Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Seeds and Cake’s Proximate Composition
2.3. Seeds and Cake’s Total Amino Acids
Seeds and Cake Protein Quality
2.4. All Samples’ Vitamin E Profile
2.5. All Samples’ Fatty Acids Profile
2.6. Phytochemical Analysis of the Seeds and Cake
2.7. Oil Stability, Colour, and Regulated Quality Parameters
2.8. Statistical Analysis
3. Results and Discussion
3.1. Seeds and Cake’s Nutritional Analysis
3.2. Seeds and Cake’s Total AA
3.3. Seeds and Cake’s Vitamin E Profile
3.4. Seeds and Cake’s FA Profile
3.5. Seeds and Cake’s Phytochemical Analysis
3.6. Poppy Cake’s Potential in Sustainable Food Production
3.7. Poppy Oil Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kopsahelis, N.; Kachrimanidou, V. Advances in food and byproducts processing towards a sustainable bioeconomy. Foods 2019, 8, 425. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Costa, A.S.G.; Machado, S.; Alves, R.C.; Pardo, J.E.; Oliveira, M.B.P.P. Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods 2021, 10, 2108. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.; Machado, T.B.; Oliveira, M.B.P.P. Chia seeds: An ancient grain trending in modern human diets. Food Funct. 2019, 10, 3068–3089. [Google Scholar] [CrossRef] [PubMed]
- Elimam, D.M.; Ramadan, M.F.; Elshazly, A.M.; Farag, M.A. Introduction to Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Techno-Applications. In Mediterranean Fruits Bio-Wastes; Ramadan, M.F., Farag, M.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 3–28. [Google Scholar] [CrossRef]
- Rabadán, A.; Álvarez-Ortí, M.; Martínez, E.; Pardo-Giménez, A.; Zied, D.C.; Pardo, J.E. Effect of replacing traditional ingredients for oils and flours from nuts and seeds on the characteristics and consumer preferences of lamb meat burgers. LWT 2021, 136, 110307. [Google Scholar] [CrossRef]
- Boukid, F.; Folloni, S.; Sforza, S.; Vittadini, E.; Prandi, B. Current trends in ancient grains-based foodstuffs: Insights into nutritional aspects and technological applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Erinç, H.; Tekin, A.; Özcan, M. Determination of fatty acid, tocopherol and phytosterol contents of the oils of various poppy (Papaver somniferum L.) seeds. Grasas Aceites 2009, 60, 375–381. [Google Scholar]
- Kroslak, E.; Maliar, T.; Nemecek, P.; Viskupicova, J.; Maliarova, M.; Havrlentova, M.; Kraic, J. Antioxidant and proteinase inhibitory activities of selected poppy (Papaver somniferum L.) genotypes. Chem. Biodivers. 2017, 14, e1700176. [Google Scholar] [CrossRef]
- Özbek, Z.A.; Ergönül, P.G. Chapter 19—Cold pressed poppy seed oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 231–239. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 16 November 2021).
- Lančaričová, A.; Havrlentová, M.; Muchová, D.; Bednárová, A. Oil content and fatty acids composition of poppy seeds cultivated in two localities of Slovakia. Agriculture 2016, 62, 19–27. [Google Scholar] [CrossRef]
- Masterson, D. Consumer Safety Groups Ring Alarm on America’s Poppy Seed Supply. Available online: https://www.nutraingredients-usa.com/Article/2021/08/10/Consumer-safety-groups-ring-the-alarm-on-America-s-poppy-seed-suply?utm_source=%E2%80%A6 (accessed on 16 November 2021).
- Özcan, M.M.; Atalay, Ç. Determination of seed and oil properties of some poppy (Papaver somniferum L.) varieties. Grasas Aceites 2006, 57, 169–174. [Google Scholar]
- Konuşkan, D.B. Minor bioactive lipids in cold pressed oils. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 7–14. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 21th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2019. [Google Scholar]
- Tontisirin, K. Chapter 2: Methods of Food Analysis. Food Energy: Methods of Analysis and Conversion Factors: Report of a Technical Workshop. Food and Agriculture Organization of the United Nations. 2003. Available online: https://www.sennutricion.org/media/Docs_Consenso/Food_energy_methods_of_analysis_and_conversion_factors-FAO_2002.pdf (accessed on 16 November 2021).
