HS−SPME/GC−MS Reveals the Season Effects on Volatile Compounds of Green Tea in High−Latitude Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Tea Preparation
2.2. Sensory Evaluation
2.3. HS−SPME Method
2.4. GC–MS Analysis
2.5. Data Processing
3. Results
3.1. Sensory Quality Analysis
3.2. Analysis of Volatile Compounds in Green Teas Produced in Different Seasons
3.3. Multivariate Statistical Analysis
3.3.1. Principal Component Analysis
3.3.2. Partial Least Squares−Discrimination Analysis
3.3.3. Hierarchical Clustering Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.M.; Huang, Y.; Liu, Z.H. Empirical analysis of the international competitiveness of China’s tea industry (in Chinese). Res. Agric. Mod. 2020, 41, 45–54. [Google Scholar]
- Yang, Y.; Zhang, M.; Yin, H.; Deng, Y.; Jiang, Y.; Yuan, H.; Dong, C.; Li, J.; Hua, J.; Wang, J. Rapid profiling of volatile compounds in green teas using Micro−Chamber/Thermal Extractor combined with thermal desorption coupled to gas chromatography−mass spectrometry followed by multivariate statistical analysis. LWT 2018, 96, 42–50. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, H.P.; Dai, W.D.; Guo, L.; Tan, J.F.; Zhang, Y.; Yu, F.L.; Shao, C.Y.; Peng, Q.H.; Lin, Z. Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Sep. Purif. Technol. 2016, 164, 146–154. [Google Scholar] [CrossRef]
- Wu, Y.; Lv, S.; Lian, M.; Wang, C.; Gao, X.; Meng, Q. Study of characteristic aroma components of baked Wujiatai green tea by HS−SPME/GC−MS combined with principal component analysis. CyTA J. Food 2016, 14, 423–432. [Google Scholar] [CrossRef]
- Dong, B.J.; Young, S.H.; Ga, H.L.; Yu, M.P.; Cheong, M.L.; Eun, Y.N.; Ji, Y.C.; Nargis, J.; Naeem, K.; Kim, K.S. Determination of volatile organic compounds, catechins, caffeine and theanine in Jukro tea at three growth stages by chromatographic and spectrometric methods. Food Chem. 2017, 219, 443–452. [Google Scholar]
- Guo, X.; Ho, C.T.; Schwab, W.; Wan, X. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chem. 2021, 363, 130328. [Google Scholar] [CrossRef]
- Ma, L.L.; Cao, D.; Liu, Y.L.; Gong, Z.M.; Liu, P.; Jin, X.F. A comparative analysis of the volatile components of green tea produced from various tea cultivars in China. Turk. J. Agric. For. 2019, 43, 451–463. [Google Scholar] [CrossRef]
- Yang, Z.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Wan, X. Tea Biochemistry, 3rd ed.; China Agriculture Press: Beijing, China, 2003; p. 451. [Google Scholar]
- Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef]
- Lin, J.; Dai, Y.; Guo, Y.N.; Xu, H.R.; Wang, X.C. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS−SPME/GC−MS. J. Zhejiang Univ. Sci. B 2012, 13, 972–980. [Google Scholar] [CrossRef]
- Han, Z.X.; Rana, M.M.; Liu, G.F.; Gao, M.J.; Li, D.X.; Wu, F.G.; Li, X.B.; Wan, X.C.; Wei, S. Green tea flavour determinants and their changes over manufacturing processes. Food Chem. 2016, 212, 739–748. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, H.P.; Shao, C.Y.; Kang, S.; Zhang, Y.; Guo, L.; Dai, W.D.; Tan, J.F.; Peng, Q.H.; Lin, Z. Identification of key odorants responsible for chestnut−like aroma quality of green teas. Food Res. Int. 2018, 108, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zheng, P.; Gong, Z.; Feng, L.; Gao, S.; Wang, X.; Teng, J.; Zheng, L.; Liu, Z. Comparing characteristic aroma components of bead−shaped green teas from different regions using headspace solid−phase microextraction and gas chromatography–mass spectrometry/olfactometry combined with chemometrics. Eur. Food Res. Technol. 2020, 246, 1703–1714. [Google Scholar] [CrossRef]
