Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Standards
2.2. Raw Materials
2.3. Dietary Fibre
2.4. Volatile Compounds
2.5. Polyphenol Extraction
2.6. HPLC-DAD-MS/MS Analysis
2.7. Total Phenolic Content (TPC)
2.8. Antioxidant Capacity
2.9. Statistical Analysis
3. Results
3.1. Dietary Fibre Profile
3.2. Volatile Metabolites
3.3. Phenolic Compounds
3.4. Total Phenolic Content and Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Coffee Organization (ICO). Statistics. Trade Statistics Tables. World Coffee Consumption. Available online: https://www.ico.org/prices/po-production.pdf (accessed on 2 September 2022).
- Illy, A.; Viani, R. Espresso coffee. In The Science of Quality, 2nd ed.; Elsevier: Boston, CA, USA, 2005; pp. 21–76. [Google Scholar]
- Borém, F.M.; Isquierdo, E.P.; Alves, G.E.; Ribeiro, D.E.; Siqueira, V.C.; da Silva Taveira, J.H. Quality of natural coffee dried under different temperatures and drying rates. Coffee Sci. 2018, 13, 159–167. [Google Scholar] [CrossRef]
- De Oliveira, P.D.; Biaggioni, M.A.M.; Borém, F.M.; Isquierdo, E.P.; de Oliveira, V.D.M. Quality of natural and pulped coffee as a function of temperature changes during mechanical drying. Coffee Sci. 2018, 13, 415–425. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P. Coffea canephora silverskin from different geographical origins: A comparative study. Sci. Total Environ. 2018, 645, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 30, 28–35. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, S.T.; Iriondo-DeHond, A.; Herrera, T.; Lopez-Tofiño, Y.; Galvez-Robleño, C.; Prodanov, M.; Velazquez-Escobar, F.; Abalo, R.; Del Castillo, M.D. An assessment of the bioactivity of coffee silverskin melanoidins. Foods 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Iriondo-DeHond, A.; Aparicio García, N.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Velázquez Escobar, F.; Blanch, G.P.; San Andres, M.I.; Sanchez-Fortun, S.; del Castillo, M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, R.C.; Esposito, F.; Napolitano, A.; Ritieni, A.; Fogliano, V. Characterization of a new potential functional ingredient: Coffee silverskin. J. Agric. Food Chem. 2004, 52, 1338–1343. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Inter. 2014, 61, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Toschi, T.G.; Cardenia, V.; Bonaga, G.; Mandrioli, M.; Rodriguez-Estrada, M.T. Coffee silverskin: Characterization, possible uses, and safety aspects. J. Agric. Food Chem. 2014, 62, 10836–10844. [Google Scholar] [CrossRef]
- Del Castillo, M.D.; Fernandez-Gomez, B.; Martinez-Saez, N.; Iriondo-DeHond, A.; Mesa, M.D. Coffee by-products. In Coffee: Production, Quality, and Chemistry, 1st ed.; Farah, A., Ed.; RCS: Croydon, UK, 2019; pp. 309–334. [Google Scholar]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef]
- Bresciani, L.; Calani, L.; Bruni, R.; Brighenti, F.; Del Rio, D. Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res. Int. 2014, 61, 196–201. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Sánchez, D.A.; Anzola, V.C. Chemical characterization of the coffee silverskin (Coffea Arabica) in varieties colombia and caturra. Rev. Colomb. Quim. 2014, 41, 211–226. [Google Scholar]
- Ribeiro, J.S.; Augusto, F.; Salva, T.J.G.; Ferreira, M.M.C. Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics. Talanta 2012, 101, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Serna, E.; Martinez-Saez, N.; Mesias, M.; Morales, F.J.; Castillo, M.D.D. Use of coffee silverskin and stevia to improve the formulation of biscuits. Pol. J. Food Nutr. Sci. 2014, 64, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Ateş, G.; Elmac, Y. Physical, chemical and sensory characteristics of fiber-enriched cakes prepared with coffee silverskin as wheat flour substitution. J. Food Meas. Charact. 2019, 13, 755–763. [Google Scholar] [CrossRef]
- Bertolino, M.; Barbosa-Pereira, L.; Ghirardello, D.; Botta, C.; Rolle, L.; Guglielmetti, A.; Borotto Dalla Vecchia, S.; Zeppa, G. Coffee silverskin as nutraceutical ingredient in yogurt: Its effect on functional properties and its bioaccessibility. J. Sci. Food Agric. 2019, 99, 4267–4275. [Google Scholar] [CrossRef]
- Gocmen, D.; Sahan, Y.; Yildiz, E.; Coskun, M.; Aroufai, I.A. Use of coffee silverskin to improve the functional properties of cookies. J. Food Sci. Technol. 2019, 56, 2979–2988. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem. 2012, 135, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT Food Sci. Technol. 2013, 50, 599–606. [Google Scholar] [CrossRef]