- European Parliament and Council of the European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, 18–61. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169 (accessed on 16 November 2021).
- Machado, S.; Costa, A.S.G.; Pimentel, F.B.; Oliveira, M.B.P.P.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef]
- WHO. Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation. 2007. Available online: https://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf?sequence=1&isAllowed=y (accessed on 16 November 2021).
- Oser, B.L. An integrated essential amino acid index for predicting the biological value of proteins. In Protein and Amino Acid Nutrition; Albanese, A.A., Ed.; Academic Press: Cambridge, MA, USA, 1959; pp. 295–311. [Google Scholar]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils: Gas Chromatography of Fatty acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- Capannesi, C.; Palchetti, I.; Mascini, M.; Parenti, A. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem. 2000, 71, 553–562. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- NP 937:1987b; Edible Fats and Oils—Oils Colour Determination and Their Chromatic Characteristics. International Organization for Standardization: Geneva, Switzerland, 1987.
- NP 904:1987a; Edible Fats and Oils—Determination of Peroxide Value. International Organization for Standardization: Geneva, Switzerland, 1987.
- ISO 3656:2002; Animal and Vegetable Fats and Oils—Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction. International Organization for Standardization: Geneva, Switzerland, 2002.
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Bozan, B.; Temelli, F. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresour. Technol. 2008, 99, 6354–6359. [Google Scholar] [CrossRef]
- Ghafoor, K.; Özcan, M.M.; Fahad, A.; Babiker, E.E.; Fadimu, G.J. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven-and microwave-roasted poppy seeds and oil. LWT 2019, 99, 490–496. [Google Scholar] [CrossRef]
- Dąbrowski, G.; Czaplicki, S.; Konopka, I. Composition and quality of poppy (Papaver somniferum L.) seed oil depending on the extraction method. LWT 2020, 134, 110167. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Food Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Chmelová, D.; Ondrejovič, M.; Havrlentová, M.; Kraic, J. Evaluation of polar polyphenols with antioxidant activities in Papaver somniferum L. J. Food Nutr. Res. 2018, 57, 98–107. [Google Scholar]
- Sharopov, F.; Valiev, A.; Gulmurodov, I.; Sobeh, M.; Satyal, P.; Wink, M. Alkaloid content, antioxidant and cytotoxic activities of various parts of Papaver somniferum. Pharm. Chem. J. 2018, 52, 459–463. [Google Scholar] [CrossRef]
- Ishtiaque, S.; Khan, N.; Siddiqui, M.A.; Siddiqi, R.; Naz, S. Antioxidant potential of the extracts, fractions and oils derived from oilseeds. Antioxidants 2013, 2, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Machado, M. Perfil de Aminoácidos de Macroalgas Produzidas num Sistema de Aquacultura Multi-Trófica Integrada. Available online: https://hdl.handle.net/10216/129810 (accessed on 16 November 2021).
- Palombini, S.V.; Claus, T.; Maruyama, S.A.; Gohara, A.K.; Souza, A.H.P.; Souza, N.E.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Evaluation of nutritional compounds in new amaranth and quinoa cultivars. Food Sci. Technol. 2013, 33, 339–344. [Google Scholar] [CrossRef]
- Durazzo, A.; Nazhand, A.; Lucarini, M.; Delgado, A.M.; De Wit, M.; Nyam, K.L.; Santini, A.; Ramadan, M.F. Occurrence of tocols in foods: An updated shot of current databases. J. Food Qual. 2021, 2021, 8857571. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, L.; Xue, C.; Jiang, X.; Wei, Z. Assessing the impact of oil types and grades on tocopherol and tocotrienol contents in vegetable oils with chemometric methods. Molecules 2020, 25, 5076. [Google Scholar] [CrossRef]
- Veličkovska, S.K.; Letia, G.N.; Čočevska, M.; Brühl, L.; Silaghi-Dumitrescu, R.; Mirhosseini, H.; Ilieva, F.; Mihajlov, L.; Dimovska, V.; Kovacevič, B.; et al. Effect of bioactive compounds on antiradical and antimicrobial activity of extracts and cold-pressed edible oils from nutty fruits from Macedonia. J. Food Meas. Charact. 2018, 12, 2545–2552. [Google Scholar] [CrossRef]
- Wagner, K.; Isnardy, B.; Elmadfa, I. Effects of seed damage on the oxidative stability of poppy seed oil. Eur. J. Lipid Sci. Technol. 2003, 105, 219–224. [Google Scholar] [CrossRef]
- Pabón-Baquero, L.C.; Otálvaro-Álvarez, Á.M.; Fernández, M.R.R.; Chaparro-González, M.P. Plant extracts as antioxidant additives for food industry. In Antioxidants in Foods and Its Applications; IntechOpen: London, UK, 2018; p. 87. [Google Scholar]
- European Commission. Food 2030—Research and Innovation Policy to Make Our Food Systems Ready for the Future. Main Aims, Focus Areas Under Horizon Europe, Timeline and Publications. 2020. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/environment/bioeconomy/food-systems/food-2030_en (accessed on 16 November 2021).
