The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Metabolome Analysis
2.3. Statistical Analysis
3. Results
3.1. 1H-NMR Spectra of Ya’an Tibetan Tea Samples
3.2. Ya’an Tibetan Tea Metabolome Variations along Storage Time
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alcázar, A.; Ballesteros, O.; Jurado, J.M.; Pablos, F.; Martín, M.J.; Vilches, J.L.; Navalón, A. Differentiation of Green, White, Black, Oolong, and Pu-Erh Teas According to Their Free Amino Acids Content. J. Agric. Food Chem. 2007, 55, 5960–5965. [Google Scholar] [CrossRef]
- Horie, H.; Kohata, K. Analysis of Tea Components by High-Performance Liquid Chromatography and High-Performance Capillary Electrophoresis. J. Chromatogr. A 2000, 881, 425–438. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea Aroma Formation from Six Model Manufacturing Processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.-z.; Zhou, Y.-b.; Ling, T.-j.; Wan, X.-c. Chinese Dark Teas: Post fermentation, Chemistry and Biological Activities. Food Res. Int. 2013, 53, 600–607. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, W.; Zhang, H.; Gao, X.; Tan, S. Optimizing Synchronous Extraction and Antioxidant Activity Evaluation of Polyphenols and Polysaccharides from Ya’an Tibetan Tea (Camellia sinensis). Food Sci. Nutr. 2020, 8, 489–499. [Google Scholar] [CrossRef]
- Dang, S.; Yan, H.; Yamamoto, S.; Wang, X.; Zeng, L. Feeding Practice among Younger Tibetan Children Living at High Altitudes. Eur. J. Clin. Nutr. 2005, 59, 1022–1029. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.; Ren, Z.; Qiu, W.; Chen, J.; Jiang, Q.; Chen, B.; Chen, D. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components. Molecules 2018, 23, 179. [Google Scholar] [CrossRef]
- Xu, J.; Liang, X.; Wang, W.; Chen, S.; Tang, Q. Study on Anti-Radiation Effect of Ya’an Tibetan Tea. In Proceedings of the Journal of Physics: Conference Series, Montréal, Canada, 10–14 May 2020; Volume 1549. [Google Scholar]
- Li, L.; Shi, M.; Salerno, S.; Tang, M.; Guo, F.; Liu, J.; Feng, Y.; Fu, M.; Huang, Q.; Ma, L.; et al. Microbial and Metabolomic Remodeling by a Formula of Sichuan Dark Tea Improves Hyperlipidemia in ApoE-Deficient Mice. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Du, M.; He, C.; Bian, J.; Du, X. A Comparative Analysis of Inhibitory Effect of Different Levels of Ya’an Tibetan Tea on Lipase. In Proceedings of the Journal of Physics: Conference Series, Montréal, Canada, 10–14 May 2020; Volume 1549. [Google Scholar]
- Wang, N.; Wu, T.; Du, D.; Mei, J.; Luo, H.; Liu, Z.; Saleemi, M.K.; Zhang, R.; Chang, C.; Mehmood, M.A.; et al. Transcriptome and Gut Microbiota Profiling Revealed the Protective Effect of Tibetan Tea on Ulcerative Colitis in Mice. Front. Microbiol. 2022, 12, 165–176. [Google Scholar] [CrossRef]
- Laghi, L.; Picone, G.; Capozzi, F. Nuclear Magnetic Resonance for Foodomics beyond Food Analysis. TrAC Trends Anal. Chem. 2014, 59, 93–102. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Zhang, D.; Zeng, L.; Liu, Y.; Zhu, W.; Lei, G.; Huang, Y. Aged Fragrance Formed during the Post-Fermentation Process of Dark Tea at an Industrial Scale. Food Chem. 2021, 342, 128175. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, J.; Li, Z.; Li, Q.; Lai, X.; Sun, L.; Chen, R.; Wen, S.; Sun, S.; Lai, Z. HS-SPME and GC/MS Volatile Component Analysis of Yinghong No. 9 Dark Tea during the Pile Fermentation Process. Food Chem. 2021, 129654. [Google Scholar] [CrossRef]