- Guglielmetti, A.; Fernandez-Gomez, B.; Zeppa, G.; Del Castillo, M.D. Nutritional quality, potential health promoting properties and sensory perception of an improved gluten-free bread formulation containing inulin, rice protein and bioactive compounds extracted from coffee byproducts. Pol. J. Food Nutr. Sci. 2019, 69, 157–166. [Google Scholar] [CrossRef]
- Iriondo-Dehond, A.; Rios, M.B.; Herrera, T.; Rodriguez-Bertos, A.; Nuñez, F.; Andres, M.I.S.; Sanchez-Fortun, S.; Del Castillo, M.D. Coffee silverskin extract: Nutritional value, safety and effect on key biological functions. Nutrients 2019, 11, 2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Saez, N.; Ullate, M.; Martin-Cabrejas, M.A.; Martorell, P.; Genovés, S.; Ramon, D.; Del Castillo, M.D. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chem. 2014, 150, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Farah, A. Coffee Constituents. In Coffee: Emerging Health Effects and Disease Prevention, 1st ed.; Chu, Y.F., Ed.; Wiley—Blackwell Publishing Ltd.: New Delhi, India, 2012; pp. 21–58. [Google Scholar]
- Lee, L.W.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 2015, 185, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Nebesny, E.; Budryn, G.; Kula, J.; Majda, T. The effect of roasting method on headspace composition of robusta coffee bean aroma. Eur. Food Res. Technol. 2007, 225, 9–19. [Google Scholar] [CrossRef]
- Baggenstoss, J.; Poisson, L.; Kaegi, R.; Perren, R.; Escher, F. Coffee roasting and aroma formation: Application of different time-tempertaure conditions. J. Agric. Food Chem. 2008, 56, 5836–5846. [Google Scholar] [CrossRef]
- Petisca, C.; Pérez-Palacios, T.; Farah, A.; Ferreira, I. Furans and other volatile compounds in ground roasted espresso using headspace solid-phase microextraction: Effect of roasting speed. Food Bioprod. Process. 2013, 91, 233–241. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Moon, J.K.; Yoo, H.S.; Shibamoto, T. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: Correlation with coffee acidity. J. Agric. Food Chem. 2009, 57, 5365–5369. [Google Scholar] [CrossRef]
- Król, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Europ. Food Res. Technol. 2020, 246, 33–39. [Google Scholar] [CrossRef]
- AOAC Official Method 991. Total, soluble and insoluble dietary fiber in foods. In AOAC Official Methods of Analysis, 16th ed.; Cunniff, P., Ed.; AOAC International: Gaithersburg, MD, USA, 1999; pp. 7–9. [Google Scholar]
- Ruosi, M.R.; Cordero, C.; Cagliero, C.; Rubiolo, P.; Bicchi, C.; Sgorbini, B.; Liberto, E. A further tool to monitor the coffee roasting process: Aroma composition and chemical indices. J. Agric. Food Chem. 2012, 60, 11283–11291. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C.; Ruosi, M.R.; Cagliero, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B. Quantitative analysis of volatiles from solid matrices of vegetable origin by high concentration capacity headspace techniques: Determination of furan in roasted coffee. J. Chromatogr. A 2011, 1218, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Belviso, S.; Ghirardello, D.; Rantsiou, K.; Giordano, M.; Bertolino, M.; Borgogna, D.; Cavallero, M.C.; Dal Bello, B.; Cena, C.; Rolle, L.; et al. Phytochemical and microbiological stability of spent espresso coffee grounds in capsules. Food Res. Int. 2014, 61, 93–99. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic—Phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Von Gadow, A.; Joubert, E.; Hansamann, C.F. Comparison of antioxidant activity of aspalathin with that of other plant phenols of Rooibosed tea (Aspalathus linearis), α-tocopherol, BHT and BHA. J. Agric. Food Chem. 1997, 45, 632–648. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Pastoriza, S.; Rufián-Henares, J.A. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci. Technol. 2015, 61, 12–18. [Google Scholar] [CrossRef]
- Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee silver skin: Chemical characterization with special consideration of dietary fiber and heat-induced contaminants. Foods 2021, 10, 1705. [Google Scholar] [CrossRef]