- Issaoui, M.; Delgado, A.M. Grading, labeling and standardization of edible oils. In Fruit oils: Chemistry and Functionality; Ramadan, M., Ed.; Springer: Cham, Switzerland, 2019; pp. 9–52. [Google Scholar]
- Prescha, A.; Grajzer, M.; Dedyk, M.; Grajeta, H. The antioxidant activity and oxidative stability of cold-pressed oils. J. Am. Oil Chem. Soc. 2014, 91, 1291–1301. [Google Scholar] [CrossRef]
- Özcan, M.M.; Arslan, D. Antioxidant effect of essential oils of rosemary, clove and cinnamon on hazelnut and poppy oils. Food Chem. 2011, 129, 171–174. [Google Scholar] [CrossRef]
Parameter | Seeds | Cake | Seeds’ Literature Data |
---|---|---|---|
Moisture (%) | 6.15 ± 0.36 b | 8.01 ± 0.13 a | 3.50–4.76 [13]; 5.3 [28]; 9.97–11.11 [29] |
Ash (% fw) | 7.21 ± 0.01 b | 10.13 ± 0.13 a | 4.92–6.25 [13]; 5.9 [28] |
Protein (% fw) | 14.62 ± 0.01 b | 25.80 ± 0.23 a | 11.94–13.58 [13]; 21.6 [28] |
Total dietary fibre (% fw) | 31.82 ± 0.02 b | 37.90 ± 0.19 a | 18.3 [28]; 22.63–30.08 [13] |
Insoluble Fibre (% fw) | 31.70 ± 0.08 a | 31.20 ± 0.16 a | |
Soluble Fibre (% fw) | 0.12 ± 0.02 b | 6.70 ± 0.17 a | |
Fat (% fw) | 38.87 ± 0.04 a | 10.45 ± 0.16 b | 27.71–33.94 [29]; 30.49 [30]; 32.43–45.52 [13]; 39.5 [31]; 40.6–50.2 [32]; 48.31–52.7 [7]; 49.9 [28]; 49.9–52.4 [11] |
Remaining carbohydrates (% fw) | 1.33 ± 0.34 b | 7.71 ± 0.37 a | |
Energy value (kJ/100 g dw) | 2090 a | 1374 b | |
Energy value (kcal/100 g dw) | 508 a | 332 b | |
Ash (% dw) | 7.84 ± 0.01 b | 11.01 ± 0.14 a | |
Protein (% dw) | 15.96 ± 0.01 b | 28.05 ± 0.25 a | |
Total dietary fibre (% dw) | 33.91 ± 0.02 b | 41.02 ± 0.19 a | |
Insoluble fibre (% dw) | 33.78 ± 0.08 a | 33.91 ± 0.16 a | |
Soluble fibre (% dw) | 0.13 ± 0.02 b | 7.11 ± 0.17 a | |
Fat (% dw) | 41.42 ± 0.04 a | 11.52 ± 0.18 b | |
Remaining carbohydrates (% dw) | 0.87 ± 0.04 b | 8.40 ± 0.41 a | |
Amino acids (mg/g fw) | |||
Aspartic acid | 16.74 ± 0.89 b | 27.31 ± 0.91 a | |
Glutamic acid | 36.40 ± 1.42 b | 58.58 ± 2.38 a | |
Serine | 8.34 ± 0.35 b | 13.52 ± 0.50 a | |
Glutamine | 0.57 ± 0.02 b | 0.86 ± 0.04 a | |
* Histidine | 5.80 ± 0.22 b | 8.84 ± 0.38 a | |
Glycine | 8.70 ± 0.45 b | 14.32 ± 0.59 a | |
* Threonine | 6.93 ± 0.26 b | 11.15 ± 0.45 a | |
Arginine | 20.25 ± 0.94 b | 31.90 ± 1.10 a | |
Alanine | 7.86 ± 0.34 b | 12.44 ± 0.41 a | |