- Lee, L.S.; Choi, J.H.; Son, N.; Kim, S.H.; Park, J.D.; Jang, D.J.; Jeong, Y.; Kim, H.J. Metabolomic Analysis of the Effect of Shade Treatment on the Nutritional and Sensory Qualities of Green Tea. J. Agric. Food Chem. 2013, 61, 332–338. [Google Scholar] [CrossRef]
- Yao, L.; Caffin, N.; D’Arcy, B.; Jiang, Y.; Shi, J.; Singanusong, R.; Liu, X.; Datta, N.; Kakuda, Y.; Xu, Y. Seasonal Variations of Phenolic Compounds in Australia-Grown Tea (Camellia sinensis). J. Agric. Food Chem. 2005, 53, 6477–6483. [Google Scholar] [CrossRef]
- Lee, J.E.; Lee, B.J.; Chung, J.O.; Kim, H.N.; Kim, E.H.; Jung, S.; Lee, H.; Lee, S.J.; Hong, Y.S. Metabolomic Unveiling of a Diverse Range of Green Tea (Camellia sinensis) Metabolites Dependent on Geography. Food Chem. 2015, 174, 452–459. [Google Scholar] [CrossRef]
- Ohno, A.; Oka, K.; Sakuma, C.; Okuda, H.; Fukuhara, K. Characterization of Tea Cultivated at Four Different Altitudes Using 1H NMR Analysis Coupled with Multivariate Statistics. J. Agric. Food Chem. 2011, 59, 5181–5187. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, W.; Gao, X. The Effect of Storage Time on Tea Polyphenols, Catechin Compounds, Total Flavones and the Biological Activity of Ya’an Tibetan Tea (Camellia sinensis). J. Food Process. Preserv. 2021, 45, e16004. [Google Scholar] [CrossRef]
- Xie, G.; Ye, M.; Wang, Y.; Ni, Y.; Su, M.; Huang, H.; Qiu, M.; Zhao, A.; Zheng, X.; Chen, T.; et al. Characterization of Pu-Erh Tea Using Chemical and Metabolic Profiling Approaches. J. Agric. Food Chem. 2009, 57, 3046–3054. [Google Scholar] [CrossRef]
- Kneen, M.A.; Annegarn, H.J. Algorithm for Fitting XRF, SEM and PIXE X-ray Spectra Backgrounds. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1996, 109–110, 209–213. [Google Scholar] [CrossRef]
- Liland, K.H.; Almøy, T.; Mevik, B.H. Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra. Appl. Spectrosc. 2010, 64, 1007–1016. [Google Scholar] [CrossRef]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application In 1H NMR Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing; R Development Core Team R: Vienna, Austria, 2011; Volume 1.
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B Methodol. 2018, 26, 211–243. [Google Scholar] [CrossRef]
- Zhu, C.; Laghi, L.; Zhang, Z.; He, Y.; Wu, D.; Zhang, H.; Huang, Y.; Li, C.; Zou, L. First Steps toward the Giant Panda Metabolome Database: Untargeted Metabolomics of Feces, Urine, Serum, and Saliva by 1H-NMR. J. Proteome Res. 2020, 19, 1052–1059. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, X.; Fu, R.; Yan, H.; Han, S.; Gerelt, K.; Cui, P.; Chen, J.; Qi, K.; Zhou, Y. Determination of Six Groups of Mycotoxins in Chinese Dark Tea and the Associated Risk Assessment. Environ. Pollut. 2020, 261, 114180. [Google Scholar] [CrossRef]
- Cao, L.; Guo, X.; Liu, G.; Song, Y.; Ho, C.T.; Hou, R.; Zhang, L.; Wan, X. A Comparative Analysis for the Volatile Compounds of Various Chinese Dark Teas Using Combinatory Metabolomics and Fungal Solid-State Fermentation. J. Food Drug Anal. 2018, 26, 112–123. [Google Scholar] [CrossRef]