- Angeloni, S.; Scortichini, S.; Fiorini, D.; Sagratini, G.; Vittori, S.; Neiens, S.D.; Steinhaus, M.; Zheljazkov, V.D.; Maggi, F.; Caprioli, G. Characterization of odour-active compounds, polyphenols and fatty acids in coffee silverskin. Molecules 2020, 25, 2993. [Google Scholar] [CrossRef]
- Flament, I.; Bessière-Thomas, Y. Coffee Flavor Chemistry, 1st ed.; Wiley & Sons: Toronto, OT, Canada, 2001; pp. 1–397. [Google Scholar]
- Toci, A.T.; Farah, A. Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low quality indicators. Food Chem. 2014, 153, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Osada, Y.; Shibamoto, T. Antioxidative activity of volatile extracts from Maillard model systems. Food Chem. 2006, 98, 522–528. [Google Scholar] [CrossRef]
- De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Morono, A.M.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the impacts of postaharvest processing on the microbiota and metabolite profiles during green coffee bean production. Appl. Environ. Microbiol. 2017, 83, e02398. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Peng, X.; Gao, Y.; Huang, Y.; Li, Y.; Su, H.; Qiu, M. Effect of roasting degree of coffee beans on sensory evalutation: Research from the perspective of major chemical ingredients. Food Chem. 2020, 331, 127329. [Google Scholar] [CrossRef]
- Liu, C.J.; Yang, N.; Yang, Q.; Ayed, C.; Linforth, R.; Fisk, I.D. Enhancing Robusta coffee aroma by modyfing flavor precursors in the green coffee bean. Food Chem. 2019, 281, 8–17. [Google Scholar] [CrossRef]
- Yanagimoto, K.; Lee, K.G.; Ochi, H.; Shibamoto, T. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by Maillard reaction. J. Agric. Food Chem. 2002, 50, 5480–5484. [Google Scholar] [CrossRef]
- Pickard, S.; Becker, I.; Merz, K.H.; Richling, E. Determination of the alkylpyrazine composition of coffee using stable isotope dilution−gas chromatography−mass spectrometry (SIDA-GC-MS). J. Agric. Food Chem. 2013, 61, 6274–6281. [Google Scholar] [CrossRef]
- Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014, 19, 19292–19349. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MS identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Perrone, D.; Farah, A.; Donangelo, C.M.; de Paulis, T.; Martin, P.R. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem. 2008, 106, 859–867. [Google Scholar] [CrossRef]
- Farah, A.; Duarte, G. Bioavailability and Metabolism of Chlorogenic Acids from Coffee. In Coffee in Health Disease and Prevention; Preedy, V.R., Ed.; Elsevier: Cambridge, UK, 2015; pp. 789–801. [Google Scholar]
- Panusa, A.; Petrucci, R.; Lavecchia, R.; Zuorro, A. UHPLC-PDA-ESI-TOF/MS metabolic profiling and antioxidant capacity of Arabica and robusta coffee silverskin: Antioxidants vs phytotoxins. Food Res. Intern. 2017, 99, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komes, D.; Bušić, A. Antioxidants in Coffee. In Processing and Impact on Antioxidants in Beverages, 1st ed.; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 25–32. [Google Scholar]
- Nicoli, M.C.; Anese, M.; Manzocco, L.; Lerici, C. Antioxidants properties of coffee brews in relation to the roasting degree. Lebensm. Wiss. Technol. 1997, 30, 292–297. [Google Scholar] [CrossRef]
SDF | IDF | |||
---|---|---|---|---|
Natural | Canephora | Light | 10.2 ± 0.90 bcde | 49.1 ± 2.70 |
Medium | 7.8 ± 0.80 abc | 46.7 ± 2.49 | ||
Dark | 7.6 ± 0.80 ab | 47.2 ± 2.49 | ||
Arabica | Light | 11.7 ± 1.10 ef | 47.0 ± 2.50 | |
Medium | 10.9 ± 0.99 def | 47.9 ± 2.60 | ||
Dark | 12.6 ± 1.10 ef | 47.4 ± 2.60 | ||
Washed | Canephora | Light | 8.0 ± 0.80 abc | 49.1 ± 2.70 |
Medium | 5.7 ± 0.70 a | 50.1 ± 2.20 | ||
Dark | 8.4 ± 0.89 abcd | 48.1 ± 2.59 | ||
Arabica | Light | 13.4 ± 1.20 f | 51.2 ± 2.19 | |
Medium | 11.7 ± 1.10 ef | 50.6 ± 2.20 | ||
Dark | 10.5 ± 0.90 cde | 51.6 ± 2.20 | ||
Significance | *** | ns |
Species (S) | Treatment (T) | Roasting (R) | S × T | S × R | T × R | S × T × R | |
---|---|---|---|---|---|---|---|
SDF | 0.000 | 0.117 | 0.000 | 0.052 | 0.313 | 0.840 | 0.000 |
IDF | 0.284 | 0.005 | 0.873 | 0.181 | 0.660 | 0.895 | 0.444 |
Washed | ||||||
Canephora | Arabica | |||||
Light | Medium | Dark | Light | Medium | Dark | |
Pyrroles | ||||||
1-methyl-pyrrole | 1251.90 ± 78.49 | 1609.56 ± 51.72 | 1067.36 ± 50.44 | 1394.81 ± 198.7 | 1460.39 ± 133.85 | 1963.01 ± 49.34 |
1-ethyl-pyrrole | 694.41 ± 4.92 | 474.82 ± 8.53 | 356.15 ± 46.49 | 246.55 ± 46.62 | 292.73 ± 22.86 | 259.27 ± 109.96 |