- Qu, F.F.; Li, X.H.; Wang, P.Q.; Han, Y.H.; Wu, Y.; Hu, J.H.; Zhang, X.F. Effect of thermal process on the key aroma components of green tea with chestnut−like aroma. J. Sci. Food Agric. 2022, in press. [CrossRef] [PubMed]
- Wang, B.Y.; Wang, P.Q.; Li, X.H.; Shi, Z.G. Analysis of aroma of shandong green tea in different seasons based on electronic nose technology. Mod. Food Sci. Technol. 2020, 36, 284–289. [Google Scholar]
- Wang, M.Q.; Zhu, Y.; Zhang, Y.; Shi, J.; Lin, Z. Analysis of volatile composition and key aroma compounds of green teas with fresh scent flavor. Food Sci. 2019, 40, 219–228. [Google Scholar]
- Wang, H.; Hua, J.; Yu, Q.; Li, J.; Wang, J.; Deng, Y.; Yuan, H.; Jiang, Y. Widely targeted metabolomic analysis reveals dynamic changes in non−volatile and volatile metabolites during green tea processing. Food Chem. 2021, 363, 130131. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Yin, H.X.; Yuan, H.B.; Jiang, Y.W.; Dong, C.W.; Deng, Y.L. Characterization of the volatile components in green tea by IRAE−HS−SPME/GC−MS combined with multivariate analysis. PLoS ONE 2018, 13, e0193393. [Google Scholar] [CrossRef]
- Fang, Q.T.; Luo, W.W.; Zheng, Y.N.; Ye, Y.; Hu, M.J.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R.; Ye, J.H. Identification of key aroma compounds responsible for the floral ascents of green and black teas from different tea cultivars. Molecules 2022, 27, 2809. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Wu, J.; Wen, J.; Yu, Y.; An, K.; Zou, B. GC−IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Res. Int. 2021, 150, 110784. [Google Scholar] [CrossRef]
- Dai, W.; Qi, D.; Yang, T.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Xie, D.; Tan, J.; et al. Nontargeted analysis using ultraperformance liquid chromatography−quadrupole time−of−flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Zhao, J.; Chen, Q.; Yuan, L. In situ monitoring of total polyphenols content during tea extract oxidation using a portable spectroscopy system with variables selection algorithms. RSC Adv. 2015, 5, 60876–60883. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Duan, J.; Shi, J.; Xue, S.; Kakuda, Y. Variation in catechin contents in relation to quality of ‘Huang Zhi Xiang’ Oolong tea (Camellia sinensis) at various growing altitudes and seasons. Food Chem. 2010, 119, 648–652. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, F. The authenticity identification of teas (Camellia sinensis L.) of different seasons according to their multi−elemental fingerprints. Int. J. Food Sci. Technol. 2018, 54, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Kfoury, N.; Scott, E.; Orians, C.; Ahmed, S.; Cash, S.; Griffin, T.; Matyas, C.; Stepp, J.; Han, W.; Xue, D.; et al. Plant−climate interaction effects: Changes in the relative distribution and concentration of the volatile tea leaf metabolome in 2014−2016. Front. Plant Sci. 2019, 10, 1518. [Google Scholar] [CrossRef]
- Wang, L.; Wei, K.; Jiang, Y.; Cheng, H.; Zhou, J.; He, W.; Zhang, C. Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur. Food Res. Technol. 2011, 233, 1049–1055. [Google Scholar] [CrossRef]