Tyrosine | 5.18 ± 0.21 b | 8.06 ± 0.40 a | |
* Valine | 8.53 ± 0.31 b | 12.57 ± 0.46 a | |
* Methionine | 4.39 ± 0.18 b | 6.74 ± 0.28 a | |
* Tryptophan | 1.00 ± 0.01 b | 1.48 ± 0.16 a | |
* Phenylalanine | 6.97 ± 0.32 b | 10.52 ± 0.63 a | |
* Isoleucine | 6.93 ± 0.28 b | 10.12 ± 0.44 a | |
* Leucine | 11.45 ± 0.48 b | 17.81 ± 0.80 a | |
* Lysine | 9.10 ± 0.55 b | 15.49 ± 1.12 a | |
Hydroxyproline | 1.22 ± 0.06 b | 2.00 ± 0.05 a | |
Proline | 6.02 ± 0.46 b | 9.92 ± 0.27 a | |
∑BCAA | 26.90 ± 1.07 b | 40.50 ± 1.64 a | |
∑Total AA | 172.36 ± 7.32 b | 273.63 ± 10.71 a | |
Vitamin E profile (mg/kg) | |||
α-Tocopherol | 79.31 ± 3.21 a | 21.70 ± 0.65 b | 14.0 [28]; 23.53–28.84 [29]; 26.8–37.2 [13] |
γ-Tocopherol | 95.60 ± 3.96 a | 25.18 ± 0.11 b | 87.0 [28]; 263.7–281.5 [29] |
Total vitamin E | 174.91 ± 7.12 a | 46.88 ± 0.67 b | 110 [28]; 348.8–623.1 [13]; 550.39–578.43 [29] |
Fatty acids profile (%) | |||
C16:0 (Palmitic acid) | 11.00 ± 0.11 b | 17.14 ± 0.15 a | 8.1–10.1 [11]; 8.93–10.21 [29]; 12.20 [31]; 12.85–18.70 [13] |
C16:1 (Palmitoleic acid) | 0.22 ± 0.00 a | 0.15 ± 0.02 b | 0.1–0.2 [11]; 0.27 [31]; 0.58–0.61 [29] |
C17:0 (Margaric acid) | 0.06 ± 0.00 b | 0.13 ± 0.02 a | 0.76 [31] |
C18:0 (Stearic acid) | 2.49 ± 0.14 b | 11.45 ± 0.11 a | 2.30 [31]; 2.40–4.30 [13]; 2.85–3.17 [29] |
C18:1n9c (Oleic acid) | 22.50 ± 0.22 a | 18.62 ± 0.06 b | 13.11–24.13 [13]; 13.3–23.4 [11]; 16.58–21.41 [29]; 22.19 [31] |
C18:2n6c (Linoleic acid) | 62.80 ± 0.29 a | 50.75 ± 0.34 b | 52.60–71.50 [13]; 57.91–64.83 [29]; 59.87 [31]; 63.1–74.3 [11] |
C18:3n3 (Linolenic acid) | 0.77 ± 0.01 b | 1.18 ± 0.16 a | 0.16–0.50 [13]; 0.47–0.71 [29]; 0.7–0.8 [11]; 1.30 [31] |
C20:0 (Arachidic acid) | 0.16 ± 0.00 b | 0.58 ± 0.03 a | 0.1–0.2 [11]; 0.67 [31] |
∑SFA (saturated fatty acids) | 13.71 ± 0.12 b | 29.30 ± 0.23 a | 10.6–12.6 [11]; 13.7 [31] |
∑MUFA (monounsaturated fatty acids) | 22.72 ± 0.21 a | 18.76 ± 0.06 b | 13.6–23.7 [11]; 22.9 [31] |
∑PUFA (polyunsaturated fatty acids) | 63.57 ± 0.30 a | 51.93 ± 0.18 b | 61.2 [31]; 64.0–75.2 [11] |
C18:2n6/C18:3n3 | 81.46 ± 0.95 a | 43.60 ± 6.88 b | 46.05 [31] |
C18:1n9/C18:2n6 | 0.36 ± 0.01 a | 0.37 ± 0.00 a | 0.37 [31] |
Phytochemical analysis | |||
TPC (mg GAE/100 g fw) | 57.5 ± 2.5 b | 107.4 ± 7.8 a | 31.27–33.68 mg GAE/g dw [29]; 33.11–144.98 mg GAE/L [8]; 930 mg/100 g dw [28]; 1133.1 mg GAE/100 g [33]; 1937.7 mg GAE/100 g [34] |