1-pentyl-pyrrole | 981.21 ± 41.82 | 636.35 ± 55.84 | 562.95 ± 65.38 | 160.55 ± 24.53 | 237.19 ± 44.92 | 214.84 ± 3.57 |
pyrrole | 533.38 ± 5.32 | 504.53 ± 28.89 | 326.06 ± 39.78 | 284.17 ± 62.43 | 316.42 ± 46.40 | 509.91 ± 25.64 |
1-methyl-pyrrole-2-carboxaldehyde | 77.64 ± 5.93 | 58.14 ± 7.19 | 61.60 ± 8.07 | 87.50 ± 25.05 | 107.72 ± 14.97 | 115.49 ± 9.23 |
2-acetyl-1-methyl-pyrrole | 16.56 ± 0.80 | 10.61 ± 1.62 | 12.34 ± 2.10 | 13.80 ± 2.67 | 16.15 ± 2.25 | 16.94 ± 0.90 |
4-ethyl-2-methyl-pyrrole | 47.05 ± 2.05 | 47.31 ± 2.77 | 43.12 ± 3.93 | 11.28 ± 3.06 | 11.40 ± 1.30 | 16.08 ± 0.62 |
1-furfuryl-pyrrole | 214.71 ± 2.96 | 124.27 ± 9.91 | 121.91 ± 10.93 | 100.20 ± 11.79 | 115.61 ± 11.36 | 132.21 ± 2.79 |
2-acetyl-pyrrole | 59.22 ± 14.65 | 22.24 ± 5.27 | 34.25 ± 7.63 | 22.78 ± 2.52 | 45.84 ± 11.90 | 28.99 ± 2.25 |
1H-pyrrole-2-carboxaldehyde | 170.20 ± 54.82 | 64.28 ± 15.64 | 73.27 ± 3.71 | 104.26 ± 16.33 | 194.13 ± 54.17 | 118.18 ± 12.37 |
Pyrazines | ||||||
2-methyl-pyrazine | 217.09 ± 2.03 | 244.91 ± 50.53 | 251.04 ± 49.33 | 163.91 ± 60.36 | 136.38 ± 37.05 | 170.44 ± 15.83 |
2,6-dimethyl-pyrazine | 58.03 ± 0.71 | 75.32 ± 19.81 | 71.78 ± 10.42 | 36.24 ± 15.92 | 27.88 ± 10.10 | 29.34 ± 3.77 |
2,5-dimethyl-pyrazine | 54.93 ± 1.72 | 65.24 ± 9.32 | 59.49 ± 10.60 | 36.23 ± 15.36 | 26.57 ± 9.92 | 32.08 ± 4.02 |
2-ethyl-pyrazine | 116.96 ± 0.64 | 123.86 ± 18.15 | 112.57 ± 15.10 | 76.22 ± 24.95 | 77.45 ± 19.21 | 92.60 ± 4.30 |
Furan derivatives | ||||||
2-pentyl-furan | 4625.53 ± 227.61 | 6613.43 ± 222.83 | 6125.76 ± 771.02 | 4307.49 ± 784.14 | 3226.46 ± 1475.85 | 5674.83 ± 151.70 |
furfural | 1305.24 ± 28.81 | 1110.35 ± 109.00 | 1209.18 ± 157.76 | 2072.72 ± 543.82 | 2013.86 ± 303.80 | 2720.21 ± 156.88 |
furfuryl formate | 28.89 ± 4.32 | 33.71 ± 4.26 | 26.78 ± 2.85 | 28.92 ± 6.76 | 20.35 ± 2.98 | 33.38 ± 5.17 |
2-acetyl furan | 81.07 ± 2.79 | 59.34 ± 7.50 | 63.33 ± 8.94 | 68.40 ± 24.74 | 84.94 ± 15.20 | 100.21 ± 12.57 |
furfurylacetate | 85.13 ± 0.55 | 117.89 ± 7.47 | 76.75 ± 5.65 | 82.32 ± 21.51 | 65.05 ± 10.65 | 81.50 ± 4.98 |
5-methyl-furfural | 405.83 ± 11.21 | 359.22 ± 60.48 | 426.01 ± 51.36 | 458.08 ± 124.92 | 556.82 ± 88.51 | 620.23 ± 33.97 |
methyl 2-furoate | 175.49 ± 0.14 | 123.45 ± 15.17 | 132.78 ± 14.94 | 175.06 ± 37.27 | 206.17 ± 25.81 | 237.94 ± 10.01 |
2-methyl-benzofuran | 34.32 ± 2.02 | 27.33 ± 3.24 | 27.90 ± 4.05 | 23.56 ± 2.27 | 31.96 ± 4.85 | 28.21 ± 7.01 |
2-acetyl-5-methyl-furan | 11.42 ± 1.00 | 8.71 ± 1.41 | 12.66 ± 1.21 | 31.04 ± 7.74 | 32.61 ± 5.32 | 36.02 ± 4.82 |
2-furanmethanol | 323.02 ± 26.34 | 265.50 ± 11.74 | 427.83 ± 88.07 | 222.28 ± 91.44 | 380.82 ± 49.71 | 394.50 ± 9.55 |
Pyridines | ||||||
pyridine | 453.61 ± 50.95 | 455.99 ± 72.79 | 374.43 ± 53.72 | 155.63 ± 36.84 | 237.41 ± 43.93 | 268.44 ± 13.63 |
2-acetylpyridine | 1343.26 ± 27.22 | 914.10 ± 54.48 | 801.57 ± 85.20 | 288.40 ± 78.89 | 390.00 ± 48.87 | 367.76 ± 15.52 |
Sulphureous compounds | ||||||
thiophene | 467.34 ± 3.65 | 366.51 ± 24.43 | 272.60 ± 21.98 | 244.57 ± 40.85 | 274.90 ± 22.75 | 358.48 ± 12.98 |
dimethyl disulphide | 1037.48 ± 94.03 | 963.95 ± 40.66 | 675.75 ± 54.18 | 701.26 ± 19.40 | 864.42 ± 121.34 | 1233.14 ± 47.69 |
dimethyl trisulphide | 116.41 ± 7.59 | 120.95 ± 17.13 | 112.38 ± 14.63 | 73.11 ± 21.75 | 104.50 ± 15.99 | 144.12 ± 29.00 |
Terpenoids | ||||||
limonene | 29.10 ± 3.92 | 43.37 ± 26.12 | 26.26 ± 9.67 | 43.39 ± 7.59 | 34.26 ± 7.33 | 36.76 ± 13.84 |
cis dehydroxy linalool oxide | ND | ND | ND | 201.21 ± 4.86 | 171.26 ± 34.13 | 154.70 ± 26.02 |
trans dehydroxy linalool oxide | ND | ND | ND | 48.62 ± 2.27 | 32.30 ± 15.09 | 47.68 ± 4.88 |
cis furanoid linalool oxide | 9.69 ± 1 .28 | 6.01 ± 1.05 | 8.27 ± 0.68 | 54.48 ± 10.39 | 57.03 ± 14.82 | 48.92 ± 1.63 |
linalool | ND | ND | ND | 10.47 ± 1.54 | 13.10 ± 1.32 | 14.25 ± 1.30 |
𝛼-ionone | 14.29 ± 2.74 | 12.24 ± 0.93 | 13.39 ± 0.84 | 7.12 ± 1.16 | 8.83 ± 1.66 | 9.48 ± 3.09 |
Acids | ||||||
acetic acid | 681.32 ± 178.86 | 291.62 ± 148.52 | 450.89 ± 325.72 | 280.69 ± 99.05 | 329.11 ± 170.02 | 386.55 ± 174.63 |
Aromatic compounds | ||||||
toluene | 2769.40 ± 82.64 | 2400.55 ± 40.08 | 2346.66 ± 190.27 | 2419.83 ± 371.11 | 2785.85 ± 308.59 | 3735.39 ± 396.59 |
styrene | 94.56 ± 8.54 | 131.29 ± 43.84 | 156.31 ± 83.14 | 55.18 ± 31.61 | 91.82 ± 12.97 | 173.67 ± 50.08 |
trimethylbenzene | 327.29 ± 4.20 | 293.26 ± 10.45 | 274.53 ± 25.99 | 227.20 ± 24.65 | 231.01 ± 31.13 | 401.85 ± 56.17 |