- Yildiz, O.; Gurkan, H.; Sahingil, D.; Degirmenci, A.; Er Kemal, M.; Kolayli, S.; Hayaloglu, A.A. Floral authentication of some monofloral honeys based on volatile composition and physicochemical parameters. Eur. Food Res. Technol. 2022, 248, 2145–2155. [Google Scholar] [CrossRef]
- Asimi, S.; Ren, X.; Zhang, M.; Li, S.; Guan, L.; Wang, Z.; Liang, S.; Wang, Z. Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from Northeast China. Foods 2022, 11, 1695. [Google Scholar] [CrossRef]
- Karpiński, P.; Kruszewski, B.; Stachelska, M.A.; Szabłowska, E. Development of volatile profile of Kumpiak podlaski dry-cured ham during traditional ripening. Int. J. Food Sci. Technol. 2020, 55, 3630–3638. [Google Scholar] [CrossRef]
- Ni, L.; Zhang, F.; Han, M.; Zhang, L.; Luan, S.; Li, W.; Deng, H.; Lan, Z.; Wu, Z.; Luo, X.; et al. Qualitative analysis of the roots of Salvia miltiorrhiza and Salvia yunnanensis based on NIR, UHPLC and LC−MS−MS. J. Pharm. Biomed. Anal. 2019, 170, 295–304. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Bro, R.; Marini, F.; Rinnan, Å.; Rasmussen, M.A.; Skov, T. Recent chemometrics advances for foodomics. TrAC Trend Anal. Chem. 2017, 96, 42–51. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Kong, Y.; Peng, X.; Li, C.; Liu, S.; Du, L.; Xiao, D.; Xu, Y. A comparative study of volatile components in Dianhong teas from fresh leaves of four tea cultivars by using chromatography−mass spectrometry, multivariate data analysis, and descriptive sensory analysis. Food Res. Int. 2017, 100, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zeng, Z.; Zhao, C.; Kong, H.; Lu, X.; Xu, G. A comparative study of volatile components in green, oolong and black teas by using comprehensive two−dimensional gas chromatography−time−of−flight mass spectrometry and multivariate data analysis. J. Chromatogr. A 2013, 1313, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jin, S.; Guo, Y. Exploration of a method of distinguishing different nongxiang Tieguanyin tea grades based on aroma determined by GC−MS combined with chemometrics. Molecules 2019, 24, 1707. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Cao, J.; Li, Z.; Li, Q.; Lai, X.; Sun, L.; Chen, R.; Wen, S.; Sun, S.; Lai, Z. HS−SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process. Food Chem. 2021, 357, 129654. [Google Scholar] [CrossRef]
- Giannetti, V.; Boccacci Mariani, M.; Mannino, P.; Marini, F. Volatile fraction analysis by HS−SPME/GC−MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control 2017, 78, 215–221. [Google Scholar] [CrossRef]
- Wang, B.; Qu, F.; Wang, P.; Zhao, L.; Wang, Z.; Han, Y.; Zhang, X. Characterization analysis of flavor compounds in green teas at different drying temperature. LWT 2022, 161, 113394. [Google Scholar] [CrossRef]
- Han, Z.; Wen, M.; Zhang, H.; Zhang, L.; Wan, X.; Ho, C.T. LC−MS based metabolomics and sensory evaluation reveal the critical compounds of different grades of Huangshan Maofeng green tea. Food Chem. 2022, 374, 131796. [Google Scholar] [CrossRef]
- Wang, B.; Chen, H.; Qu, F.; Song, Y.; Di, T.; Wang, P.; Zhang, X. Identification of aroma−active components in black teas produced by six Chinese tea cultivars in high−latitude region by GC–MS and GC–O analysis. Eur. Food Res. Technol. 2021, 248, 647–657. [Google Scholar] [CrossRef]