- Seetohul, L.N.; Islam, M.; O’Hare, W.T.; Ali, Z. Discrimination of Teas Based on Total Luminescence Spectroscopy and Pattern Recognition. J. Sci. Food Agric. 2006, 86, 2092–2098. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, H.; Mou, S. Direct Determination of Free Amino Acids and Sugars in Green Tea by Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. J. Chromatogr. A 2002, 982, 237–244. [Google Scholar] [CrossRef]
- Zhu, M.-z.; Li, N.; Zhou, F.; Ouyang, J.; Lu, D.-m.; Xu, W.; Li, J.; Lin, H.-y.; Zhang, Z.; Xiao, J.-b.; et al. Microbial Bioconversion of the Chemical Components in Dark Tea. Food Chem. 2020, 312, 126043. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.Q.; Granato, D.; Xu, Y.Q.; Ho, C.T. Association between Chemistry and Taste of Tea: A Review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Xue, J.; Liu, P.; Guo, G.; Wang, W.; Zhang, J.; Wang, W.; Le, T.; Yin, J.; Ni, D.; Jiang, H. Profiling of Dynamic Changes in Non-Volatile Metabolites of Shaken Black Tea during the Manufacturing Process Using Targeted and Non-Targeted Metabolomics Analysis. LWT 2022, 156, 113010. [Google Scholar] [CrossRef]
- Guo, X.; Ho, C.T.; Schwab, W.; Song, C.; Wan, X. Aroma Compositions of Large-Leaf Yellow Tea and Potential Effect of Theanine on Volatile Formation in Tea. Food Chem. 2019, 280, 73–82. [Google Scholar] [CrossRef]
- Thippeswamy, R.; Gouda, K.G.M.; Rao, D.H.; Martin, A.; Gowda, L.R. Determination of Theanine in Commercial Tea by Liquid Chromatography with Fluorescence and Diode Array Ultraviolet Detection. J. Agric. Food Chem. 2006, 54, 7014–7019. [Google Scholar] [CrossRef]
- Yang, C.; Hu, Z.; Lu, M.; Li, P.; Tan, J.; Chen, M.; Lv, H.; Zhu, Y.; Zhang, Y.; Guo, L.; et al. Application of Metabolomics Profiling in the Analysis of Metabolites and Taste Quality in Different Subtypes of White Tea. Food Res. Int. 2018, 106, 909–919. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, Q.; Chen, Z.; Zhang, J.; Chen, Q.; Wang, Y.; Wei, X. Distinct Changes of Metabolic Profile and Sensory Quality during Qingzhuan Tea Processing Revealed by LC-MS-Based Metabolomics. J. Agric. Food Chem. 2020, 68, 4955–4965. [Google Scholar] [CrossRef]
- Shimada, M.; Hasegawa, T.; Nishimura, C.; Kan, H.; Kanno, T.; Nakamura, T.; Matsubayashi, T. Anti-Hypertensive Effect of γ-Aminobutyric Acid (GABA)-Rich Chlorella on High-Normal Blood Pressure and Borderline Hypertension in Placebo-Controlled Double Blind Study. Clin. Exp. Hypertens 2009, 31, 342–354. [Google Scholar] [CrossRef]
- Huang, J.; Fang, H.; Gai, Z.C.; Mei, J.Q.; Li, J.N.; Hu, S.; Lv, C.J.; Zhao, W.R.; Mei, L.H. Lactobacillus Brevis CGMCC 1306 Glutamate Decarboxylase: Crystal Structure and Functional Analysis. Biochem. Biophys. Res. Commun. 2018, 503. [Google Scholar] [CrossRef]
- Jayabalan, R.; Marimuthu, S.; Swaminathan, K. Changes in Content of Organic Acids and Tea Polyphenols during Kombucha Tea Fermentation. Food Chem. 2007, 102, 392–398. [Google Scholar] [CrossRef]
- Lv, H.P.; Zhong, Q.S.; Lin, Z.; Wang, L.; Tan, J.F.; Guo, L. Aroma Characterisation of Pu-Erh Tea Using Headspace-Solid Phase Microextraction Combined with GC/MS and GC-Olfactometry. Food Chem. 2012, 130, 1074–1081. [Google Scholar] [CrossRef]
- Zhang, L.; Li, N.; Ma, Z.Z.; Tu, P.F. Comparison of the Chemical Constituents of Aged Pu-Erh Tea, Ripened Pu-Erh Tea, and Other Teas Using HPLC-DAD-ESI-MS n. J. Agric. Food Chem. 2011, 59, 8754–8760. [Google Scholar] [CrossRef]