acetophenone | 54.88 ± 4.17 | 33.05 ± 0.48 | 40.59 ± 3.97 | 33.93 ± 5.50 | 41.19 ± 8.58 | 38.57 ± 7.76 |
1,2-dihydro-1,5,8-trimethyl-naphthalene § | 43.66 ± 1.72 | 33.57 ± 2.15 | 33.25 ± 2.89 | 17.34 ± 2.47 | 19.73 ± 2.70 | 17.46 ± 2.42 |
phenyl ethyl formate | 26.72 ± 1.38 | 19.38 ± 1.97 | 22.49 ± 2.70 | 22.02 ± 2.75 | 23.48 ± 2.15 | 26.00 ± 0.25 |
2-methoxy-phenol | 70.40 ± 14.70 | 28.13 ± 4.82 | 40.98 ± 12.43 | 12.96 ± 1.47 | 45.23 ± 6.87 | 24.43 ± 1.77 |
phenol | 98.73 ± 19.95 | 58.62 ± 8.91 | 86.60 ± 22.63 | 40.22 ± 10.40 | 65.58 ± 18.11 | 58.59 ± 14.50 |
4-vinylguaiacol | 44.33 ± 12.48 | 18.74 ± 4.75 | 25.25 ± 12.50 | 10.49 ± 0.39 | 23.94 ± 8.30 | 15.09 ± 1.11 |
4-methylacetophenone | 65.09 ± 3.88 | 60.22 ± 5.03 | 68.05 ± 6.69 | 154.40 ± 16.41 | 167.63 ± 16.24 | 177.59 ± 7.09 |
Ketones | ||||||
6-methyl-5-hepten-2-one | 26.19 ± 0.26 | 20.90 ± 6.05 | 14.96 ± 2.41 | 56.57 ± 11.00 | 51.00 ± 0.63 | 63.91 ± 4.52 |
2-nonanone | 79.56 ± 0.75 | 73.32 ± 8.91 | 61.30 ± 9.67 | 76.00 ± 13.37 | 74.50 ± 12.20 | 86.67 ± 2.88 |
2-decanone | 49.69 ± 3.03 | 50.28 ± 1.53 | 47.93 ± 2.90 | 58.50 ± 10.37 | 58.94 ± 3.45 | 59.52 ± 2.97 |
Aldehydes | ||||||
hexanal | 1698.95 ± 74.68 | 1435.68 ± 142.83 | 1135.59 ± 144.34 | 1973.71 ± 191.22 | 1687.14 ± 256.23 | 2686.55 ± 4.86 |
heptanal | 268.28 ± 8.32 | 290.11 ± 40.88 | 258.76 ± 20.81 | 411.78 ± 73.93 | 383.99 ± 13.47 | 499.33 ± 15.02 |
benzaldehyde | 1240.27 ± 8.67 | 890.76 ± 78.48 | 964.53 ± 96.91 | 783.80 ± 136.48 | 849.38 ± 66.89 | 1021.72 ± 31.37 |
3-methyl-benzaldehyde | 57.35 ± 1.35 | 57.33 ± 6.45 | 62.61 ± 6.45 | 159.92 ± 21.93 | 154.37 ± 9.77 | 184.13 ± 12.71 |
benzeneacetaldehyde | 548.47 ± 27.30 | 442.92 ± 63.32 | 462.78 ± 35.86 | 205.28 ± 23.60 | 245.23 ± 29.04 | 260.02 ± 9.75 |
Alcohols | ||||||
2-heptanol | 268.09 ± 9.47 | 213.53 ± 14.07 | 224.82 ± 27.28 | 194.62 ± 50.13 | 214.99 ± 24.08 | 216.78 ± 11.19 |
1-hexanol | 85.86 ± 0.14 | 74.36 ± 6.35 | 73.64 ± 8.42 | 44.15 ± 7.48 | 52.99 ± 10.39 | 69.82 ± 9.25 |
2-butoxy-ethanol | 277.55 ± 40.67 | 269.09 ± 10.26 | 153.40 ± 53.11 | 158.67 ± 14.27 | 284.52 ± 70.93 | 381.25 ± 78.67 |
phenylethyl alcohol | 201.44 ± 58.12 | 77.54 ± 14.40 | 122.98 ± 62.17 | 115.91 ± 12.54 | 165.86 ± 44.94 | 120.76 ± 5.93 |
Indole | ||||||
5-hydroxy-1H-indole § | 29.68 ± 0.82 | 15.54 ± 1.85 | 14.52 ± 2.43 | 14.54 ± 2.21 | 15.13 ± 1.56 | 17.45 ± 1.29 |
Natural | ||||||
Canephora | Arabica | |||||
Light | Medium | Dark | Light | Medium | Dark | |
Pyrroles | ||||||
1-methyl-pyrrole | 2650.90 ± 411.16 | 2702.50 ± 577.42 | 3540.61 ± 258.43 | 2465.86 ± 154.31 | 1827.32 ± 103.42 | 1687.60 ± 162.71 |
1-ethyl-pyrrole | 1159.20 ± 190.77 | 1217.46 ± 299.55 | 1552.12 ± 106.62 | 762.60 ± 36.82 | 602.27 ± 36.29 | 518.20 ± 13.33 |
1-pentyl-pyrrole | 1652.01 ± 322.26 | 1509.49 ± 346.66 | 2203.74 ± 132.42 | 365.84 ± 28.24 | 353.81 ± 19.15 | 296.92 ± 2.97 |
pyrrole | 1450.12 ± 235.54 | 1922.16 ± 533.99 | 1916.90 ± 298.47 | 689.08 ± 46.17 | 577.45 ± 31.28 | 529.06 ± 25.53 |
1-methyl-pyrrole-2-carboxaldehyde | 95.75 ± 16.14 | 109.73 ± 30.49 | 129.25 ± 32.00 | 119.84 ± 13.66 | 108.43 ± 1.67 | 92.90 ± 9.69 |
2-acetyl-1-methyl-pyrrole | 18.20 ± 2.34 | 22.20 ± 7.17 | 29.63 ± 7.08 | 27.25 ± 3.49 | 24.31 ± 0.38 | 23.45 ± 1.82 |
4-ethyl-2-methyl-pyrrole | 23.25 ± 5.21 | 19.29 ± 4.92 | 26.59 ± 4.46 | 24.60 ± 1.59 | 24.35 ± 1.37 | 20.78 ± 1.21 |
1-furfuryl-pyrrole | 336.60 ± 58.21 | 335.34 ± 81.72 | 464.59 ± 58.23 | 641.89 ± 31.71 | 563.98 ± 25.47 | 494.38 ± 14.98 |
2-acetyl-pyrrole | 51.40 ± 11.36 | 59.37 ± 54.33 | 40.18 ± 13.81 | 59.41 ± 4.16 | 70.72 ± 5.82 | 63.55 ± 4.06 |
1H-pyrrole-2-carboxaldehyde | 86.26 ± 17.75 | 164.47 ± 155.16 | 96.95 ± 33.64 | 133.26 ± 9.82 | 160.39 ± 13.64 | 139.25 ± 13.08 |
Pyrazines | ||||||
2-methyl-pyrazine | 212.05 ± 41.88 | 189.89 ± 46.56 | 235.22 ± 91.88 | 413.01 ± 59.97 | 390.79 ± 68.81 | 329.02 ± 12.63 |
2,6-dimethyl-pyrazine | 45.71 ± 7.47 | 42.93 ± 13.40 | 54.50 ± 18.87 | 80.40 ± 14.36 | 73.87 ± 6.63 | 59.97 ± 6.44 |
2,5-dimethyl-pyrazine | 41.16 ± 7.58 | 37.54 ± 10.57 | 45.26 ± 14.50 | 65.88 ± 7.63 | 67.04 ± 3.85 | 51.60 ± 8.24 |
2-ethyl-pyrazine | 130.78 ± 19.91 | 126.25 ± 39.54 | 152.10 ± 63.07 | 187.12 ± 15.63 | 184.26 ± 9.13 | 161.47 ± 10.68 |
Furan derivatives | ||||||
2-pentyl-furan | 3837.49 ± 797.32 | 3268.96 ± 888.35 | 4607.14 ± 492.76 | 9202.51 ± 799.60 | 6736.12 ± 457.01 | 5659.82 ± 677.2 |