- Dai, Q.; Jin, H.; Gao, J.; Ning, J.; Yang, X.; Xia, T. Investigating volatile compounds’ contributions to the stale odour of green tea. Int. J. Food Sci. Technol. 2020, 55, 1606–1616. [Google Scholar] [CrossRef]
- Van, P.D.K. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS−regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Lee, J.; Chambers, D.; Chambers, E.; Adhikari, K.; Yoon, Y. Volatile aroma compounds in various brewed green teas. Molecules 2013, 18, 10024–10041. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Li, J.; Li, W.; Li, Y.; Li, T.; Xiao, D. Characterization of volatile compounds of Pu−Erh tea using solid−phase microextraction and simultaneous distillation–extraction coupled with gas chromatography–mass spectrometry. Food Res. Int. 2014, 57, 61–70. [Google Scholar] [CrossRef]
- Ye, G.; Yuan, H.; Jiang, Y.; Yin, J.; Wang, F.; Jian, J. Application of Bayes stepwise discrimination analysis on chemical recognition of green tea with chestnut−like aroma. J. Tea Sci. 2009, 29, 27–33. [Google Scholar]
- Feng, Z.; Li, M.; Li, Y.; Wan, X.; Yang, X. Characterization of the orchid−like aroma contributors in selected premium tea leaves. Food Res. Int. 2020, 129, 108841. [Google Scholar] [CrossRef]
- Jayasekera, S.; Kaur, L.; Molan, A.; Garg, M.L.; Moughan, P. Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea. Food Chem. 2014, 152, 546–551. [Google Scholar] [CrossRef]
- Tounekti, T.; Joubert, E.; Hernández, I.; Munné−Bosch, S. Improving the polyphenol content of tea. CRC Crit. Rev. Plant Sci. 2012, 32, 192–215. [Google Scholar] [CrossRef]
- Ho, C.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Zhang, Z.; Wan, X.; Shi, Z.; Xia, T. Studies on the content of glycosidic tea aroma precursors in leaves of zhuye during different seasons, green tea processing and storage. Food Ferment. Ind. 2003, 29, 1. [Google Scholar]
- Joshi, R.; Gulati, A. Fractionation and identification of minor and aroma−active constituents in Kangra orthodox black tea. Food Chem. 2015, 167, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Topal, B.; Serpen, A.; Bahar, B.; Pelvan, E.; Gokmen, V. Flavor characteristics of seven grades of black tea produced in Turkey. J. Agric. Food Chem. 2012, 60, 6323–6332. [Google Scholar] [CrossRef] [PubMed]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N.; Raghavan, V. Plant carotenoids evolution during cultivation, postharvest storage, and food processing: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1561–1604. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Shin, S.; Wang, K.; Lu, J.; Liang, Y. Effect of temperature on the expression of genes related to the accumulation of chlorophylls and carotenoids in albino tea. J. Hortic. Sci. Biotech. 2015, 84, 365–369. [Google Scholar] [CrossRef]
- Hazarika, M.; Mahanta, P.K. Some studies on carotenoids and their degradation in black tea manufacture. J. Sci. Food Agr. 1983, 34, 1390–1396. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Li, Q.S.; Xiang, L.P.; Liang, Y.R. Recent Advances in Volatiles of Teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef]
- Shao, C.; Zhang, C.; Lv, Z.; Shen, C. Pre− and post−harvest exposure to stress influence quality−related metabolites in fresh tea leaves (Camellia sinensis). Sci. Hortic. 2021, 281, 109984. [Google Scholar] [CrossRef]
