protective effect on cellular oxidative stress. Int. J. Biol. Macromol. 2019, 136, 1000–1006. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Ghosal, I.; Das, D.; Chakraborty, S.B. Melatonin ameliorates H2O2-induced oxidative stress through modulation of erk/akt/nfkb pathway. Biol. Res. 2018, 51, 17. [Google Scholar] [CrossRef]
- Garcia, Y.J.; Rodríguez-Malaver, A.J.; Peñaloza, N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J. Neurosci. Meth. 2005, 144, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Li, K.; Hu, Y.; Yu, M.; Qu, J.; Xu, X. Optimization of selenizing conditions for seleno-lentinan and its characteristics. Int. J. Biol. Macromol. 2015, 81, 249–258. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Ji, H.; Sun, N.; Feng, Y. A cold-water soluble polysaccharide isolated from Grifola frondosa induces the apoptosis of hepg2 cells through mitochondrial passway. Int. J. Biol. Macromol. 2019, 125, 1232–1241. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Shen, M.; Chen, Y.; Yu, Q.; Yang, J.; Xie, J. Combined rna-seq and molecular biology technology revealed the protective effect of cyclocarya paliurus polysaccharide on H2O2-induced oxidative damage in l02 cells thought regulating mitochondrial function, oxidative stress and pi3k/akt and mapk signaling pathways. Food Res. Int. 2022, 155, 111080. [Google Scholar] [PubMed]
- Sharma, V.; Pathak, K. Liquisolid system of paclitaxel using modified polysaccharides: In vitro cytotoxicity, apoptosis study, cell cycle analysis, in vitro mitochondrial membrane potential assessment, and pharmacokinetics. Int. J. Biol. Macromol. 2019, 137, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.G.; Cullen, S.P.; Sheridan, C.; Lüthi, A.U.; Gerner, C.; Martin, S.J. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Natl. Acad. Sci. USA 2008, 105, 12815–12819. [Google Scholar] [CrossRef] [Green Version]
- Suresh, K.; Carino, K.; Johnston, L.; Servinsky, L.; Machamer, C.E.; Kolb, T.M.; Lam, H.; Dudek, S.M.; An, S.S.; Rane, M.J.; et al. A nonapoptotic endothelial barrier-protective role for caspase-3. Am. J. Physiol.. Lung Cell. Mol. Physiol. 2019, 316, L1118–L1126. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Abrams, J.M.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; Dawson, T.M.; Dawson, V.L.; El-Deiry, W.S.; Fulda, S.; et al. Molecular definitions of cell death subroutines: Recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012, 19, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Lu, Y.; Hu, D.; Mo, J.; Ni, J. Black mulberry (Morus nigra L.) Polysaccharide ameliorates palmitate-induced lipotoxicity in hepatocytes by activating nrf2 signaling pathway. Int. J. Biol. Macromol. 2021, 172, 394–407. [Google Scholar] [CrossRef]
- Liu, H.; Fang, Y.; Zou, C. Pomelo polysaccharide extract inhibits oxidative stress, inflammation, and mitochondrial apoptosis of Epinephelus coioides. Aquaculture 2021, 544, 737040. [Google Scholar] [CrossRef]
Parameters | RGP−1−A | RGP−2−A |
---|---|---|
Molecular weight, Mw (Da) | 18,964 | 3305 |
Molecular weight, Mn (Da) | 6090 | 2475 |
Polydispersity (Mw/Mn) | 3.11382 | 1.33534 |
Monosaccharide Composition (mol %) | ||
---|---|---|
Glucose | 45.335 | 38.006 |
Galactose | 25.873 | 56.461 |
Arabinose | 10.285 | 2.470 |
Galacturonic acid | 13.522 | 1.196 |
Rhamnose | 2.901 | 0.152 |
Mannose | 0.099 | 0.227 |
Ribose | 0.036 | 0.005 |
Xylose | 0.566 | 0 |
Fucose | 0.521 | 0.809 |
Glucuronic acid | 0.753 | 0.675 |
N-acetyl-glucosamine | 0.110 | 0 |
Parameters | RGP−1−A | RGP−2−A |
---|---|---|
Total sugar (%) | 78.24 ± 0.52 | 81.54 ± 0.79 |
Sulfate content (%) | 11.83 ± 0.80 | 8.56 ± 1.20 |
Galacturonic acid (%) | 19.02 ± 0.42 | 1.1 ± 0.27 |
Zeta-potential (mV) | −15.35 ± 0.45 | −8.76 ± 0.19 |
RGP−1−A | RGP−2−A | Functional Group | Reference |
---|---|---|---|
3390 | 3370 | hydroxyl group stretching vibration | [18] |
2940 | 2930 | hydroxyl group stretching vibrations, C−H stretching and bending vibrations | [36] |
1740 | NF | stretching vibration of the carbonyl group in carboxylic acid groups (C=O) | [48,49] |
1620 | 1610 | asymmetric stretching vibration of C=O | [50] |
1430 | 1410 | the vibrations of C−H/CH2 group | [51] |
1360 | 1370 | asymmetrical S=O stretching vibration | [47,51,52] |
1210 | 1240 | the stretching vibration of C−O−C or C−OH | [53] |
1140 | 1140 | asymmetrical C−O−S stretching vibration | [22,47] |
1090, 1030 | 1080 | pyranose rings | [18,52] |
886 | 875, 834 | C−O−SO3 group | [22,47,52] |
764, 701 | 796, 692 | C−O−C bending vibrations in glycosidic bonds | [49] |
534 | NF | the characteristic bands of sulfuric acid ester | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Li, Z.; Gao, R.; Zhao, T.; Luo, D.; Yu, Z.; Zhang, S.; Qi, C.; Wang, Y.; Qiao, H.; et al. Structural Characteristics of Rehmannia glutinosa Polysaccharides Treated Using Different Decolorization Processes and Their Antioxidant Effects in Intestinal Epithelial Cells. Foods 2022, 11, 3449. https://doi.org/10.3390/foods11213449
Ren H, Li Z, Gao R, Zhao T, Luo D, Yu Z, Zhang S, Qi C, Wang Y, Qiao H, et al. Structural Characteristics of Rehmannia glutinosa Polysaccharides Treated Using Different Decolorization Processes and Their Antioxidant Effects in Intestinal Epithelial Cells. Foods. 2022; 11(21):3449. https://doi.org/10.3390/foods11213449
Chicago/Turabian StyleRen, Heng, Zhongyuan Li, Rui Gao, Tongxi Zhao, Dan Luo, Zihao Yu, Shuang Zhang, Chen Qi, Yaqi Wang, Hanzhen Qiao, and et al. 2022. "Structural Characteristics of Rehmannia glutinosa Polysaccharides Treated Using Different Decolorization Processes and Their Antioxidant Effects in Intestinal Epithelial Cells" Foods 11, no. 21: 3449. https://doi.org/10.3390/foods11213449
APA StyleRen, H., Li, Z., Gao, R., Zhao, T., Luo, D., Yu, Z., Zhang, S., Qi, C., Wang, Y., Qiao, H., Cui, Y., Gan, L., Wang, P., & Wang, J. (2022). Structural Characteristics of Rehmannia glutinosa Polysaccharides Treated Using Different Decolorization Processes and Their Antioxidant Effects in Intestinal Epithelial Cells. Foods, 11(21), 3449. https://doi.org/10.3390/foods11213449