furfural | 1196.27 ± 139.12 | 1360.04 ± 234.56 | 1530.50 ± 390.06 | 10,733.26 ± 862.80 | 9701.92 ± 486.65 | 7491.19 ± 491.95 |
furfuryl formate | 30.72 ± 4.01 | 25.49 ± 4.92 | 53.54 ± 7.67 | 101.87 ± 9.60 | 91.07 ± 0.46 | 81.34 ± 7.62 |
2-acetyl furan | 48.15 ± 2.69 | 69.19 ± 15.94 | 84.22 ± 28.00 | 448.91 ± 24.72 | 417.32 ± 35.66 | 344.70 ± 35.03 |
furfurylacetate | 60.86 ± 9.33 | 69.53 ± 12.50 | 117.96 ± 20.86 | 126.14 ± 12.66 | 118.87 ± 2.05 | 103.38 ± 4.87 |
5-methyl-furfural | 335.22 ± 36.52 | 414.95 ± 101.62 | 405.37 ± 110.94 | 1761.17 ± 141.47 | 1664.01 ± 76.20 | 1445.55 ± 119.58 |
methyl 2-furoate | 200.23 ± 26.29 | 254.46 ± 52.60 | 288.18 ± 68.80 | 431.98 ± 29.46 | 387.84 ± 9.96 | 334.91 ± 17.68 |
2-methyl-benzofuran | 34.04 ± 6.88 | 38.07 ± 14.80 | 40.29 ± 5.46 | 65.51 ± 3.91 | 68.37 ± 1.86 | 58.79 ± 1.17 |
2-acetyl-5-methyl-furan | 7.78 ± 1.37 | 10.61 ± 5.00 | 7.82 ± 2.83 | 50.04 ± 9.25 | 49.66 ± 5.29 | 38.21 ± 3.98 |
2-furanmethanol | 208.95 ± 49.90 | 304.43 ± 217.36 | 289.85 ± 86.91 | 509.73 ± 60.05 | 595.15 ± 41.80 | 557.10 ± 95.58 |
Pyridines | ||||||
pyridine | 351.95 ± 53.51 | 411.19 ± 73.97 | 579.64 ± 101.52 | 161.57 ± 16.00 | 104.05 ± 15.19 | 104.22 ± 19.20 |
2-acetylpyridine | 2267.70 ± 394.32 | 2111.30 ± 463.02 | 2977.01 ± 146.19 | 775.45 ± 131.27 | 751.76 ± 42.90 | 646.48 ± 15.84 |
Sulphureous compounds | ||||||
thiophene | 880.14 ± 113.05 | 883.42 ± 100.30 | 1366.88 ± 86.85 | 388.65 ± 11.34 | 401.47 ± 16.33 | 350.90 ± 9.92 |
dimethyl disulphide | 1616.88 ± 251.81 | 1712.16 ± 409.26 | 2742.16 ± 103.16 | 1437.51 ± 111.31 | 1000.18 ± 68.21 | 968.48 ± 109.95 |
dimethyl trisulphide | 219.93 ± 52.04 | 208.61 ± 92.86 | 403.39 ± 25.72 | 189.56 ± 26.05 | 131.39 ± 9.73 | 150.90 ± 21.06 |
Terpenoids | ||||||
limonene | 52.77 ± 15.31 | 21.73 ± 12.43 | 53.09 ± 16.46 | 63.79 ± 9.66 | 79.78 ± 8.38 | 64.11 ± 10.28 |
cis dehydroxy linalool oxide | ND | ND | ND | 862.32 ± 64.60 | 1210.55 ± 69.08 | 755.19 ± 182.87 |
trans dehydroxy linalool oxide | ND | ND | ND | 445.90 ± 79.05 | 567.20 ± 34.36 | 211.31 ± 16.31 |
cis furanoid linalool oxide | 9.98 ± 3.54 | 17.43 ± 11.09 | 7.09 ± 1.92 | 333.56 ± 35.09 | 327.59 ± 79.99 | 312.87 ± 13.06 |
linalool | 5.44 ± 1.33 | 5.87 ± 1.55 | 4.21 ± 0.43 | 87.27 ± 5.74 | 75.71 ± 12.62 | 73.14 ± 1.60 |
𝛼-ionone | 12.08 ± 1.26 | 9.23 ± 2.74 | 13.04 ± 1.97 | 12.38 ± 1.48 | 11.88 ± 1.50 | 10.76 ± 1.26 |
Acids | ||||||
acetic acid | 362.42 ± 353.01 | 402.30 ± 298.82 | 216.77 ± 98.63 | 724.92 ± 306.15 | 674.44 ± 238.20 | 269.18 ± 57.53 |
Aromatic compounds | ||||||
toluene | 3356.28 ± 1188.46 | 4134.86 ± 262.32 | 3840.50 ± 152.52 | 2591.01 ± 75.59 | 2688.70 ± 113.84 | 2273.74 ± 92.41 |
styrene | 285.07 ± 70.58 | 317.78 ± 181.90 | 462.58 ± 202.47 | 108.97 ± 35.25 | 228.21 ± 44.85 | 164.03 ± 19.67 |
trimethylbenzene | 206.98 ± 65.82 | 326.10 ± 70.82 | 390.79 ± 15.52 | 397.66 ± 110.41 | 270.70 ± 28.60 | 228.37 ± 14.14 |
acetophenone | 57.63 ± 17.93 | 65.81 ± 8.54 | 58.81 ± 8.31 | 79.23 ± 53.48 | 47.96 ± 11.45 | 32.87 ± 0.98 |
1,2-dihydro-1,5,8-trimethyl-naphthalene § | 59.54 ± 11.77 | 54.99 ± 14.69 | 82.66 ± 2.05 | 32.09 ± 1.17 | 27.81 ± 1.92 | 23.25 ± 0.55 |
phenyl ethyl formate | 27.88 ± 5.03 | 30.01 ± 10.71 | 33.27 ± 4.06 | 115.27 ± 3.38 | 101.29 ± 4.45 | 94.70 ± 3.14 |
2-methoxy-phenol | 58.25 ± 10.97 | 116.90 ± 96.46 | 77.00 ± 9.93 | 27.46 ± 4.37 | 25.19 ± 0.56 | 24.02 ± 2.90 |
phenol | 65.01 ± 27.93 | 114.91 ± 64.98 | 73.58 ± 15.56 | 94.63 ± 70.49 | 58.52 ± 13.34 | 47.76 ± 3.74 |
4-vinylguaiacol | 55.46 ± 13.41 | 55.93 ± 46.42 | 69.32 ± 12.13 | 16.48 ± 2.92 | 16.40 ± 2.15 | 15.71 ± 0.77 |
4-methylacetophenone | 93.72 ± 19.03 | 85.39 ± 32.03 | 101.91 ± 11.32 | 238.52 ± 8.67 | 217.37 ± 9.39 | 200.85 ± 8.87 |
Ketones | ||||||
6-methyl-5-hepten-2-one | 38.59 ± 0.52 | 37.06 ± 18.25 | 42.89 ± 14.49 | 84.87 ± 5.89 | 77.76 ± 4.68 | 64.43 ± 1.65 |
2-nonanone | 43.54 ± 18.28 | 44.56 ± 10.93 | 26.46 ± 23.56 | 67.72 ± 2.74 | 58.96 ± 5.60 | 45.09 ± 1.25 |
2-decanone | 29.27 ± 5.64 | 27.91 ± 8.53 | 34.42 ± 1.74 | 42.07 ± 4.24 | 39.18 ± 2.69 | 28.39 ± 1.04 |
Aldehydes | ||||||
hexanal | 1404.66 ± 157.54 | 1542.63 ± 415.42 | 1135.25 ± 42.38 | 2697.24 ± 134.52 | 2184.86 ± 194.80 | 2046.37 ± 93.57 |
heptanal | 258.11 ± 18.91 | 220.06 ± 36.25 | 245.03 ± 14.95 | 390.72 ± 37.22 | 366.24 ± 25.48 | 286.95 ± 4.46 |