Name | Appearance | Liquor Color | Aroma | Taste | Infused Leaves | Total Score | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Remarks | Score | Remarks | Score | Remarks | Score | Remarks | Score | Remarks | Score | ||
Spring tea | Tight, thin, tender green | 92.00 ± 0.71a | Tender yellowish | 89.80 ± 0.84a | Chestnut−like, tender | 92.80 ± 0.84a | Fresh, thick, sweet aftertaste | 91.80 ± 0.84a | Tender green | 91.80 ± 0.84a | 91.84a |
Summer tea | Tight, thin, black green | 89.60 ± 1.14b | Blue dull | 86.40 ± 0.89bc | Clean, slight harsh odour | 87.20 ± 0.84c | Astringent, strong | 85.40 ± 1.14c | Yellowish green, little blueish | 89.20 ± 1.06b | 87.38c |
Autumn tea | Coarse, loose, yellowish green | 87.00 ± 1.00c | Yellowish green, slight blueish | 88.40 ± 1.14b | Floral, little green odour | 90.20 ± 1.48b | Bitter aftertaste, not strong enough | 88.20 ± 0.84b | Dull green | 87.20 ± 0.84c | 88.32b |
No. | Retention Time | RI 1 | Compounds 2 | ID 3 | Relative Content (%) 4 | VIP | Odor Description 5 | ||
---|---|---|---|---|---|---|---|---|---|
Spring Tea | Summer Tea | Autumn Tea | |||||||
1 | 1.613 | Ethanethiol | MS | 0.69 ± 0.06b | 1.05 ± 0.05a | 1.00 ± 0.04a | 1.12 | Sulfurous, fruity | |
2 | 1.678 | Dimethyl sulfide | MS | 19.38 ± 0.96b | 22.10 ± 1.57a | 5.91 ± 0.76a | 0.99 | Sulfurous, sweet corn | |
3 | 1.991 | 2−Methylfuran | MS | 0.00 ± 0.00c | 2.55 ± 0.05a | 0.41 ± 0.23b | 1.29 | Chocolate | |
4 | 2.151 | (2E,4Z)−Hexadiene | MS | 1.48 ± 0.09b | 1.43 ± 0.06b | 4.61 ± 0.02a | 0.95 | ||
5 | 2.342 | 2−Methylbutanal | MS | 2.02 ± 0.09b | 3.14 ± 0.20a | 1.27 ± 0.16c | 1.16 | Cocoa, coffee, nutty | |
6 | 2.632 | 1−Methyl−1−cyclohexene | MS | 0.00 ± 0.00b | 0.00 ± 0.00b | 1.03 ± 0.11a | 0.95 | Citrus | |
7 | 2.65 | 2−Ethylfuran | MS | 1.04 ± 0.22a | 0.86 ± 0.75ab | 0.00 ± 0.00b | 0.72 | Sweet, burnt, earthy, malty | |
8 | 3.651 | 3−Methyl−1−butanol | MS | 0.00 ± 0.00c | 1.99 ± 0.34a | 1.02 ± 0.07b | 1.25 | Fruity | |
9 | 3.655 | 1−Pentanol | MS | 2.53 ± 0.23a | 1.98 ± 0.08b | 0.88 ± 0.08c | 0.91 | Sweet, balsam | |
10 | 4.349 | Methyl isobutenyl ketone | MS | 7.02 ± 0.13a | 6.68 ± 0.23a | 2.51 ± 0.23b | 0.94 | Pungent, earthy | |
11 | 5.97 | 706 | Leaf alcohol | MS, RI | 1.49 ± 0.23a | 0.95 ± 0.02b | 1.31 ± 0.21a | 1.08 | Fresh, green, herbal, oily |
12 | 6.408 | 721 | Ethylbenzene | MS, RI | 0.60 ± 0.04a | 0.34 ± 0.01b | 0.00 ± 0.00c | 0.93 | |
13 | 6.625 | 729 | 2−Methyl−cyclopentanol | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.19 ± 0.10a | 0.95 | |
14 | 7.939 | 768 | Phenylethylene | MS, RI | 1.06 ± 0.40a | 0.83 ± 0.02a | 0.26 ± 0.05b | 0.80 | Sweet, balsam, floral |
15 | 8.064 | 771 | Methoxy−phenyl−oxime | MS, RI | 0.22 ± 0.01b | 0.50 ± 0.02a | 0.13 ± 0.01c | 1.22 | |
16 | 8.155 | 773 | Heptanal | MS, RI | 1.82 ± 0.44a | 0.65 ± 0.02b | 0.31 ± 0.04b | 0.99 | Fresh, fatty, green, herbal |
17 | 9.512 | 810 | 3,4−Dimethylphenol | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.75 ± 0.13a | 0.94 | Fatty |
18 | 10.488 | 840 | 1,3−Dimethylbenzene | MS, RI | 2.28 ± 0.30a | 1.36 ± 0.27b | 1.16 ± 0.10b | 0.98 | Plastic |
19 | 11.238 | 862 | Benzaldehyde | MS, RI | 0.45 ± 0.01a | 0.48 ± 0.03a | 0.56 ± 0.45a | 0.21 | Sweet, almond, cherry |