TFC (mg ECE/100 g fw) | 37.3 ± 5.8 b | 138.9 ± 4.2 a | 1.17–11.28 mg quercetin equivalents/L [8]; 38.7 mg quercetin equivalents/100 g [33]; 63.27–66.48 mg catechol equivalents/g [29]; 676.3 mg quercetin equivalents/100 g [34] |
FRAP (mmol FSE/100 g fw) | 3.7 ± 0.3 b | 6.1 ± 0.1 a | 2.72–31.61 mg TE/L [8]; 835.3 mM FeSO4/g [33] |
DPPH • inhibition (mg TE/100 g fw) | 46.3 ± 4.8 a | 58.1 ± 7.4 a | 7.58–11.23% [29]; 18.11–126.29 mg GAE/L [8]; 42.6 μg/mL [33]; 44.0–66.5% [34] |
EAA | Amino Acid Requirements in Adults (mg/g Protein) [19] | Seeds (mg/g Protein) | Cake (mg/g Protein) | Seeds AAS (%) | Cake AAS (%) |
---|---|---|---|---|---|
Histidine | 15 | 39.67 ± 1.50 b | 34.27 ± 1.47 a | 264.48 ± 9.98 B | 228.49 ± 9.81 A |
Isoleucine | 30 | 47.41 ± 1.91 b | 39.24 ± 1.72 a | 158.03 ± 6.37 B | 130.79 ± 5.75 A |
Leucine | 59 | 78.29 ± 3.26 b | 69.02 ± 3.12 a | 132.70 ± 5.53 B | 116.99 ± 5.28 A |
Lysine | 45 | 62.25 ± 3.74 a | 60.03 ± 4.34 a | 138.33 ± 8.30 A | 133.41 ± 9.63 A |
Methionine | 16 | 30.05 ± 1.25 b | 26.13 ± 1.07 a | 187.84 ± 7.79 B | 163.32 ± 6.72 A |
Phenylalanine + Tyrosine | 38 | 83.12 ± 3.61 b | 71.98 ± 3.87 a | 218.74 ± 9.50 B | 189.42 ± 10.20 A |
Threonine | 23 | 47.41 ± 1.79 b | 43.22 ± 1.75 a | 206.12 ± 7.78 B | 187.90 ± 7.59 A |
Tryptophan | 6 | 6.83 ± 0.07 b | 5.74 ± 0.63 a | 113.89 ± 1.13 B | 95.61 ± 10.43 A |
Valine | 39 | 58.31 ± 2.15 b | 48.72 ± 1.77 a | 149.52 ± 5.52 B | 124.92 ± 4.54 A |
LAA (%) | - | - | - | Trp 113.89 ± 1.13 B | Trp 95.61 ± 10.43 A |
EAAI (%) | - | 133.40 ± 4.72 b | 117.07 ± 5.43 a | - | - |
Parameter | Oil | Literature Data |
---|---|---|
Oxidative stability (h) | 2.82 ± 0.02 | 3.0–9.2 [32]; 5.56 [28]; 5.59 [30] |
Colour (x, y) | (0.3794, 0.3673) | |
Transparency (%) | 52.0 | |
Dominant wavelength (nm) | 581.7 | |
Purity | 32.2 | |
K232 nm | 0.024 ± 0.002 | |
K270 nm | 0.007 ± 0.001 | |
Peroxide value (meq O2/kg) | 1.95 ± 0.04 | 0.1 [30]; 1.03–1.27 [29] |
Vitamin E profile (mg/kg) | ||
α-Tocopherol | 12.79 ± 1.17 | 5.90 [30]; 19 [39]; 21 [40]; 21.99–45.83 [7]; 55.3 [28] |
γ-Tocopherol | 222.30 ± 7.37 | 115.7 [30]; 157 [39]; 195.37–280.85 [7]; 217.4 [28]; 263 [40] |
Total vitamin E | 235.10 ± 8.53 | 121.6 [30]; 182 [39]; 284 [40]; 309.4 [28] |