benzaldehyde | 1478.76 ± 239.36 | 1245.71 ± 271.55 | 1750.03 ± 152.18 | 1218.69 ± 112.61 | 1127.80 ± 72.58 | 913.87 ± 27.75 |
3-methyl-benzaldehyde | 40.35 ± 10.99 | 41.05 ± 16.33 | 35.95 ± 2.62 | 188.57 ± 2.12 | 175.46 ± 6.04 | 144.22 ± 2.58 |
benzeneacetaldehyde | 405.63 ± 35.14 | 362.11 ± 146.94 | 449.94 ± 115.47 | 362.33 ± 37.43 | 377.68 ± 42.45 | 274.43 ± 23.11 |
Alcohols | ||||||
2-heptanol | 179.24 ± 25.96 | 186.66 ± 50.79 | 220.39 ± 24.45 | 2433.20 ± 134.42 | 2237.48 ± 85.04 | 1737.06 ± 27.84 |
1-hexanol | 40.60 ± 5.96 | 43.53 ± 5.64 | 46.54 ± 4.95 | 280.05 ± 31.09 | 254.36 ± 7.20 | 191.38 ± 2.61 |
2-butoxy-ethanol | 289.55 ± 111.57 | 172.12 ± 114.19 | 95.21 ± 10.19 | 330.91 ± 357.52 | 207.12 ± 76.78 | 316.65 ± 150.32 |
phenylethyl alcohol | 181.34 ± 70.42 | 226.23 ± 187.68 | 161.26 ± 45.50 | 480.88 ± 53.66 | 525.13 ± 42.63 | 468.86 ± 48.14 |
Indole | ||||||
5-hydroxy-1H-indole § | 42.80 ± 10.12 | 41.71 ± 9.24 | 56.07 ± 6.17 | 88.87 ± 0.39 | 87.76 ± 5.40 | 77.47 ± 0.76 |
Post-Harvest Treatment | Washed | Natural | Significance | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Canephora | Arabica | Canephora | Arabica | |||||||||
Roasting Degree | Light | Medium | Dark | Light | Medium | Dark | Light | Medium | Dark | Light | Medium | Dark | |
Pyrroles | 4046 ± 199 ab | 3552 ± 142 ab | 2658 ± 213 a | 2425 ± 371 a | 2797 ± 214 a | 3374 ± 118 ab | 7523 ± 1156 c | 8062 ± 2003 cd | 10,000 ± 854 d | 5289 ± 288 b | 4313.03 ± 26.62 ab | 3866.08 ± 124.56 ab | *** |
Pyrazines | 447 ± 1 abc | 509 ± 97 abcd | 494 ± 84 abcd | 312 ± 116 a | 268 ± 75 a | 324 ± 25 a | 429 ± 74 a | 396 ± 109 a | 487 ± 187 abcd | 746 ± 96 d | 715.96 ± 80.78 cd | 602.06 ± 36.12 bcd | *** |
Furans | 7075 ± 294 ab | 8718 ± 431 ab | 8528 ± 988 ab | 7469 ± 1453 ab | 6619 ± 1037 a | 9927 ± 376 b | 5959 ± 979 a | 5815 ± 1536 a | 7424 ± 919 ab | 23,431 ± 1411 e | 19,830.33 ± 369.45 d | 16,114.97 ± 1126.57 c | *** |
Pyridines | 1796 ± 23 d | 1370 ± 88 cd | 1176 ± 121 bcd | 444 ± 113 a | 627 ± 37 ab | 636 ± 29 ab | 2619 ± 446 e | 2522 ± 526 e | 3556 ± 71 f | 937 ± 135 abc | 855.81 ± 57.89 abc | 750.70 ± 9.77 abc | *** |
Sulphur compounds | 1621 ± 97 abc | 1451 ± 77 abc | 1060 ± 85 ab | 1018 ± 41 a | 1243 ± 159 ab | 1735 ± 65 bc | 2716 ± 416 d | 2804 ± 579 d | 4512 ± 171 e | 2015 ± 137 c | 1533.04 ± 93.28 abc | 1470.27 ± 118.92 abc | *** |
Aromatics | 3595 ± 45 ab | 3076 ± 20 a | 3094 ± 290 a | 2993 ± 395 a | 3495 ± 376 ab | 4668 ± 514 bcd | 4265 ± 1292 abcd | 5302 ± 780 d | 5190 ± 293 cd | 3701 ± 327 abc | 3682.15 ± 160.52 abc | 3105.29 ± 84.97 a | *** |
Ketones | 155 ± 3 abcd | 144 ± 12 abc | 124 ± 13 ab | 191 ± 34 cd | 184 ± 14 bcd | 210 ± 6 d | 111 ± 23 a | 109 ± 37 a | 103 ± 39 a | 194.65 ± 6 cd | 175 ± 11 bcd | 137 ± 1 abc | *** |
Terpenoids | 53 ± 7 a | 61 ± 28 a | 47 ± 9 a | 365 ± 63 c | 316 ± 69 c | 311 ± 16 bc | 80 ± 12 ab | 54 ± 8 a | 77 ± 12 ab | 1805.22 ± 38 e | 2272 ± 177 f | 1427 ± 181 d | *** |
Aldehydes | 3813 ± 120 abcd | 3116 ± 200 a | 2884 ± 260 a | 3534 ± 419 ab | 3320 ± 366 ab | 4651 ± 48 ab | 3587 ± 446 ab | 3411 ± 844 ab | 3616 ± 307 abc | 4857.54 ± 245 d | 4232 ± 153 bcd | 3665 ± 102 abc | *** |
Alcohols | 832 ± 26 a | 634 ± 12 a | 574 ± 36 a | 513 ± 75 a | 718 ± 98 a | 788 ± 97 a | 690 ± 203 a | 628 ± 187 a | 523 ± 59 a | 3525.03 ± 501 c | 3224 ± 169 bc | 2713 ± 142 b | *** |
Species (S) | Treatment (T) | Roasting (R) | S × T | S × R | T × R | S × T × R | |
---|---|---|---|---|---|---|---|
Pyrroles | 0.000 | 0.000 | 0.625 | 0.000 | 0.437 | 0.293 | 0.000 |
Pyrazines | 0.287 | 0.000 | 0.957 | 0.000 | 0.319 | 0.639 | 0.219 |
Furans | 0.000 | 0.000 | 0.210 | 0.000 | 0.000 | 0.000 | 0.000 |
Pyridines | 0.000 | 0.000 | 0.121 | 0.000 | 0.037 | 0.003 | 0.000 |
Sulphur compounds | 0.000 | 0.000 | 0.000 | 0.000 | 0.020 | 0.001 | 0.000 |
Aromatics | 0.010 | 0.000 | 0.209 | 0.000 | 0.655 | 0.101 | 0.001 |
Ketones | 0.000 | 0.000 | 0.112 | 0.607 | 0.909 | 0.265 | 0.022 |
Terpenoids | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Aldehydes | 0.000 | 0.009 | 0.025 | 0.537 | 0.296 | 0.035 | 0.000 |
Alcohols | 0.000 | 0.000 | 0.013 | 0.000 | 0.660 | 0.010 | 0.003 |
Peak | Rt (min) | λmax (nm) | [M-H]− (m/z) | MS/MS (m/z) | Identification |
---|---|---|---|---|---|
1 | 6.01 | 324 | 353 | 191, 135, 179 | 3-O-CQA ° |
2 | 6.46 | 325 | 353 | 191, 179, 135 | 5-O-CQA * |
3 | 6.56 | 325 | 353 | 173, 179, 191, 135 | 4-O-CQA ° |
4 | 8.59 | 324 | 367 | 191, 173 | FQA1 ° |