20 | 11.91 | 881 | 1−Octen−3−ol | MS, RI | 1.12 ± 0.05a | 0.12 ± 0.21c | 0.48 ± 0.01b | 1.20 | Earthy, green, oily |
21 | 12.218 | 889 | Myrcene | MS, RI | 4.92 ± 0.14a | 4.92 ± 0.08a | 4.88 ± 0.39a | 0.09 | Peppery, spicy, balsam |
22 | 12.772 | 904 | 3,3,5−Trimethyl−1,5−heptadiene | MS, RI | 0.63 ± 0.05b | 0.81 ± 0.02a | 0.56 ± 0.03c | 1.17 | |
23 | 13.145 | 916 | cis−Octahydropentalene | MS, RI | 0.00 ± 0.00c | 0.30 ± 0.01b | 1.30 ± 0.02a | 0.92 | |
24 | 14.026 | 943 | o−Cymene | MS, RI | 1.80 ± 0.20b | 2.18 ± 0.17ab | 2.60 ± 0.25a | 0.83 | |
25 | 14.255 | 950 | D−Limonene | MS, RI | 4.30 ± 0.52b | 5.83 ± 0.41a | 4.99 ± 0.46ab | 1.10 | Citrus−like, fresh, sweet |
26 | 14.611 | 960 | Benzyl alcohol | MS, RI | 0.48 ± 0.27a | 0.28 ± 0.16a | 0.25 ± 0.03a | 0.60 | Floral rose phenolic balsamic |
27 | 14.68 | 962 | (Z)−3,7−Dimethyl−1,3,6−octatriene | MS, RI | 0.00 ± 0.00c | 0.43 ± 0.16b | 1.63 ± 0.80a | 0.92 | Floral, herb, sweet |
28 | 15.192 | 976 | 4−Amino−2−methylphenol | MS, RI | 4.26 ± 0.37a | 0.00 ± 0.00b | 0.00 ± 0.00b | 1.12 | |
29 | 15.196 | 976 | m−Anisidine | MS, RI | 0.00 ± 0.00b | 2.89 ± 0.27a | 0.00 ± 0.00b | 1.28 | |
30 | 16.05 | 999 | 2−Acetyl pyrrole | MS, RI | 0.33 ± 0.66a | 0.00 ± 0.00b | 0.10 ± 0.07b | 1.14 | Licorice, walnut |
31 | 16.527 | 1014 | Cyclooctane | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.55 ± 0.01a | 0.95 | |
32 | 16.544 | 1015 | 1−Octanol | MS, RI | 0.00 ± 0.00b | 0.54 ± 0.06a | 0.00 ± 0.00b | 1.26 | Green |
33 | 16.882 | 1025 | 3−Ethenyl−1,2−dimethyl−1,4−cyclohexadiene | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.47 ± 0.02a | 0.95 | |
34 | 17.221 | 1035 | Ethyl 2−(5−methyl−5−vinyltetrahydrofuran−2−yl) propan−2−yl carbonate | MS, RI | 1.05 ± 0.04b | 1.37 ± 0.20b | 4.41 ± 0.39a | 0.91 | |
35 | 17.433 | 1042 | 2,4−Dimethyl styrene | MS, RI | 1.07 ± 0.28b | 1.37 ± 0.17b | 2.03 ± 0.05a | 0.869 | Spicy |
36 | 18.075 | 1060 | Linalool | MS, RI | 4.42 ± 0.01a | 4.28 ± 0.03a | 3.56 ± 0.06b | 0.91 | Floral |
37 | 18.113 | 1062 | 3,7−Dimethyl−1,5,7−octatrien−3−ol | MS, RI | 1.30 ± 0.14b | 2.05 ± 0.01b | 14.53 ± 0.01a | 0.94 | |
38 | 18.261 | 1066 | Nonanal | MS, RI | 3.01 ± 0.13a | 2.19 ± 0.12b | 0.00 ± 0.00c | 0.91 | Rose, fresh, orange, fatty |
39 | 18.595 | 1075 | 2−Methyl−6−methylene−1,7−octadien−3−one | MS, RI | 0.00 ± 0.00b | 1.96 ± 0.13a | 1.58 ± 0.81ab | 0.93 | |
40 | 18.608 | 1075 | Phenethyl alcohol | MS, RI | 6.90 ± 0.19a | 1.33 ± 0.01b | 1.21 ± 0.04b | 1.11 | Floral, rose |
41 | 18.981 | 1086 | (3E,5E)−2,6−Dimethyl−1,3,5,7−octatetrene | MS, RI | 0.56 ± 0.01b | 0.98 ± 0.14b | 5.31 ± 0.21a | 0.93 | |
42 | 19.336 | 1095 | (4E,6Z)−2,6−Dimethyl−2,4,6−octatriene | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 1.45 ± 0.58a | 0.95 | |
43 | 19.778 | 1108 | Benzyl cyanide | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.49 ± 0.03a | 0.95 | |
44 | 20.221 | 1122 | Methyl mandelate | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.36 ± 0.01a | 0.95 | |
45 | 20.476 | 1130 | Neroloxide | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.16 ± 0.03a | 0.89 | Green, herbal |
46 | 21.608 | 1164 | Linalool oxide | MS, RI | 0.48 ± 0.02b | 0.59 ± 0.05b | 1.18 ± 0.02a | 0.92 | Floral, honey |
47 | 21.608 | 1164 | cis−5−Ethenyltetrahydro−α, α−5−trimethyl−2−furanmethanol | MS, RI | 0.82 ± 0.13a | 0.00 ± 0.00b | 0.00 ± 0.00b | 1.07 | Earthy, floral, sweet, woody |