- Fernández, P.L.; Martin, M.J.; González, A.G.; Pablos, F. HPLC Determination of Catechins and Caffeine in Tea. Differentiation of Green, Black and Instant Teas. Analyst 2000, 125, 421–425. [Google Scholar] [CrossRef]
- Togari, N.; Kobayashi, A.; Aishima, T. Pattern Recognition Applied to Gas Chromatographic Profiles of Volatile Components in Three Tea Categories. Food Res. Int. 1995, 28, 495–502. [Google Scholar] [CrossRef]
- Gong, J.S.; Tang, C.; Peng, C.X. Characterization of the Chemical Differences between Solvent Extracts from Pu-Erh Tea and Dian Hong Black Tea by CP-Py-GC/MS. J. Anal. Appl. Pyrolysis 2012, 95, 189–197. [Google Scholar] [CrossRef]
ppm | Functional Group | Multiplicity * | |
---|---|---|---|
Amino acids, Peptides and Analogues | |||
4-Aminobutyrate | 2.2854 | CH2-2 | t |
Alanine | 1.4754 | CH3 | d |
Aspartate | 2.7009 | CH2 | dd |
Carnitine | 3.2146 | CH3 | s |
Creatine | 3.0270 | CH3 | s |
Creatinine | 3.0405 | CH3 | s |
Glutamine | 2.4492 | CH2-2 | m |
Isoleucine | 0.9906 | CH3-4 | d |
Leucine | 0.9479 | CH3 | t |
Lysine | 3.0130 | CH2 | t |
N,N-Dimethylglycine | 2.8999 | CH3 | s |
N-Acetylglutamate | 2.2318 | CH2-2 | t |
Pyroglutamate | 2.5275 | CH2-5 | m |
Threonine | 1.3117 | CH3 | d |
Theanine | 1.0936 | CH2 | m |
Valine | 0.9718 | CH3 | d |
Carbohydrates | |||
Arabinose | 4.5082 | CH2 | d |
Fucose | 1.2313 | CH3 | d |
Glucose | 3.4074 | CH-3 | t |
Maltose | 4.6291 | CH | d |
Sucrose | 5.3954 | CH | d |
Trehalose | 5.1807 | CH | d |
Organic Acids | |||
2-Oxoglutarate | 2.4246 | CH2-2 | t |
3-Methyl-2-oxovalerate | 1.1004 | CH3-4 | d |
4-Hydroxybenzoate | 7.7896 | CH2-3 | d |
Acetate | 1.9082 | CH3 | s |
Formate | 8.4454 | CH | s |
Fumarate | 6.5080 | CH | s |
Gallate | 7.0203 | CH | s |
Propionate | 1.0438 | CH3 | t |
Protocatechuate | 7.3737 | CH | dd |
Quinic acid | 1.8642 | CH2 | d |
Nucleosides, Nucleotides and Analogues | |||
Thymidine | 7.6287 | CH-7 | s |
Uracil | 5.7969 | CH-6 | d |
Uridine | 5.8970 | CH | s |
Catechins | |||
Catechin gallate (CG) | 2.6328 | CH2 | dd |
Epicatechin gallate (ECG) | 6.9439 | CH | d |
Epigallocatechin gallate (EGCG) | 6.6304 | CH | d |
Miscellaneous | |||
Caffeine | 7.8612 | CH-9 | s |
Dimethylamine | 2.7132 | CH3 | s |
Methanol | 3.3495 | CH3 | s |
Methylguanidine | 2.8057 | CH3 | s |
myo-Inositol | 3.2878 | CH | t |
Propylene glycol | 1.1248 | CH3 | d |
Trimethylamine N-oxide | 3.2494 | CH3 | s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Yang, Z.; He, L.; Lu, X.; Tang, J.; Laghi, L. The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis). Foods 2022, 11, 2986. https://doi.org/10.3390/foods11192986
Zhu C, Yang Z, He L, Lu X, Tang J, Laghi L. The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis). Foods. 2022; 11(19):2986. https://doi.org/10.3390/foods11192986
Chicago/Turabian StyleZhu, Chenglin, Zhibo Yang, Li He, Xuan Lu, Junni Tang, and Luca Laghi. 2022. "The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis)" Foods 11, no. 19: 2986. https://doi.org/10.3390/foods11192986
APA StyleZhu, C., Yang, Z., He, L., Lu, X., Tang, J., & Laghi, L. (2022). The Longer the Storage Time, the Higher the Price, the Better the Quality? A 1H-NMR Based Metabolomic Investigation of Aged Ya’an Tibetan Tea (Camellia sinensis). Foods, 11(19), 2986. https://doi.org/10.3390/foods11192986