5 | 9.04 | 325 | 367 | 191 | FQA2 ° |
6 | 13.52 | 327 | 349 | - | di-CQA1 ° |
7 | 16.42 | 326 | 515 | 353, 335, 173, 179, 191, 135 | di-CQA2 ° |
Post-Harvest Treatment | Washed | Natural | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Canephora | Arabica | Canephora | Arabica | |||||||||
Roasting Degree | Light | Medium | Dark | Light | Medium | Dark | Light | Medium | Dark | Light | Medium | Dark | Significance |
3-O-CQA | ND | ND | ND | ND | 0.17 ± 0.01 a | 0.28 ± 0.03 b | ND | ND | ND | ND | ND | ND | *** |
5-O-CQA | 0.53 ± 0.22 a | 0.48 ± 0.25 a | 0.41 ± 0.07 a | 1.64 ± 0.35 c | 2.16 ± 0.43 d | 2.96 ± 0.63 e | 0.42 ± 0.23 a | 0.41 ± 0.22 a | 0.48 ± 0.26 a | 1.11 ± 0.33 b | 0.61 ± 0.04 a | 0.95 ± 0.31 b | *** |
4-O-CQA | 0.11 ± 0.01 ab | 0.08 ± 0.00 a | 0.08 ± 0.01 a | 0.21 ± 0.03 c | 0.35 ± 0.01 d | 0.50 ± 0.04 e | 0.10 ± 0.00 ab | 0.10 ± 0.00 ab | 0.12 ± 0.00 ab | 0.14 ± 0.00 b | 0.12 ± 0.01 ab | 0.11 ± 0.02 ab | *** |
FQA1 | 0.05 ± 0.01 ab | 0.10 ± 0.00 e | 0.05 ± 0.01 abc | 0.06 ± 0.00 bcd | 0.06 ± 0.00 cd | 0.06 ± 0.00 bcd | 0.05 ± 0.00 bc | 0.07 ± 0.00 d | 0.04 ± 0.01 a | 0.06 ± 0.00 bc | 0.05 ± 0.00 abc | 0.06 ± 0.00 bcd | *** |
FQA2 | 0.20 ± 0.03 c | 0.20 ± 0.01 cd | 0.19 ± 0.03 c | 0.17 ± 0.01 bc | 0.24 ± 0.01 de | 0.31 ± 0.01 f | 0.27 ± 0.01 ef | 0.25 ± 0.00 e | 0.30 ± 0.01 f | 0.13 ± 0.01 ab | 0.10 ± 0.01 a | 0.14 ± 0.00 ab | *** |
di-CQA1 | 0.18 ± 0.02 ab | 0.33 ± 0.02 e | 0.19 ± 0.03 abcd | 0.37 ± 0.00 e | 0.54 ± 0.03 f | 0.72 ± 0.04 g | 0.25 ± 0.01 d | 0.22 ± 0.01 bcd | 0.24 ± 0.01 cd | 0.18 ± 0.00 abc | 0.14 ± 0.02 a | 0.20 ± 0.01 abcd | *** |
di-CQA2 | 0.15 ± 0.02 b | 0.41 ± 0.01 g | 0.16 ± 0.03 b | 0.23 ± 0.01 c | 0.38 ± 0.01 fg | 0.45 ± 0.03 h | 0.32 ± 0.01 de | 0.29 ± 0.00 d | 0.35 ± 0.01 ef | 0.16 ± 0.00 b | 0.08 ± 0.01 a | 0.16 ± 0.00 b | *** |
Species (S) | Treatment (T) | Roasting (R) | S × T | S × R | T × R | S × T × R | |
---|---|---|---|---|---|---|---|
5CQA | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
4CQA | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
FQA1 | 0.104 | 0.000 | 0.000 | 0.185 | 0.000 | 0.000 | 0.013 |
FQA2 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Di-CQA1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Di-CQA2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
TPC | RSA | ORAC | |||
---|---|---|---|---|---|
Washed | Canephora | Light | 7.88 ± 0.21 ab | 36.47 ± 2.83 a | 291 ± 15 bcdef |
Medium | 8.20 ± 0.33 bc | 37.49 ± 1.10 abc | 283 ± 13 bcde | ||
Dark | 8.09 ± 0.07 ab | 36.61 ± 2.1 ab | 255 ± 15 abc | ||
Arabica | Light | 7.14 ± 0.08 a | 38.22 ± 1.49 abc | 226 ± 15 a | |
Medium | 8.35 ± 0.53 bc | 43.83 ± 0.38 de | 248 ± 13 ab | ||
Dark | 9.18 ± 0.32 c | 48.33 ± 2.16 ef | 263 ± 20 abcd | ||
Natural | Canephora | Light | 10.30 ± 0.45 d | 41.27 ± 1.99 bcd | 298 ± 20 cdef |
Medium | 10.79 ± 0.49 de | 41.61 ± 1.29 cd | 306 ± 24 defg | ||
Dark | 11.48 ± 0.29 ef | 39.52 ± 0.80 abcd | 328 ± 16 efgh | ||
Arabica | Light | 12.92 ± 0.36 gh | 49.24 ± 1.75 f | 360 ± 16 h | |
Medium | 11.94 ± 0.19 fg | 47.74 ± 0.57 ef | 337 ± 17 fgh | ||
Dark | 13.39 ± 0.44 h | 50.39 ± 0.47 f | 348 ± 14 gh | ||
Significance | *** | *** | *** |
Species (S) | Treatment (T) | Roasting (R) | S × T | S × R | T × R | S × T × R | |
---|---|---|---|---|---|---|---|
ORAC | 0.538 | 0.000 | 0.717 | 0.000 | 0.428 | 0.257 | 0.001 |
TPC | 0.000 | 0.000 | 0.000 | 0.000 | 0.020 | 0.005 | 0.000 |
RSA—DPPH | 0.000 | 0.000 | 0.004 | 0.121 | 0.000 | 0.001 | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, M.; Bertolino, M.; Belviso, S.; Ghirardello, D.; Zeppa, G. Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin. Foods 2022, 11, 3132. https://doi.org/10.3390/foods11193132
Giordano M, Bertolino M, Belviso S, Ghirardello D, Zeppa G. Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin. Foods. 2022; 11(19):3132. https://doi.org/10.3390/foods11193132
Chicago/Turabian StyleGiordano, Manuela, Marta Bertolino, Simona Belviso, Daniela Ghirardello, and Giuseppe Zeppa. 2022. "Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin" Foods 11, no. 19: 3132. https://doi.org/10.3390/foods11193132
APA StyleGiordano, M., Bertolino, M., Belviso, S., Ghirardello, D., & Zeppa, G. (2022). Effects of Species, Post-Harvest Treatment, and Roasting on Fibre, Volatile Compounds, and Polyphenol Contents in Coffee Silverskin. Foods, 11(19), 3132. https://doi.org/10.3390/foods11193132