48 | 21.738 | 1167 | 2,4,6−Trimethylstyrene | MS, RI | 0.00 ± 0.00c | 0.17 ± 0.00b | 0.22 ± 0.02a | 1.02 | |
49 | 22.189 | 1180 | trans−3−Hexenyl butyrate | MS, RI | 0.23 ± 0.06b | 0.22 ± 0.02b | 0.68 ± 0.03a | 0.94 | |
50 | 22.566 | 1191 | Methyl salicylate | MS, RI | 0.62 ± 0.07b | 0.89 ± 0.18b | 2.49 ± 0.74a | 0.85 | Mint |
51 | 22.574 | 1191 | (−)−α−Terpineol | MS, RI | 0.46 ± 0.01b | 0.47 ± 0.01b | 0.56 ± 0.01a | 0.92 | Floral |
52 | 22.713 | 1195 | 2,3−Dihydro−2,2,6−trimethylbenzalhyde | MS, RI | 0.42 ± 0.01a | 0.36 ± 0.02b | 0.00 ± 0.00c | 0.93 | Fresh, herbal, spicy |
53 | 22.731 | 1195 | 2,4−Dimethyl−1−(1−methylethenyl)−cyclohexene | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.76 ± 0.01a | 0.95 | |
54 | 22.908 | 1200 | Dodecane | MS, RI | 0.48 ± 0.38a | 0.43 ± 0.01a | 0.40 ± 0.02a | 0.71 | |
55 | 23.199 | 1207 | Decanal | MS, RI | 0.22 ± 0.02b | 0.23 ± 0.04ab | 0.31 ± 0.05a | 0.72 | Sweet, orange, floral |
56 | 23.286 | 1209 | N−methoxycarbonyl−l−norleucine decyl ester | MS, RI | 0.00 ± 0.00b | 0.51 ± 0.01a | 0.36 ± 0.02ab | 1.22 | |
57 | 23.663 | 1217 | β−Cyclocitral | MS, RI | 0.47 ± 0.02a | 0.31 ± 0.02ab | 0.21 ± 0.17b | 0.77 | Herbal, clean, rose, sweet, fruity |
58 | 23.754 | 1220 | Methyl 2−methylvalerate | MS, RI | 1.98 ± 0.03a | 1.37 ± 0.11b | 0.87 ± 0.06c | 0.95 | Fruity |
59 | 24.135 | 1228 | Terpinolene | MS, RI | 0.40 ± 0.04b | 0.29 ± 0.01c | 1.14 ± 0.06a | 0.98 | |
60 | 24.33 | 1232 | cis−3−Hexenyl isovalerate | MS, RI | 0.32 ± 0.04b | 0.28 ± 0.03b | 1.07 ± 0.20a | 0.93 | Fresh, green, apple fruity, pineapple |
61 | 24.656 | 1240 | 3,6−Dimethoxy−9−(2−phenylethynyl)−fluoren−9−ol | MS, RI | 0.00 ± 0.00c | 0.22 ± 0.07b | 0.66 ± 0.03a | 0.91 | |
62 | 24.747 | 1242 | 5−Methylthiazole | MS, RI | 0.29 ± 0.01a | 0.00 ± 0.00c | 0.16 ± 0.01b | 1.28 | |
63 | 25.371 | 1255 | Geraniol | MS, RI | 0.43 ± 0.01a | 0.00 ± 0.00c | 0.22 ± 0.02b | 1.27 | Sweet, floral, fruity, rose, citrus |
64 | 25.375 | 1255 | 2−Phenylethyl bromoacetate | MS, RI | 0.35 ± 0.01a | 0.00 ± 0.00ab | 0.00 ± 0.00ab | 1.12 | |
65 | 25.379 | 1255 | 2,6,6−Trimethyl−1−cyclohexene−1−acetaldehyde | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.16 ± 0.01a | 0.95 | Woody, fruity |
66 | 26.246 | 1273 | Nonanoic acid | MS, RI | 0.35 ± 0.01a | 0.00 ± 0.00b | 0.00 ± 0.00b | 1.12 | |
67 | 27.062 | 1290 | Indole | MS, RI | 0.71 ± 0.06b | 1.77 ± 0.13a | 0.75 ± 0.10b | 1.27 | Floral |
68 | 27.33 | 1295 | Theaspirane | MS, RI | 0.28 ± 0.08ab | 0.17 ± 0.01b | 0.31 ± 0.05a | 0.99 | Herbal, green, woody, spicy |
69 | 27.586 | 1300 | Tridecane | MS, RI | 0.66 ± 0.04a | 0.69 ± 0.15a | 0.00 ± 0.00b | 0.94 | |
70 | 29.598 | 1347 | Longipinene | MS, RI | 0.26 ± 0.01a | 0.22 ± 0.01b | 0.20 ± 0.01b | 0.91 | |
71 | 29.866 | 1353 | α−Ionene | MS, RI | 0.23 ± 0a | 0.22 ± 0.01a | 0.16 ± 0.01b | 0.91 | |
72 | 30.456 | 1367 | (+)−Cyclosativene | MS, RI | 0.27 ± 0.01a | 0.15 ± 0.01b | 0.00 ± 0.00c | 0.93 | |
73 | 30.469 | 1367 | α−Ylangene | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.24 ± 0.02a | 0.95 | |
74 | 30.642 | 1371 | Longicyclene | MS, RI | 0.39 ± 0.01a | 0.30 ± 0.01b | 0.26 ± 0.00c | 0.99 | |
75 | 30.759 | 1373 | α−Copaene | MS, RI | 0.19 ± 0.01b | 0.20 ± 0.01b | 0.42 ± 0.04a | 0.92 | |
76 | 31.119 | 1381 | cis−3−Hexenyl hexanoate | MS, RI | 0.81 ± 0.08b | 0.87 ± 0.16b | 1.52 ± 0.26a | 0.85 | Fruity, green, grassy |