Fatty acids profile (%) | ||
C16:0 (Palmitic acid) | 10.15 ± 0.15 | 7.67–9.91 [7]; 8.5 [39]; 9.91 [30]; 9.79 [28]; 11.6 [40] |
C16:1 (Palmitoleic acid) | 0.17 ± 0.06 | 0.1 [39]; 0.13 [28]; 0.15 [30]; 0.15–0.25 [7] |
C18:0 (Stearic acid) | 2.05 ± 0.06 | 1.4 [40]; 1.93 [28]; 2.13 [30]; 2.179–2.55 [7]; 2.4 [39] |
C18:1n9c (Oleic acid) | 24.08 ± 0.14 | 11.8 [40]; 11.94 [28]; 14.13–19.28 [7]; 14.4 [39]; 15.83 [30] |
C18:2n6c (Linoleic acid) | 62.44 ± 0.15 | 68.76–73.92 [7]; 71.35 [30]; 72.3 [39]; 72.6 [40]; 74.47 [28] |
C18:3n3 (Linolenic acid) | 1.02 ± 0.17 | 0.55–0.66 [7]; 0.60 [28]; 0.65 [30]; 0.8 [40]; 0.9 [39] |
C20:0 (Arachidic acid) | 0.09 ± 0.01 | 0.1 [39]; 0.10–0.17 [7] |
∑SFA (saturated fatty acids) | 12.29 ± 0.17 | 13.0 [40] |
∑MUFA (monounsaturated fatty acids) | 24.25 ± 0.18 | 13.6 [40] |
∑PUFA (polyunsaturated fatty acids) | 63.46 ± 0.11 | 73.4 [40] |
C18:2n6/C18:3n3 | 62.24 ± 10.52 | 80.3 [39]; 90.75 [40]; 124.12 [28] |
C18:1n9/C18:2n6 | 0.39 ± 0.00 | 0.16 [28]; 0.19 [39] |
Phytochemicals analysis | ||
TPC (mg GAE/100 g) | 3.6 ± 0.4 | 48.5 mg GAE/100 g [34]; 368.2 mg/L GAE [39] |
TFC (mg ECE/100 g) | 2.1 ± 0.2 | 63.27–66.48 mg catechol equivalents/g [29] |
FRAP (μmol FSE/100 g) | 76.2 ± 9.7 | |
DPPH • inhibition (mg TE/100 g) | 0.49 ± 0.04 | 37.2–60.5% [34]; 56.5 mg Trolox/L [39]; 792.6 mg α-tocopherol/L [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Espírito Santo, L.; Machado, S.; Pardo, J.E.; Oliveira, M.B.P.P. Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods 2022, 11, 3027. https://doi.org/10.3390/foods11193027
Melo D, Álvarez-Ortí M, Nunes MA, Espírito Santo L, Machado S, Pardo JE, Oliveira MBPP. Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods. 2022; 11(19):3027. https://doi.org/10.3390/foods11193027
Chicago/Turabian StyleMelo, Diana, Manuel Álvarez-Ortí, Maria Antónia Nunes, Liliana Espírito Santo, Susana Machado, José E. Pardo, and Maria Beatriz P. P. Oliveira. 2022. "Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production" Foods 11, no. 19: 3027. https://doi.org/10.3390/foods11193027
APA StyleMelo, D., Álvarez-Ortí, M., Nunes, M. A., Espírito Santo, L., Machado, S., Pardo, J. E., & Oliveira, M. B. P. P. (2022). Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods, 11(19), 3027. https://doi.org/10.3390/foods11193027