77 | 31.367 | 1386 | Hexyl hexanoate | MS, RI | 0.34 ± 0.04a | 0.36 ± 0.03a | 0.39 ± 0.03a | 0.53 | Herbal, fresh, grass, vegetable, fruity |
78 | 31.557 | 1391 | Jasmone | MS, RI | 0.84 ± 0.07a | 0.57 ± 0.03b | 0.74 ± 0.08a | 1.16 | Woody, herbal, floral, spicy, jasmin |
79 | 32.017 | 1400 | Tetradecane | MS, RI | 1.07 ± 0.08a | 0.82 ± 0.06b | 0.43 ± 0.03c | 0.91 | |
80 | 32.156 | 1402 | Longifolene | MS, RI | 3.44 ± 0.15a | 2.58 ± 0.28b | 2.57 ± 0.10b | 1.04 | Sweet, woody, rose, medical |
81 | 32.455 | 1407 | α−Cedrene | MS, RI | 0.40 ± 0.01a | 0.33 ± 0.03b | 0.30 ± 0.02b | 0.96 | Woody, cedar, sweet, fresh |
82 | 32.606 | 1409 | Caryophyllene | MS, RI | 0.79 ± 0.04a | 0.58 ± 0.09b | 0.77 ± 0.04a | 1.14 | Sweet, woody, spice, |
83 | 33.252 | 1419 | 2,6−Dimethyl−6−(4−methyl−3−pentenyl)−bicyclo [3.1.1]hept−2−ene | MS, RI | 0.00 ± 0.00b | 0.85 ± 0.15a | 0.13 ± 0.10b | 1.27 | |
84 | 33.955 | 1430 | Geranylacetone | MS, RI | 0.41 ± 0.01a | 0.22 ± 0.02c | 0.35 ± 0.04b | 1.25 | Fresh, green, fruity, rose, woody, magnolia |
85 | 34.128 | 1433 | Z,Z,Z−1,5,9,9−Tetramethyl−1,4,7,−cycloundecatriene | MS, RI | 0.29 ± 0.02a | 0.20 ± 0.00b | 0.29 ± 0.03a | 1.17 | |
86 | 35.143 | 1448 | β−Ionone | MS, RI | 0.26 ± 0.00a | 0.18 ± 0.01c | 0.22 ± 0.01b | 1.24 | Floral, woody |
87 | 35.949 | 1459 | α−Muurolene | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.21 ± 0.04a | 0.94 | |
88 | 36.148 | 1462 | Butylated hydroxytoluene | MS, RI | 0.64 ± 0.001a | 0.47 ± 0.03c | 0.57 ± 0.05b | 1.20 | Camphor |
89 | 36.357 | 1465 | 2,4−Di−tert−butylphenol | MS, RI | 0.22 ± 0.01a | 0.20 ± 0.01a | 0.11 ± 0.02b | 0.88 | |
90 | 36.716 | 1470 | Isobutyl (m−tolyl) sulfide | MS, RI | 0.47 ± 0.02a | 0.00 ± 0.00b | 0.00 ± 0.00b | 1.12 | |
91 | 36.738 | 1470 | d−Cadinene | MS, RI | 0.00 ± 0.00c | 0.26 ± 0.04b | 0.60 ± 0.11a | 0.91 | Herbal, woody |
92 | 36.864 | 1472 | l−Calamenene | MS, RI | 0.27 ± 0.03b | 0.57 ± 0.09a | 0.34 ± 0.06b | 1.19 | herb spice |
93 | 37.445 | 1480 | α−Murulene | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.15 ± 0.04a | 0.92 | |
94 | 37.627 | 1482 | α−Calacorene | MS, RI | 0.00 ± 0.00b | 0.00 ± 0.00b | 0.14 ± 0.02a | 0.94 | Woody |
95 | 40.12 | 1600 | Hexadecane | MS, RI | 0.23 ± 0.16a | 0.14 ± 0.03a | 0.16 ± 0.09a | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, X.; Wu, Y.; Qu, F.; Liu, L.; Wang, B.; Wang, P.; Zhang, X. HS−SPME/GC−MS Reveals the Season Effects on Volatile Compounds of Green Tea in High−Latitude Region. Foods 2022, 11, 3016. https://doi.org/10.3390/foods11193016
Wang J, Li X, Wu Y, Qu F, Liu L, Wang B, Wang P, Zhang X. HS−SPME/GC−MS Reveals the Season Effects on Volatile Compounds of Green Tea in High−Latitude Region. Foods. 2022; 11(19):3016. https://doi.org/10.3390/foods11193016
Chicago/Turabian StyleWang, Jie, Xiaohan Li, Ying Wu, Fengfeng Qu, Lei Liu, Baoyi Wang, Peiqiang Wang, and Xinfu Zhang. 2022. "HS−SPME/GC−MS Reveals the Season Effects on Volatile Compounds of Green Tea in High−Latitude Region" Foods 11, no. 19: 3016. https://doi.org/10.3390/foods11193016
APA StyleWang, J., Li, X., Wu, Y., Qu, F., Liu, L., Wang, B., Wang, P., & Zhang, X. (2022). HS−SPME/GC−MS Reveals the Season Effects on Volatile Compounds of Green Tea in High−Latitude Region. Foods, 11(19), 3016. https://doi.org/10.3390/foods11193016